Skip to main content

Infectious Arthritis in the Elderly

  • Chapter
  • First Online:
Geriatric Rheumatology

Abstract

Infections have long been known to be leading causes of morbidity and mortality in the elderly population. Immunosenescence of both the innate and adaptive immune systems contributes largely to this and we have examined the studies which show changes in toll-like receptors (TLRs), cytokines, dendritic cells, antibody response, and T-cells. Theses changes, in addition to functional changes, lead to increased infections in the elderly population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leading Causes of Death, 1900–1998, Center for Disease Control. At: http://www.cdc.gov/nchs/data/dvs/lead1900_98.pdf. Accessed Oct 12, 2008.

  2. Solana R, Pawelec G, Tarazona R. Aging and innate immunity. Immunity. 2006;24:491–4.

    Article  PubMed  CAS  Google Scholar 

  3. Gavazzi G, Krause KH. Ageing and infection. Lancet Infect Dis. 2002;2:659–66.

    Article  PubMed  Google Scholar 

  4. Small L, Ross J. Suppurative tenosynovitis and septic bursitis. Infect Dis Clin N Am. 2005;19:991–1005.

    Article  Google Scholar 

  5. Gavet F, Tournadre A, Soubrier M, Ristori JM, Dubost JJ. Septic arthritis in patients aged 80 and older: a comparison with younger adults. J Am Geriatr Soc. 2005;7:1210–3.

    Article  Google Scholar 

  6. Geiger H, Van Zant G. The aging of lympho-hematopoietic stem cells. Nat Immunol. 2002;3:329–33.

    Article  PubMed  CAS  Google Scholar 

  7. Henckaerts E, Geiger H, Langer JC, Rebollo P, Van Zant G, Snoeck HW. Genetically determined variation in the number of phenotypically defined hematopoietic progenitor and stem cells and in their response to early-acting cytokines. Blood. 2002;11:3947–54.

    Article  Google Scholar 

  8. De Haan G et al. A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover. Blood. 2002;6:2056–62.

    Article  Google Scholar 

  9. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL. The aging of hematopoietic stem cells. Nat Med. 1996;9:1011–6.

    Article  Google Scholar 

  10. Harrison DE. Long-term erythropoietic repopulating ability of old, young and fetal stem cells. J Exp Med. 1983;157:1496–504.

    Article  PubMed  CAS  Google Scholar 

  11. Dolle ME, Giese H, Hopkins CL, Martus HJ, Hausdorff JM, Vijg J. Rapid accumulation of genome rearrangments in liver but not in brain of old mice. Nat Genet. 1997;4:431–4.

    Article  Google Scholar 

  12. Dolle ME, Snyder WK, Gossen JA, Lohman PH, Vijg J. Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine. Proc Natl Acad Sci USA. 2000;15:8403–8.

    Article  Google Scholar 

  13. Murphy KM, Travers P, Walport M. Janeway’s immunobiology, 7th ed. New York: Garland Science, Taylor and Francis Group; 2008

    Google Scholar 

  14. Silverman N, Maniatis T. NFkB signaling pathways in mammalian and insect innate immunity. Genes Dev. 2001;15:2321–42.

    Article  PubMed  CAS  Google Scholar 

  15. Zerofsky M, Harel E, Silverman N, Tatar M. Aging of the innate immune response in drosophila melanogaster. Aging Cell. 2005;2:103–8.

    Article  Google Scholar 

  16. Van Duin D, Shaw A. Toll-like receptors in older adults. J Am Geriatr Soc. 2007;9:1438–44.

    Article  Google Scholar 

  17. Agrawal A, Agrawal S, Gupta S. Dendritic cells in human aging. Exp Gerontol. 2007;42:421–26.

    Article  PubMed  CAS  Google Scholar 

  18. Shodell M, Siegal FP. Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing. Scand J Immunol. 2002;5:518–21.

    Article  Google Scholar 

  19. Fujihashi K, McGhee JR. Mucosal immunity and tolerance in the elderly. Mech Ageing Dev. 2004;12:889–98.

    Article  Google Scholar 

  20. Zavala WD, Cavicchia JC. Deterioration of the langerhans cell network of the human gingival epithelium with aging. Arch Oral Biol. 2006;51:1150–5.

