Skip to main content

New and Conventional Strategies for Lung Recruitment in Acute Respiratory Distress Syndrome

  • Conference paper
Intensive Care Medicine

Abstract

Mechanical ventilation is a supportive and life saving therapy in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Despite advances in critical care, mortality remains high [1]. During the last decade, the fact that mechanical ventilation can produce morphologic and physiologic alterations in the lungs has been recognized [2]. In this context, the use of low tidal volumes (VT) and limited inspiratory plateau pressure (Pplat) has been proposed when mechanically ventilating the lungs of patients with ALI/ARDS, to prevent lung as well as distal organ injury [3]. However, the reduction in VT may result in alveolar derecruitment, cyclic opening and closing of atelectatic alveoli and distal small airways leading to ventilator-induced lung injury (VILI) if inadequate low positive end-expiratory pressure (PEEP) is applied [4]. On the other hand, high PEEP levels may be associated with excessive lung parenchyma stress and strain [5] and negative hemodynamic effects, resulting in systemic organ injury [6]. Therefore, lung recruitment maneuvers have been proposed and used to open up collapsed lung, while PEEP counteracts alveolar derecruitment due to low VT ventilation [4]. Lung recruitment and stabilization through use of PEEP are illustrated in Figure 1. Nevertheless, the beneficial effects of recruitment maneuvers in ALIIARDS have been questioned. Although Hodgson et al. [7] showed no evidence that recruitment maneuvers reduce mortality or the duration of mechanical ventilation in patients with ALI/ARDS, such maneuvers may be useful to reverse life-threatening hypoxemia [8] and to avoid derecruitment resulting from disconnection and/or airway suctioning procedures [9].

Computed tomography images of oleic acid-induced acute lung injury in dogs at different inspiratory and expiratory pressures. Note the improvement in alveolar aeration at end-expiration after the recruitment maneuver. Large arrows represent ispiration and expiration. Double-ended arrows represent the tidal breathing (end-expiration and end-inspiration). Adapted from [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phua J, Badia JR, Adhikari NKJ, et al (2009) Has mortality from acute respiratory distress syndrome decreased over time? Am J Respir Crit Care Med 179: 220–227

    Article  PubMed  Google Scholar 

  2. Oeckler RA, Hubmayr RD (2007) Ventilator-associated lung injury: a search for better therapeutic targets. Eur Respir J 30: 1216–1226

    Article  CAS  PubMed  Google Scholar 

  3. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308

    Article  Google Scholar 

  4. Pelosi P, Goldner M, McKibben A, et al (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164: 122–130

    CAS  PubMed  Google Scholar 

  5. Passaro CP, Silva PL, Rzezinski AF, et al (2009) Pulmonary lesion induced by low and high positive end-expiratory pressure levels during protective ventilation in experimental acute lung injury. Crit Care Med 37: 1011–1017

    Article  PubMed  Google Scholar 

  6. Imai Y, Parodo J, Kajikawa O, et al (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289: 2104–2112

    Article  PubMed  Google Scholar 

  7. Hodgson C, Keating JL, Holland AE, et al (2009) Recruitment manoeuvres for adults with acute lung injury receiving mechanical ventilation. Cochrane Database Syst Rev 15:CD006667

    Google Scholar 

  8. Fan E, Wilcox ME, Brower RG, et al (2008) Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med 178: 1156–1163

    Article  PubMed  Google Scholar 

  9. Maggiore SM, Lellouche F, Pigeot J, et al (2003) Prevention of endotracheal suctioning-induced alveolar derecruitment in acute lung injury. Am J Respir Crit Care Med 167: 1215–1224

    Article  PubMed  Google Scholar 

  10. Martynowicz MA, Walters BJ, Hubmayr RD (2000) Mechanisms of recruitment in oleic acidinjured lungs. J Appl Physiol 90: 1744–1753

    Google Scholar 

  11. Tremblay LN, Slutsky AS (2006) Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med 32: 24–33

    Article  PubMed  Google Scholar 

  12. Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31: 776–784

    Article  PubMed  Google Scholar 

  13. Cakar N, Akinci O, Tugrul S, et al (2002) Recruitment maneuver: does it promote bacterial translocation? Crit Care Med 30: 2103–2106

    Article  PubMed  Google Scholar 

  14. Halbertsma FJ, Vaneker M, Pickkers P, et al (2009) A single recruitment maneuver in ventilated critically ill children can translocate pulmonary cytokines into the circulation. J Crit Care (in press)

    Google Scholar 

  15. Lim SC, Adams AB, Simonson DA, et al (2004) Transient hemodynamic effects of recruitment maneuvers in three experimental models of acute lung injury. Crit Care Med 32: 2378–2384

    Article  PubMed  Google Scholar 

  16. Rocco PRM, Pelosi P (2008) Pulmonary and extrapulmonary acute respiratory distress syndrome: myth or reality? Curr Opin Crit Care Med 14: 50–55

    Article  Google Scholar 

  17. Kloot TE, Blanch L, Youngblood MA, et al (2000) Recruitment maneuvers in three experimental models of acute lung injury. Effect on lung volume and gas exchange. Am J Respir Crit Care Med 161: 1485–1494

    CAS  PubMed  Google Scholar 

  18. Riva DR, Oliveira MB, Rzezinski AF, et al (2009) Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury. Crit Care Med 36: 1900–1908

    Article  Google Scholar 

  19. Wrigge H, Zinserling J, Muders T, et al (2008) Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med 36: 903–909

    Article  PubMed  Google Scholar 

  20. Grasso S, Stripoli, T Sacchi M, et al (2009) Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am J Respir Crit Care Med 180: 415–423

    Article  PubMed  Google Scholar 

  21. Ornellas D, Santiago VR, Rzezinski AF, et al (2009) Lung mechanical stress induced by recruitment maneuver in different degrees of acute lung injury. Am I Respir Crit Care Med 179: A3837 (abst)

    Google Scholar 

  22. Mutoh T, Guest RJ, Lamm WJE, Albert RK (1992) Prone position alters the effect of volume overload on regional pleural pressures and improves hypoxemia in pigs invivo. Am Rev Respir Dis 146: 300–306

    CAS  PubMed  Google Scholar 

  23. Nakos G, Batistatou A, Galiatsou E, et al (2006) Lung and ‘end organ’ injury due to mechanical ventilation in animals: comparison between the prone and supine positions. Crit Care 10: R38

    Article  PubMed  Google Scholar 

  24. Broccard AF, Shapiro RS, Schmitz LL, Ravenscraft SA, Marini JJ (1997) Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Crit Care Med 25: 16–27

    Article  CAS  PubMed  Google Scholar 

  25. Valenza F, Guglielmi M, Maffioletti M, et al (2005) Prone position delays the progression of ventilator-induced lung injury in rats: does lung strain distribution playa role? Crit Care Med 33: 361–367

    Article  PubMed  Google Scholar 

  26. Richter T, Bellami G, Scott Harris R, et al (2005) Effect of prone position on regional shunt, aeration, and perfusion in experimental acute lung injury. Am J Respir Crit Care Med 172: 480–487

    Article  PubMed  Google Scholar 

  27. Santana MC, Garcia CS, Xisto DG, et al (2009) Prone position prevents regional alveolar hyperinflation and mechanical stress and strain in mild experimental acute lung injury. Respir Physiol Neurobiol 167: 181–188

    Article  PubMed  Google Scholar 

  28. Cakar N, der Kloot TV, Youngblood M, Adams A, Nahum A (2000) Oxygenation response to a recruitment maneuver during supine and prone positions in an oleic acid-induced lung injury model. Am I Respir Crit Care Med 161: 1949–1956

    CAS  Google Scholar 

  29. Farias LL, Faffe DS, Xisto DG, et al (2005) Positive end-expiratory pressure prevents lung mechanical stress caused by recruitment/derecruitment. J Appl Physiol 98: 53–61

    Article  PubMed  Google Scholar 

  30. Villagra A, Ochagavia A, Vatua S, et al (2002) Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 165: 165–170

    PubMed  Google Scholar 

  31. Brower RG, Morris A, MacIntyre N, et al (2003) Effects of recruitment maneuvers in patients with acute lung injury and acute respiratory distress syndrome ventilated with high positive end-expiratory pressure. Crit Care Med 31: 2592–2597

    Article  PubMed  Google Scholar 

  32. Odenstedt H, Aneman A, Karason S, Stenqvist O, Lundin S (2005) Acute hemodynamic changes during lung recruitment in lavage and endotoxin-induced ALI. Intensive Care Med 31: 112–120

    Article  PubMed  Google Scholar 

  33. Meade MO, Cook DJ, Griffith LE, et al (2008) A study of the physiologic responses to a lung recruitment maneuver in acute lung injury and acute respiratory distress syndrome. Respir Care 53: 1441–1449

    PubMed  Google Scholar 

  34. Constantin JM, Cayot-Constantin S, Roszyk L, et al (2007) Response to recruitment maneuver influences net alveolar fluid clearance in acute respiratory distress syndrome. Anesthesiology 106: 944–951

    Article  PubMed  Google Scholar 

  35. Musch G, Harris RS, Vidal Melo MF, et al (2004) Mechanism by which a sustained inflation can worsen oxygenation in acute lung injury. Anesthesiology 100: 323–330

    Article  PubMed  Google Scholar 

  36. Rzezinski AF, Oliveira GP, Santiago VR, et al (2009) Prolonged recruitment manoeuvre improves lung function with less utrastructural damage in experimental mild acute lung injury. Respir Physiol Neurobiol 169: 271–281

    Article  PubMed  Google Scholar 

  37. Odenstedt H, Lindgren S, Olegard C, et al (2005) Slow moderate pressure recruitment maneuver minimizes negative circulatory and lung mechanic side effects: evaluation of recruitment maneuvers using electric impedance tomography. Intensive Care Med 31: 1706–1714

    Article  PubMed  Google Scholar 

  38. Steimback PW, Oliveira GP, Rzezinksi AF, et al (2009) Effects of frequency and inspiratory plateau pressure during recruitment manoeuvres on lung and distal organs in acute lung injury. Intensive Care Med 35: 1120–1128

    Article  PubMed  Google Scholar 

  39. Saddy F, Oliveira GP, Garcia CS, et al (2010) Assisted ventilation modes reduce the expression of lung inflammatory and fibrogenic mediators in a model of mild acute lung injury. Intensive Care Med (in press)

    Google Scholar 

  40. Funk DJ, Graham MR) Girling LG, et al (2004) A comparison of biologically variable ventilation to recruitment manoeuvres in a porcine model of acute lung injury. Respir Res 5: 22

    Article  PubMed  Google Scholar 

  41. Spieth PM, Carvalho AR, Pelosi P, et al (2009) Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med 179: 684–693

    Article  PubMed  Google Scholar 

  42. Suki B, Barabási AL, Hantos Z, Peták F, Stanley HE (1994) Avalanches and power-law behaviour in lung inflation. Nature 368: 615–618

    Article  CAS  PubMed  Google Scholar 

  43. Mutch WAC, Harms S, Graham MR, Kowalski SE, Girling LG, Lefevre GR (2000) Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am J Respir Crit Care Med 162: 319–323

    CAS  PubMed  Google Scholar 

  44. McMullen MC, Girling LG, Graham MR, Mutch WAC (2006) Biologically variable ventilation improves oxygenation and respiratory mechanics during one-lung ventilation. Anesthesiology 105: 91–97

    Article  PubMed  Google Scholar 

  45. Boker A, Haberman CJ, Girling L, et al (2004) Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology 100: 608–616

    Article  PubMed  Google Scholar 

  46. Bellardine CL, Hoffman AM, Tsai L, Ingenito EP, Arold SP, Lutchen KR, Suki B (2006) Comparison of variable and conventional ventilation in a sheep saline lavage lung injury model. Crit Care Med 34: 439–445

    Article  PubMed  Google Scholar 

  47. Thammanomai A, Hueser E, Majumdar A, Bartolák-Suki E, Suki B (2008) Design of a new variable-ventilation method optimized for lung recruitment in mice. J Appl Physiol 104: 1329–1340

    Article  PubMed  Google Scholar 

  48. Beda A, Spieth PM, Handzsuj T, et al (2010) A novel adaptive control system for noisy pressure controlled ventilation: A numerical stimulation and bench test study. Intensive Care Med (in press)

    Google Scholar 

  49. Gama de Abreu M, Spieth P, Pelosi P, et al (2008) Noisy pressure support ventilation: A pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med 36: 818–827

    Article  Google Scholar 

  50. Spieth P, Carvalho AR, Güldner A, Pelosi P, et al (2009) Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology 110: 214–215

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media Inc.

About this paper

Cite this paper

Pelosi, P., De Abreu, M.G., Rocco, P.R.M. (2010). New and Conventional Strategies for Lung Recruitment in Acute Respiratory Distress Syndrome. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5562-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5562-3_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5561-6

  • Online ISBN: 978-1-4419-5562-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics