Skip to main content

Interaction of Dirhamnolipid Biosurfactants with Phospholipid Membranes: A Molecular Level Study

  • Chapter
Biosurfactants

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 672))

Abstract

Rhamnolipids are bacterial biosurfactants produced by Pseudomonas spp. These compounds have been shown to present several interesting biological activities and to have potential applications as therapeutics agents. It has been suggested that the interaction with the membrane could be the ultimate responsible for these actions. Therefore it is of great interest to get insight into the molecular mechanism of the interaction of purified rhamnolipids with the various phospholipid components of biological membranes. In this work, the CMC of a purified bacterial dirhamnolipid was determined both by isothermal titration calorimetry and surface tension measurements. The partition coefficients from water to membranes of different compositions, as well as the corresponding thermodynamic parameters, indicated that membrane partitioning was an entropically driven process. Interaction of dirhamnolipid with phospholipids was studied by means of calorimetry, FTIR and X-ray diffraction. It is shown this interaction had various effects that might constitute the molecular basis to explain the former activities: domain formation with lateral phase separation, increased motional disorder of the phospholipid acyl chains and dehydration of the aqueous interface. Our results suggest that dirhamnolipid, having a large polar headgroup and a smaller hydrophobic portion, behaves as an inverted-cone shaped molecule, conferring positive curvature to membranes, which might be behind its disrupting effects on membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 1997; 61:47–64.

    CAS  PubMed  Google Scholar 

  2. Cameotra SS, Makkar RS. Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 1998; 50:520–529.

    Article  CAS  PubMed  Google Scholar 

  3. Singh P, Cameotra SS. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 2004; 22:142–146.

    Article  CAS  PubMed  Google Scholar 

  4. Rodrigues L, Banat IM, Teixeira J et al. Biosurfactants: potential applications in medicine. J Antimicrob Chemother 2006; 57:609–618.

    Article  CAS  PubMed  Google Scholar 

  5. Jarvis FG, Johnson MJ. A glycolipid produced by Pseudomonas aeruginosa. J Am Chem Soc 1949; 71:4124–4126.

    Article  CAS  Google Scholar 

  6. Soberón-Chávez G, Lépine F, Déziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2005; 14:1–8.

    Google Scholar 

  7. Lang S, Wullbrandt D. Rhamnose lipids—biosynthesis, microbial production and applications potential. Appl Microbiol Biotechnol 1999; 51:22–32.

    Article  CAS  PubMed  Google Scholar 

  8. Banat IM, Makkar RS, Cameotra SS. Potential applications of microbial surfactants. Appl Microbiol Biotechnol 2000; 53:495–508.

    Article  CAS  PubMed  Google Scholar 

  9. Parra JL, Guinea J, Manresa A et al. Chemical characterization and physicochemical behaviour of biosurfactants. J Am Oil Chem Soc 1989; 66:141–145.

    Article  CAS  Google Scholar 

  10. Benincasa M, Abalos A, Oliveira I et al. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek 2004; 85:1–8.

    Article  CAS  PubMed  Google Scholar 

  11. Sánchez M, Aranda FJ, Espuny MJ et al. Aggregation behaviour of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa in aqueous media. J Colloid Interface Sci 2007; 307:246–253.

    Article  PubMed  Google Scholar 

  12. Lang S, Katsiwela E, Wagner F. Antimicrobial effects of biosurfactants. Fat Sci Technol 1989; 91:363–366.

    CAS  Google Scholar 

  13. Lang S, Wagner F. Biological activities of biosurfactants. In: Kosaric N, ed. Biosurfactants. New York: Dekker, 1993:251–268.

    Google Scholar 

  14. Stanghellini ME, Miller RM. Biosurfactants—their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 1997; 81:4–12.

    Article  CAS  Google Scholar 

  15. Grau A, Gómez-Fernández JC, Peypoux F et al. A study of the interactions of surfactin with phospholipid vesicles. Biochim Biophys Acta 1999; 1418:307–319.

    Article  CAS  PubMed  Google Scholar 

  16. Grau A, Ortiz A, De Godos A et al. A biophysical study of the interaction of the lipopeptide antibiotic iturin A with aqueous phospholipid bilayers. Arch Biochem Biophys 2000; 377:315–323.

    Article  CAS  PubMed  Google Scholar 

  17. Sánchez M, Teruel JA, Espuny MJ et al. Modulation of the physical properties of dielaidoylphosphatidylethanolamine membranes by a dirhamnolipid biosurfactant produced by Pseudomonas aeruginosa. Chem Phys Lipids 2006; 142:118–127.

    Article  PubMed  Google Scholar 

  18. Ortiz A, Teruel JA, Espuny MJ et al. Effects of dirhamnolipid on the structural properties of phosphatidylcholine membranes. Int J Pharm 2006; 325:99–107.

    Article  CAS  PubMed  Google Scholar 

  19. Svenson S. Controlling surfactant self-assembly. Curr Opin Coll Int Sci 2002; 9:201–212.

    Article  Google Scholar 

  20. Mata-Sandoval J, Karns J, Torrens A. High-performance liquid chromatography method for the characterization of rhamnolipids mixture produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr 1999; 864:211–220.

    Article  CAS  Google Scholar 

  21. Aranda FJ, Espuny MJ, Marqués A et al. Thermodynamics of the interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with phospholipid membranes. Langmuir 2007; 23:2700–2705.

    Article  CAS  PubMed  Google Scholar 

  22. Heerklotz H, Seelig J. Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Biophys J 2001; 81:1547–1554.

    Article  CAS  PubMed  Google Scholar 

  23. Ishigami Y, Gama Y, Nagahora H et al. The pH sensitive conversión of molecular aggregates of rhamnolipid biosurfactant. Chem Lett 1987; 5:763–766.

    Article  Google Scholar 

  24. Stockton GW, Smith ICP. A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes. Chem Phys Lipids 1976; 17:251–263.

    Article  CAS  PubMed  Google Scholar 

  25. Henriksen J, Rowat AC, Brief E et al. Universal behavior of membranes with sterols. Biophys J 2006; 90:1639–49.

    Article  CAS  PubMed  Google Scholar 

  26. Urbina JA, Pekerar S, Le HB et al. Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2H-, 13C-and 31P-NMR spectroscopy. Biochim Biophys Acta 1995; 13:163–76.

    Google Scholar 

  27. Lee AG. In: Aloia RC, ed. Membrane Fluidity in Biology. New York: Academic Press, 1983:43–88.

    Google Scholar 

  28. Lewis RNAH, Mannock DA, McElhaney RN. Membrane lipid molecular structure and polymorphism. Curr Top Membr 1997; 44:25–102.

    CAS  Google Scholar 

  29. Luzzati V. X-ray diffraction studies of lipid-water systems. In: Chapman D, ed. Biological Membranes. New York: Academic Press, 1968:71–123.

    Google Scholar 

  30. Seddon J, Cevc G. Lipid polymorphism: structure and stability of lyotropic mesophases of phospholipids. In: Cev G, ed. Phospholipid Handbook. New York: Dekker, 1993:403–454.

    Google Scholar 

  31. Rappolt M, Hickel A, Brigenzu F et al. Mechanism of the lamellar/inverse hexagonal phase transition examined by high resolution X-ray diffraction. Biophys J 2003; 84:3111–3122.

    Article  CAS  PubMed  Google Scholar 

  32. Cullis PR, De Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 1979; 559:399–420.

    CAS  PubMed  Google Scholar 

  33. Casal H, Mantsch HH. Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta 1984; 779:381–401.

    CAS  PubMed  Google Scholar 

  34. Haba E, Pinazo A, Jauregui O et al. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotech Bioeng 2003; 81:316–322.

    Article  CAS  Google Scholar 

  35. McClure CD, Schiller NL. Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. J Leukoc Biol 1992; 51:97–102.

    CAS  PubMed  Google Scholar 

  36. Häubler S, Nimtz M, Domke T et al. Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Inf Imm 1998; 66:1588–1593.

    Google Scholar 

  37. Carrillo C, Teruel JA, Aranda FJ et al. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 2003; 1611:91–97.

    Article  CAS  PubMed  Google Scholar 

  38. El Jastimi R, Lafleur M. Nisin promotes the formation of nonlamellar invertid phases in unsaturated phosphatidylethanolamines. Biochim Biophys Acta 1999; 1418:97–105.

    Article  CAS  PubMed  Google Scholar 

  39. Willumeit R, Kumpugdee M, Funari SS et al. Structural rearrangement of model membranes by the peptide antibiotic NK-2. Biochim Biophys Acta 2005; 1699:125–134.

    Google Scholar 

  40. Henzler-Wildman KA, Lee DK, Ramamoorthy A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 2003; 42:6545–6558.

    Article  CAS  PubMed  Google Scholar 

  41. Hallock KJ, Lee DK, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 2003; 84:3052–3060.

    Article  CAS  PubMed  Google Scholar 

  42. Thennarasu S, Lee DK, Tan A et al. Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843. Biochim Biohys Acta 2005; 1711:49–58.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Ortiz, A., Aranda, F.J., Teruel, J.A. (2010). Interaction of Dirhamnolipid Biosurfactants with Phospholipid Membranes: A Molecular Level Study. In: Sen, R. (eds) Biosurfactants. Advances in Experimental Medicine and Biology, vol 672. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5979-9_3

Download citation

Publish with us

Policies and ethics