Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2225 Accesses

Abstract

This chapter is devoted to the Cauchy problem associated with nonlinear quasi-accretive operators in Banach spaces. The main result is concerned with the convergence of the finite difference scheme associated with the Cauchy problem in general Banach spaces and in particular to the celebrated Crandall-Liggett exponential formula for autonomous equations, from which practically all existence results for the nonlinear accretive Cauchy problem follow in a more or less straightforward way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Attouch, Familles d'opérateurs maximaux monotones et mesurabilité, Annali Mat. Pura Appl., CXX (1979), pp. 35–111.

    Article  MathSciNet  Google Scholar 

  2. H. Attouch, Variational Convergence for Functions and Operators, Pitman, Boston, 1984.

    MATH  Google Scholar 

  3. H. Attouch, A. Damlamian, Problèmes d'évolution dans les Hilbert et applications, J. Math. Pures Appl., 54 (1975), pp. 53–74.

    MATH  MathSciNet  Google Scholar 

  4. P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  5. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.

    MATH  Google Scholar 

  6. V. Barbu, G. Da Prato, Some results for the reflection problems in Hilbert spaces, Control Cybern., 37 (2008), pp. 797–810.

    MATH  MathSciNet  Google Scholar 

  7. V. Barbu, A. Răşcanu, Parabolic variational inequalities with singular inputs, Differential Integral Equ., 10 (1997), pp. 67–83.

    MATH  Google Scholar 

  8. V. Barbu, C. Marinelli, Variational inequalities in Hilbert spaces with measures and optimal stopping problems, Appl. Math. Optimiz., 57 (2008), pp. 237–262.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, D. Reidel, Dordrecht, 1987.

    Google Scholar 

  10. Ph. Bénilan, Equations d'évolution dans un espace de Banach quelconque et applications, Thèse, Orsay, 1972.

    Google Scholar 

  11. Ph. Bénilan, H. Brezis, Solutions faibles d'équations d'évolution dans les espaces de Hilbert, Ann. Inst. Fourier, 22 (1972), pp. 311–329.

    MATH  Google Scholar 

  12. Ph. Bénilan, S. Ismail, Générateurs des semigroupes nonlinéaires et la formule de Lie-Trotter, Annales Faculté de Sciences, Toulouse, VII (1985), pp. 151–160.

    Google Scholar 

  13. H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North Holland, Amsterdam, 1975.

    Google Scholar 

  14. H. Brezis, Propriétés régularisantes de certaines semi-groupes nonlinéaires, Israel J. Math., 9 (1971), pp. 513–514.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional analysis, E. Zarantonello (Ed.), Academic Press, New York, 1971.

    Google Scholar 

  16. H. Brezis, A. Pazy, Semigroups of nonlinear contrctions on convex sets, J. Funct. Anal., 6 (1970), pp. 367–383.

    Article  MathSciNet  Google Scholar 

  17. H. Brezis, A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Funct. Anal., 9 (1971), pp. 63–74.

    Article  MathSciNet  Google Scholar 

  18. R. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Funct. Anal., 18 (1975), pp. 15–26.

    Article  MATH  MathSciNet  Google Scholar 

  19. O. Cârjă, M. Necula, I.I. Vrabie, Viability, Invariance and Applications, North-Holland Math. Studies, Amsterdam, 2007.

    MATH  Google Scholar 

  20. E. Cépa, Problème de Skorohod multivoque, Ann. Probab., 26 (1998), pp. 500–532.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Chernoff, Note on product formulas for opertor semi-groups, J. Funct. Anal., 2 (1968), pp. 238–242.

    Article  MATH  MathSciNet  Google Scholar 

  22. M.G. Crandall, Nonlinear semigroups and evolutions generated by accretive operators, Nonlinear Functional Analysis and Its Applications, pp. 305–338, F.Browder (Ed.), American Mathematical Society, Providence, RI, 1986.

    Google Scholar 

  23. M.G. Crandall, L.C. Evans, On the relation of the operator ∂/∂s+∂/∂t to evolution governed by accretive operators, Israel J. Math., 21 (1975), pp. 261–278.

    Article  MATH  MathSciNet  Google Scholar 

  24. M.G. Crandall, T.M. Liggett, Generation of semigroups of nonlinear transformations in general Banach spaces, Amer. J. Math., 93 (1971), pp. 265–298.

    Article  MATH  MathSciNet  Google Scholar 

  25. M.G. Crandall, A. Pazy, Semigroups of nonlinear contractions and dissipative sets, J. Funct. Anal., 3 (1969), pp. 376–418.

    Article  MATH  MathSciNet  Google Scholar 

  26. M.G. Crandall, A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math., 11 (1972), pp. 57–94.

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Dafermos, M. Slemrod, Asymptotic behaviour of nonlinear contraction semigroups, J. Funct. Anal., 12 (1973), pp. 96–106.

    MathSciNet  Google Scholar 

  28. G. Da Prato, Kolmogorov Equations for Stochastic PDEs, Birhkäuser Verlag, Basel, 2004.

    MATH  Google Scholar 

  29. G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992.

    MATH  Google Scholar 

  30. J. Goldstein, Approximation of nonlinear semigroups and ev olution equations, J. Math. Soc. Japan, 24 (1972), pp. 558–573.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Haraux, Nonlinear Evolution Equations. Global Behaviour of solutions, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  32. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), pp. 508–520.

    Article  MATH  MathSciNet  Google Scholar 

  33. T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Nonlinear Functional Analysis, Proc. Symp. Pure Math., vol. 13, F. Browder (Ed.), American Mathematical Society, (1970), pp. 138–161.

    Google Scholar 

  34. N. Kenmochi, Nonlinear parabolic variational inequalities with time-dependent constraints, Proc. Japan Acad., 53 (1977), pp. 163–166.

    Article  MATH  MathSciNet  Google Scholar 

  35. Y. Kobayashi, Difference approximation of Cauchy problem for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 27 (1975), pp. 641–663.

    Article  Google Scholar 

  36. Y. Kobayashi, I. Miyadera, Donvergence and approximation of nonlinear semigroups, Japan-France Seminar, pp. 277–295, H.Fujita (Ed.), Japan Soc. Promotion Sci., Tokyo, 1978.

    Google Scholar 

  37. Y. Komura, Nonlinear semigroups in Hilbert spaces, J. Math. Soc. Japan, 19 (1967), pp. 508–520.

    Article  MathSciNet  Google Scholar 

  38. Y. Komura, Differentiability of nonlinear semigroups, J. Math. Soc. Japan, 21 (1969), pp. 375–402.

    Article  MATH  MathSciNet  Google Scholar 

  39. N. Krylov, B. Rozovski, Stochastic Evolution Equations, Plenum, New York, 1981.

    Google Scholar 

  40. J.L. Lions, Quelques Méthodes de Resolution des Problèmes aux Limites Nonlinéaires, Dunod, Paris, 1969.

    Google Scholar 

  41. J.J. Moreau, Evolution problem associated with a moving convex set associated with a moving convex set in a Hilbert space, J. Differential Equ., 26 (1977), pp. 347–374.

    Article  MATH  MathSciNet  Google Scholar 

  42. G. MoroÅŸanu, Nonlinear Evolution Equations and Applications, D. Reidel, Dordrecht, 1988.

    MATH  Google Scholar 

  43. N. Pavel, Differential Equations, Flow Invariance and Applications, Research Notes Math., 113, Pitman, Boston, 1984.

    Google Scholar 

  44. N. Pavel, Nonlinear Evolution Equations, Operators and Semigroups, Lecture Notes, 1260, Springer-Verlag, New York, 1987.

    Google Scholar 

  45. A. Pazy, Semigroups of Linear Operators and Applications, Springer-Verlag, New York, 1979.

    Google Scholar 

  46. A. Pazy, The Lyapunov method for semigroups of nonlinear contractions in Banach spaces, J. Analyse Math., 40 (1982), pp. 239–262.

    Article  MathSciNet  Google Scholar 

  47. J.C. Peralba, Un problème d'évolution relativ à un opérateur sous-différentiel dépendent du temps, C.R.A.S. Paris, 275 (1972), pp. 93–96.

    MATH  MathSciNet  Google Scholar 

  48. C. Prévot, M. Roeckner, A Concise Course on Stochastic Partial Differential Equations, Lect. Notes Math., 1905, Springer, New York, 2007.

    Google Scholar 

  49. S. Reich, Product formulas, nonlinear semigroups and accretive operators in Banach spaces, J. Funct. Anal., 36 (1980), pp. 147–168.

    Article  MATH  MathSciNet  Google Scholar 

  50. R.E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, American Mathematical Society, Providence, RI, 1977.

    Google Scholar 

  51. U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations, SIAM J. Control Optim., 8 (2008), pp. 1615–1642.

    Article  MathSciNet  Google Scholar 

  52. L. Véron, Effets régularisant de semi-groupes non linéaire dans des espaces de Banach, Ann. Fc. Sci. Toulouse Math., 1 (1979), pp. 171–200.

    MATH  Google Scholar 

  53. A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone operators (to appear).

    Google Scholar 

  54. I.I. Vrabie, Compactness Methods for Nonlinear Evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics, Second Edition, 75, Addison Wesley and Longman, Reading, MA, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorel Barbu .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barbu, V. (2011). The Cauchy Problem in Banach Spaces. In: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5542-5_4

Download citation

Publish with us

Policies and ethics