Skip to main content

Processing of Phase-Locked Spikes and Periodic Signals

  • Chapter
Analysis of Parallel Spike Trains

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 7))

Abstract

Studies of synchrony in the nervous system have revealed circuits specialized for the encoding and processing of temporal information. Periodic signals are generally coded by phase-locked action potentials and often processed in a dedicated pathway in parallel with other stimulus variables. We discuss circular statistics and current data analysis tools to quantify phase locking such as vector strength.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashida G, Abe K, Funabiki K, Konishi M (2007) Passive soma facilitates submillisecond coincidence detection in the owl’s auditory system. J Neurophysiol 97:2267–2282

    Article  PubMed  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic Press, London

    Google Scholar 

  • Carr CE (1993) Processing of temporal information in the brain. Annu Rev Neurosci 16:223–243

    Article  CAS  PubMed  Google Scholar 

  • Carr CE, Heiligenberg W, Rose GJ (1986) A time-comparison circuit in the electric fish midbrain. I. Behavior and physiology. J Neurosci 6:107–119

    CAS  PubMed  Google Scholar 

  • Carr CE, Soares D (2002) Evolutionary convergence and shared computational principles in the auditory system. Brain Behav Evol 59:294–311

    Article  CAS  PubMed  Google Scholar 

  • Carr CE, Soares D, Parameshwaran S, Perney T (2001) Evolution and development of time coding systems. Curr Opin Neurobiol 11:727–733

    Article  CAS  PubMed  Google Scholar 

  • Dynes SB, Delgutte B (1992) Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hear Res 58:79–90

    Article  CAS  PubMed  Google Scholar 

  • Engel AK, König P, Gray CM, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. Eur J Neurosci 2:588–606

    Article  PubMed  Google Scholar 

  • Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Google Scholar 

  • Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76–78

    Article  CAS  PubMed  Google Scholar 

  • Gleich O, Narins PM (1988) The phase response of primary auditory afferents in a songbird (Sturnus vulgaris L.). Hear Res 32:81–92

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636

    CAS  PubMed  Google Scholar 

  • Greenwood JA, Durand D (1955) The distribution of length and components of the sum of n random unit vectors. Ann Math Statist 26:233–246

    Article  Google Scholar 

  • Hartmann G (1987) Recognition of hierarchically encoded images by technical and biological systems. Biol Cybern 57:73–84

    Article  CAS  PubMed  Google Scholar 

  • Hill KG, Stange G, Mo J (1989) Temporal synchronization in the primary auditory response in the pigeon. Hear Res 39:63–74

    Article  CAS  PubMed  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Joris PX, Louage DH, Cardoen L, van der Heijden M (2006) Correlation index: a new metric to quantify temporal coding. Hear Res 216–217:19–30

    Article  PubMed  Google Scholar 

  • Joris PX, Smith PH (2008) The volley theory and the spherical cell puzzle. Neuroscience 154:65–76

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki M, Guo YX (1996) Neuronal circuitry for comparison of timing in the electrosensory lateral line lobe of the African wave-type electric fish Gymnarchus niloticus. J Neurosci 16:380–391

    CAS  PubMed  Google Scholar 

  • Kempter R, Gerstner W, van Hemmen JL, Wagner H (1998) Extracting oscillations. Neuronal coincidence detection with noisy periodic spike input. Neural Comput 10:1987–2017

    Article  CAS  PubMed  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark EF (1966) Discharge patterns of single fibers in the cat’s auditory nerve. MIT Press, Cambridge

    Google Scholar 

  • Kidd RC, Weiss TF (1990) Mechanisms that degrade timing information in the cochlea. Hear Res 49:181–208

    Article  CAS  PubMed  Google Scholar 

  • Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312–3321

    PubMed  Google Scholar 

  • Liu D, Peddada S, Li L, Weinberg C (2006) Phase analysis of circadian-related genes in two tissues. BMC Bioinformatics 7:87

    Article  PubMed  Google Scholar 

  • Louage DH, van der Heijden M, Joris PX (2005) Enhanced temporal response properties of anteroventral cochlear nucleus neurons to broadband noise. J Neurosci 25:1560–1570

    Article  CAS  PubMed  Google Scholar 

  • Manley GA, Köppl C, Yates GK (1997) Activity of primary auditory neurons in the cochlear ganglion of the emu dromaius novaehollandiae: spontaneous discharge, frequency tuning, and phase locking. J Acoust Soc Am 101:1560–1573

    Article  CAS  PubMed  Google Scholar 

  • Mardia KV (1972) Probability and mathematical statistics: statistics of directional data. Academic Press, London

    Google Scholar 

  • Mauk M, Buonomano D (2004) The neural basis of temporal processing. Annu Rev Neurosci 27:307–340

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen H, Ritz T (2005) Magnetoreception and its use in bird navigation. Curr Opin Neurobiol 15:406–414

    Article  CAS  PubMed  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Paolini AG, FitzGerald JV, Burkitt AN, Clark GM (2001) Temporal processing from the auditory nerve to the medial nucleus of the trapezoid body in the rat. Hear Res 159:101–116

    Article  CAS  PubMed  Google Scholar 

  • Rayleigh JWS (1894) Theory of sound, vol 2, 2nd edn. Macmillan, London, pp 230–223

    Google Scholar 

  • Rybak I, Stecina K, Shevtsova N, McCrea D (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol 577:641–658

    Article  CAS  PubMed  Google Scholar 

  • Sachs MB, Sinnott JM (1978) Responses to tones of single cells in nucleus magnocellularis and nucleus angularis of the redwing blackbird (Agelaius phoeniceus). J Comp Physiol 126:347–361

    Article  Google Scholar 

  • Salvi RJ, Saunders SS, Powers NL, Boettcher FA (1992) Discharge patterns of cochlear ganglion neurons in the chicken. J Comp Physiol 170:227–241

    Article  CAS  Google Scholar 

  • Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799

    CAS  PubMed  Google Scholar 

  • Trussell LO (2008) Central synapses that preserve auditory timing. In: Oertel D (ed) The senses: a comprehensive reference. Elsevier, New York, pp 587–602.

    Chapter  Google Scholar 

  • Weiss TF, Rose C (1988) A comparison of synchronization filters in different auditory receptor organs. Hear Res 33:175–180

    Article  CAS  PubMed  Google Scholar 

  • Wever E, Bray C (1930) The nature of acoustic response: the relation between sound frequency and frequency of impulses in the auditory nerve. J Exp Psychol 13:373–387

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Ashida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ashida, G., Wagner, H., Carr, C.E. (2010). Processing of Phase-Locked Spikes and Periodic Signals. In: Grün, S., Rotter, S. (eds) Analysis of Parallel Spike Trains. Springer Series in Computational Neuroscience, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5675-0_4

Download citation

Publish with us

Policies and ethics