    Article  PubMed  CAS  Google Scholar 

  21. Varas A, Sacedon R, Hernandez-Lopez C, et al. Age-dependent changes in thymic macrophages and dendritic cells. Microsc Res Tech. 2003;62:501–7.

    Article  PubMed  CAS  Google Scholar 

  22. Schuurhuis DH, Fu N, Ossendorp F, Melief CJM. Ins and outs of dendritic cells. Int Arch Allergy Immunol. 2006;140:53–72.

    Article  PubMed  Google Scholar 

  23. Dubsky P, Ueno H, Piqueras B, Connoly H, Bachereau J, Palucka AK. Human dendritic cell subsets for vaccination. J Clin Immunol. 2005;25:551–72.

    Article  PubMed  Google Scholar 

  24. Uyemura K, Castle SC, Makinodan T. The frail elderly: role of dendritic cells in the susceptibility of infection. Mech Ageing Dev. 2002;8:955–62.

    Article  Google Scholar 

  25. Kang YJ, Yang SJ, Park G, et al. A novel function of interleukin-10 promoting self-renewal of hematopoietic stem cells. Stem Cells. 2007;7:1814–22.

    Article  Google Scholar 

  26. Bottino C, Moretta L, Moretta A. NK cell activating receptors and tumor recognition in humans. Curr Top Microbiol Immunol. 2006;298:175–82.

    Article  PubMed  CAS  Google Scholar 

  27. Ogata K, An E, Shioi Y, et al. Association between natural killer cell activity and infection in immunologically normal elderly people. Clin Exp Immunol. 2001;124:392–7.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Y, Wallace DL, de Lara CM, et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infections. Immunology. 2007;2:258–65.

    Article  Google Scholar 

  29. Mariani E, Meneghetti A, Neri S, et al. Chemokine production by natural killer cells from nonagenarians. Eur J Immunol. 2002;32:1524–9.

    Article  PubMed  CAS  Google Scholar 

  30. Gomez CR, Acuna-Castillo C, Nishimura S, et al. Serum from aged F344 rats conditions the activation of young macrophages. Mech Ageing Dev. 2006;3:257–63.

    Article  Google Scholar 

  31. Fulop T, Larbi A, Douziech N, et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2005;4:217–26.

    Article  Google Scholar 

  32. Plowden J, Renshaw-Hoelscher M, Engleman C, Katz J, Sambhara S, et al. Innate immunity in aging: impact on macrophage function. Aging Cell. 2004;4:161–7.

    Article  Google Scholar 

  33. Herrero C, Marques L, Celada A. IFN-gamma-dependent transcription of MCH class II IA is impaired in macrophages from aged mice. J Clin Invest. 2001;4:485–93.

    Article  Google Scholar 

  34. Aspinall R, Andrew D. Thymic involution in aging. J Clin Immunol. 2000;4:250–6.

    Article  Google Scholar 

  35. Pawelec G, Tehbein A, Haehnel K, Merl A, Adibzadeh M. Human T-cell clones in long-term culture as a model of immunosenescence. Immunol Rev. 1997;160:31–42.

    Article  PubMed  CAS  Google Scholar 

  36. Murasko DM, Weiner P, Kaye D. Decline in mitogen induced proliferation of lymphocytes with increasing age. Clin Exp Immunol. 1987;70:440–8.

    PubMed  CAS  Google Scholar 

  37. Hobbs MV, Weigle WO, Noonan DJ, et al. Patterns of cytokine gene expression by CD4+ T cells from young and old mice. J Immunol. 1993;150:3602–14.

    PubMed  CAS  Google Scholar 

  38. Jackola DR, Ruger JK, Miller RA. Age-associated changes in human T cell phenotype and function. Aging. 1994;6:25–34.

    PubMed  CAS  Google Scholar 

  39. Enwerda CR, Handwerger BS, Fox BS. Aged T cells are hyporesponsive to costimulation mediated by CD28. J Immunol. 1994;152:3740–7.

    Google Scholar 

  40. Nociari MM, Telford W, Russo C. Postthymic development of CD28-CD8+ T cell subset: Age associated expansion and shift from emeory to anive phenotype. J Immunol. 1999;3327–35

    Google Scholar 

  41. Quadri RA, Plastre O, Phelouzat MA, Arbogast A, Proust JJ. Age-related tyrosine-specific protein phosphorylation defect in human T lymphocytes activated through CD3, CD4, CD8 or the IL-2 receptor. Mech Ageing Dev. 1996;88:125–38.

    Article  PubMed  CAS  Google Scholar 

  42. Engwerda CR, Fox BS, Handwerger BS. Cytokine production by T lymphocytes from young and aged mice. J Immunol. 1996;156:3621–30.

    PubMed  CAS  Google Scholar 

  43. Effros RB. Long-term immunological memory against viruses. Mech Ageing Dev. 2000;121:161–71.

    Article  PubMed  CAS  Google Scholar 

  44. Murasko DM, Bernstein ED, Gardner EM, et al. Role of humoral and cell-mediated immunity in protection from influenza disease after immunization of healthy elderly. Exp Gerontol. 2002;37:427–39.

    Article  PubMed  CAS  Google Scholar 

  45. Effros RB. Role of T lymphocyte replicative senescence in vaccine efficacy. Vaccine. 2007;25:599–604.

    Article  PubMed  CAS  Google Scholar 

  46. Rytel MW. Effect of age on viral infections: possible role of interferon. J Am Geriatr. 1987;35:1092–99.

    CAS  Google Scholar 

  47. Maus MV, Kovacs B, Kwok WW, et al. Extensive replicative capacity of human central memory T cells. J Immunol. 2004;11:6675–83.

    Google Scholar 

  48. Pawelec G, Akbar A, Caruso C, Solana R, Grubeck-Loebenstein B, Wikby A. Human immunosenescence: is it infectious? Immunol Rev. 2005;205:257–68.

    Article  PubMed  CAS  Google Scholar 

  49. Saule P, Trauet J, Dutriez V, Dessaint JP, Labalette M. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech Ageing Dev. 2006;3:274–81.

    Article  Google Scholar 

  50. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998;188:287–96.

    Article  PubMed  CAS  Google Scholar 

  51. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J Exp Med. 2001;193:1303–10.

    Article  PubMed  CAS  Google Scholar 

  52. Jonuleir H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J Exp Med. 2001;193:1285–94.

    Article  Google Scholar 

  53. Lages CS, Suffia I, Velilla PA, et al. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol. 2008;181:1835–48.

    PubMed  CAS  Google Scholar 

  54. Song H, Price PW, Cerny J. Age-related changes in antibody repertoire: contributions from T cells. Immunol Rev. 1997;160:55–62.

    Article  PubMed  CAS  Google Scholar 

  55. Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. CD4 T cell memory derived from young naïve cells functions well into old age, but memory generated from aged naïve cells functions poorly. Proc Natl Acad Aci U S A. 2003;100:15053–8.

    Article  CAS  Google Scholar 

  56. Engwerda CR, Handwerger BS, Fox BS. Aged T cells are hyporesponsive to costimulation mediated by CD28. J Immunol. 1994;152:3740–7.

    PubMed  CAS  Google Scholar 

  57. Haynes L, Linton PJ, Eaton SM, Tonkonogy SL, Swain SL. Interleukin 2, but not other common gamma chain binding cytokines, can reverse the defect in generation of CD4 effector T cells from naïve T cells of aged mice. J Exp Med. 1999;190:1013–24.

    Article  PubMed  CAS  Google Scholar 

  58. Zheng B, Han S, Takahashi Y, Kelsoe G. Immunosenescence and germinal center reaction. Immunol Rev. 1997;160:63–77.

    Article  PubMed  CAS  Google Scholar 

  59. Kilinman NR, Kline GH. The B-cell biology of aging. Immunol Rev. 1997;160:103–14.

    Article  Google Scholar 

  60. Goidl EA, Engle J, Chen HX, Schulze DH. Hybridomas reactive with TNP from aged mice are cross-reactive and display restricted VH and VL diversity. Aging Immunol Inf Dis. 1994;5:259–70.

    Google Scholar 

  61. Franceschi C, Monti D, Sansoni P, Cossarizza A. The immunology of exceptional individuals: the lesson of centenarians. Immunol Today. 1995;16:12–6.

    Article  PubMed  CAS  Google Scholar 

  62. Weksler ME. Changes in the B-cell repertoire with age. Vaccine. 2000;18:1624–8.

    Article  PubMed  CAS  Google Scholar 

  63. Kaminski DA, Stavnezer J. Antibody class switching: uncoupling S region accessibility from transcription. Trends Gent. 2004;20:337–40.

    Article  CAS  Google Scholar 

  64. Jacobson C, Strausbaugh LJ. Incidence and impact of infection in a nursing home care unit. Am J Infect Control. 1990;18:151–9.

    Article  PubMed  CAS  Google Scholar 

  65. Joseph ME, Sublett KL, Katz AL. Septic arthritis in the geriatric population. J Okla State Med Assoc. 1989;12:622–5.

    Google Scholar 

  66. Saketkoo L, Espinoza LR. Impact of biologic agents on infectious diseases. Infect Dis Clin North Am. 2006;20:931–61.

    Article  PubMed  Google Scholar 

  67. Marculescu CE, Cantey JR. Polymicrobial prosthetic joint infections: risk factors and outcome. Clin Orthop Relat Res. 2008;466:1397–404.

    Article  PubMed  Google Scholar 

  68. Hsieh PH, Lee MS, Hsuk Y, et al. gram-negative prosthetic joint infections: risk factors and outcome of treatment. Clin Infect Dis. 2009;49:1036–43.

    Article  PubMed  Google Scholar 

  69. Yoskikawa TT. Tuberlulosis in aging adults. J Am Geriatr Soc. 1992;40:178–87.

    Google Scholar 

  70. Perez-Guzman C, Vargas MH, Torres-Cruz A, et al. Does aging modify pulmonary tuberculosis? A meta analytical review. Chest. 1999;116:961–7.

    Article  PubMed  CAS  Google Scholar 

  71. Evanchick CC, Davis DE, Harrington TM. Tuberculosis of peripheral joints: an often missed diagnosis. J Rheumatol. 1986;13:187–9.

    PubMed  CAS  Google Scholar 

  72. Tuli SM. Results of treatment of spinal tuberculosis by “middle-path” regime. J Bone Joint Surg Br. 1975;57:13–23.

    PubMed  CAS  Google Scholar 

  73. Koch S, Larbi A, Ozcelik D, et al. Cytomegalovirus infection: a driving force in human T cell immunosenescence. Ann NY Acad Sci. 2007;1114:23–35.

    Article  PubMed  CAS  Google Scholar 

  74. Wikby A, Ferguson F, Forsey R, et al. An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagerian humans. J Gerontol A Biol Sci. 2005;60:556–65.

    Google Scholar 

  75. Blair JE, Mayer AP, Currier J, Files JA, Wu Q. Coccidioidomycosis in elderly persons. Clin Infec Dis. 2008;47:1513–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis R. Espinoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Melendez, N., Espinoza, L.R. (2011). Infectious Arthritis in the Elderly. In: Nakasato, Y., Yung, R. (eds) Geriatric Rheumatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5792-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5792-4_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5791-7

  • Online ISBN: 978-1-4419-5792-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics