Skip to main content

Selection of Anesthesia Techniques for the Neonate

  • Chapter
  • First Online:
Neonatal Anesthesia

Abstract

The aim of this chapter is to provide the pediatric anesthesiologist with the main principles and current strategies for neonatal anesthesia. Part one presents the general principles including the aims of anesthesia and the strategies to attain them, the potential for anesthetic toxicity, and, lastly, the notion of optimal risk-benefit ratio. Part two details anesthetic techniques and recent advances in neuroaxial anesthesia, rapid sequence induction technique, and anesthesia for elective surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson AJ. The aims of anesthesia in infants: the relevance of philosophy, psychology and a little evidence. Paediatr Anaesth. 2007;17(2):102–8.

    PubMed  Google Scholar 

  2. Lewis M. The emergence of consciousness and its role in human development. Ann N Y Acad Sci. 2003;1001:104–33.

    PubMed  Google Scholar 

  3. Tononi G, et al. Investigating neural correlates of conscious perception by frequency-tagged neuromagnetic responses. Proc Natl Acad Sci USA. 1998;95(6):3198–203.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Sann C, Streti A. Inter-manual transfer of object texture and shape in human neonates. Neuropsychologia. 2008;46:698–703.

    PubMed  Google Scholar 

  5. Marcus L, Lejeune F, Berne-Audéoud F, et al. Tactile sensory capacity of the preterm infant: manual perception of shape from 28 gestational weeks. Pediatrics. 2012;130:e88–94.

    PubMed  Google Scholar 

  6. Cecchini M, Baroni E, Di Vito C, et al. Newborn preference for a new face vs. a previously seen communicative or motionless face. Infant Behav Dev. 2011;34:424–33.

    PubMed  Google Scholar 

  7. Marlier L, Schaal B, Soussignan R. Bottle-fed neonates prefer an odor experienced in utero to an odor experienced postnatally in the feeding context. Dev Psychobiol. 1998;33(2):133–45.

    CAS  PubMed  Google Scholar 

  8. Marlier L, Schaal B, Soussignan R. Neonatal responsiveness to the odor of amniotic and lacteal fluids: a test of perinatal chemosensory continuity. Child Dev. 1998;69(3):611–23.

    CAS  PubMed  Google Scholar 

  9. Delaunay-El Allam M, Soussignan R, Patris B, et al. Long-lasting memory for an odor acquired at the mother’s breast. Dev Sci. 2010;13(6):849–63.

    PubMed  Google Scholar 

  10. Kisilevsky BS, et al. Fetal sensitivity to properties of maternal speech and language. Infant Behav Dev. 2009;32(1):59–71.

    CAS  PubMed  Google Scholar 

  11. Partanen E, Kujala T, Naatanen R, et al. Learning-induced neural plasticity of speech processing before birth. Proc Natl Acad Sci USA. 2013;110(37):15145–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. James DK, Spencer CJ, Stepsis BW. Fetal learning: a prospective randomized controlled study. Ultrasound Obstet Gynecol. 2002;20(5):431–8.

    CAS  PubMed  Google Scholar 

  13. Granier-Deferre C, Bassereau S, Ribeiro A, et al. A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS One. 2011;6(2):e17304.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Myers NA, Perris EE, Speaker CJ. Fifty months of memory: a longitudinal study in early childhood. Memory. 1994;2(4):383–415.

    CAS  PubMed  Google Scholar 

  15. Antognini JF, et al. Preserved reticular neuronal activity during selective delivery of supra-clinical isoflurane concentrations to brain in goats and its association with spontaneous movement. Neurosci Lett. 2004;361(1–3):94–7.

    CAS  PubMed  Google Scholar 

  16. Gili T, Saxena N, Diukova A, et al. The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation. J Neurosci. 2013;33(9):4024–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Mhuircheartaigh RN, Rosenom-Lanng D, Wise R, et al. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J Neurosci. 2010;30(27):9095–102.

    CAS  PubMed  Google Scholar 

  18. Uemura E, Levin ED, Bowman RE. Effects of halothane on synaptogenesis and learning behavior in rats. Exp Neurol. 1985;89(3):520–9.

    CAS  PubMed  Google Scholar 

  19. Ikonomidou C, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science. 1999;283(5398):70–4.

    CAS  PubMed  Google Scholar 

  20. Jevtovic-Todorovic V, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876–82.

    CAS  PubMed  Google Scholar 

  21. Fredriksson A, et al. Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology. 2007;107(3):427–36.

    CAS  PubMed  Google Scholar 

  22. Young C, et al. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol. 2005;146(2):189–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Ma D, et al. Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology. 2007;106(4):746–53.

    CAS  PubMed  Google Scholar 

  24. Jr Slikker W, Zou X, Hotchkiss CE, et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci. 2007;98:145–58.

    CAS  PubMed  Google Scholar 

  25. Yahalom B, Athiraman U, Soriano SG, et al. Spinal anesthesia in infant rats: development of a model and assessment of neurologic outcomes. Anesthesiology. 2011;114:1325–35.

    PubMed Central  PubMed  Google Scholar 

  26. Johnson SA, Young C, Olney JW. Isoflurane-induced neuroapoptosis in the developing brain of nonhypoglycemic mice. J Neurosurg Anesthesiol. 2008;20:21–8.

    PubMed  Google Scholar 

  27. Briner A, et al. Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis. Anesthesiology. 2010;112(3):546–56.

    PubMed  Google Scholar 

  28. Fredriksson A, et al. Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res. 2004;153(2):367–76.

    CAS  PubMed  Google Scholar 

  29. Paule MG, et al. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol. 2011;33(2):220–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Yu D, Jiang Y, Gao J, et al. Repeated exposure to propofol potentiates neuroapoptosis and long-term behavioural deficits in neonatal rats. Neurosci Lett. 2013;534:41–6.

    CAS  PubMed  Google Scholar 

  31. Ramage TM, Chang FL, Shih J, et al. Distinct long-term neurocognitive outcomes after equipotent sevoflurane or isoflurane anaesthesia in immature rats. Br J Anaesth. 2013;110:i39–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Briner A, Nikonenko I, De Roo M, et al. Developmental stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology. 2011;115(2):282–93.

    CAS  PubMed  Google Scholar 

  33. Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg. 2008;106(6):1681–707.

    PubMed  Google Scholar 

  34. Istaphanous GK, Loepke AW. General anesthetics and the developing brain. Curr Opin Anaesthesiol. 2009;22(3):368–73.

    PubMed  Google Scholar 

  35. Istaphanous GK, Ward CG, Loepke AW. The impact of the perioperative period on neurocognitive development, with a focus on pharmacological concerns. Best Pract Res Clin Anaesthesiol. 2010;24(3):433–49.

    PubMed  Google Scholar 

  36. Davidson A, Flick RP. Neurodevelopmental implications of the use of sedation and analgesia in neonates. Clin Perinatol. 2013;40:559–73.

    PubMed  Google Scholar 

  37. Sanders RD, Hassell J, Davidson AJ, et al. Impact of anaesthetics and surgery on neurodevelopment: an update. Br J Anaesth. 2013;110(S1):i53–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Reddy SV. Effect of general anesthetics on the developing brain. J Anaesthesiol Clin Pharmacol. 2012;28:6–10.

    PubMed Central  PubMed  Google Scholar 

  39. Shih J, May LDV, Gonzalez HE, et al. Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats. Anesthesiology. 2012;116:586–602.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Turner CP, Gutierrez S, Liu C, et al. Strategies to defeat ketamine-induced neonatal brain injury. Neuroscience. 2012;210:384–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Gozes I. Microtubules (tau) as an emerging therapeutic target: NAP (Davunetide). Curr Pharm Des. 2011;17:3413–7.

    CAS  PubMed  Google Scholar 

  42. Chauvier D, Renolleau S, Holifanjanianina S, et al. Targeting neonatal ischemic brain injury with a pentapeptide-based irreversible caspase inhibitor. Cell Death Dis. 2011;2:e203. doi:10.1038/cddis.2011.87.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Itoh T, Imano M, Nishida S, et al. Exercise inhibits neuronal apoptosis and improves cerebral function following rat traumatic brain injury. J Neural Transm. 2011;118:1263–72.

    PubMed  Google Scholar 

  44. Sim YJ, Kim H, Kim JY, et al. Long-term treadmill exercise overcomes ischemia-induced apoptotic neuronal cell death in gerbils. Physiol Behav. 2005;84:733–8.

    CAS  PubMed  Google Scholar 

  45. De Roo M, et al. Anesthetics rapidly promote synaptogenesis during a critical period of brain development. PLoS One. 2009;4(9):e7043.

    PubMed Central  PubMed  Google Scholar 

  46. Ben-Ari Y, et al. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev. 2007;87(4):1215–84.

    CAS  PubMed  Google Scholar 

  47. Rabinowicz T, et al. Human cortex development: estimates of neuronal numbers indicate major loss late during gestation. J Neuropathol Exp Neurol. 1996;55(3):320–8.

    CAS  PubMed  Google Scholar 

  48. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci. 1991;14:453–501.

    CAS  PubMed  Google Scholar 

  49. Kuida K, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature. 1996;384(6607):368–72.

    CAS  PubMed  Google Scholar 

  50. Olney JW, et al. Anesthesia-induced developmental neuroapoptosis. Does it happen in humans? Anesthesiology. 2004;101(2):273–5.

    CAS  PubMed  Google Scholar 

  51. Anand KJ. Anesthetic neurotoxicity in newborns: should we change clinical practice? Anesthesiology. 2007;107(1):2–4.

    PubMed  Google Scholar 

  52. Jevtovic-Todorovic V, Olney JW. PRO: anesthesia-induced developmental neuroapoptosis: status of the evidence. Anesth Analg. 2008;106(6):1659–63.

    PubMed  Google Scholar 

  53. Loepke AW, Jr McGowan FX, Soriano SG. CON: the toxic effects of anesthetics in the developing brain: the clinical perspective. Anesth Analg. 2008;106(6):1664–9.

    PubMed  Google Scholar 

  54. Perouansky M, Jr Hemmings HC. Neurotoxicity of general anesthetics: cause for concern? Anesthesiology. 2009;111(6):1365–71.

    PubMed Central  PubMed  Google Scholar 

  55. Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3(1):79–83.

    CAS  PubMed  Google Scholar 

  56. Dekaban AS. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978;4(4):345–56.

    CAS  PubMed  Google Scholar 

  57. Jr Slikker W, Paule MG, Wright LKM, et al. Systems biology approaches for toxicology. J Appl Toxicol. 2007;27:201–17.

    CAS  PubMed  Google Scholar 

  58. Clancy B, et al. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28(5):931–7.

    PubMed  Google Scholar 

  59. Loepke AW, et al. The physiologic effects of isoflurane anesthesia in neonatal mice. Anesth Analg. 2006;102(1):75–80.

    CAS  PubMed  Google Scholar 

  60. Green CJ, et al. Ketamine alone and combined with diazepam or xylazine in laboratory animals: a 10 year experience. Lab Anim. 1981;15(2):163–70.

    CAS  PubMed  Google Scholar 

  61. Cattano D, Young C, Straiko MMW, et al. Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth Analg. 2008;106:1712–4.

    CAS  PubMed  Google Scholar 

  62. Istaphanous GK, et al. Anesthesiology 2011:114;578.

    Google Scholar 

  63. Anand KJS, et al. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res. 2007;62(3):283–90.

    CAS  PubMed  Google Scholar 

  64. Liu JR, Liu Q, Li J, et al. Noxious stimulation attenuates ketamine-induced neuroapoptosis in the developing rat brain. Anesthesiology. 2012;117:64–71.

    CAS  PubMed  Google Scholar 

  65. Shu Y, Zhou Z, Wan Y, et al. Nociceptive stimuli enhance anesthetic-induced neuroapoptosis in the rat developing brain. Neurobiol Dis. 2012;45:743–50.

    CAS  PubMed  Google Scholar 

  66. Wilder RT, Flick RP, Sprung J, et al. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;110:796–804.

    PubMed Central  PubMed  Google Scholar 

  67. DiMaggio C, et al. A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol. 2009;21(4):286–91.

    PubMed Central  PubMed  Google Scholar 

  68. DiMaggio C, Sun LS, Li G. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg. 2011;113:1143–51.

    PubMed Central  PubMed  Google Scholar 

  69. Ing C, Dimaggio C, Whitehouse A, et al. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics. 2012;130:e476–85.

    PubMed  Google Scholar 

  70. Flick RP, Katusic SK, Colligan RC, et al. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics. 2011;128:e1053–61.

    PubMed Central  PubMed  Google Scholar 

  71. Sprung J, Flick RP, Katusic SK, et al. Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc. 2012;87:120–9.

    PubMed Central  PubMed  Google Scholar 

  72. Block RI, Thomas JJ, Bayman EO, Choi JY, Kimble KK, Todd MM. Are anesthesia and surgery during infancy associated with altered academic performance during childhood? Anesthesiology. 2012;117:494–503.

    PubMed  Google Scholar 

  73. Davidson AJ, McCann ME, Morton NS, Myles PS. Anesthesia and outcome after neonatal surgery: the role for randomized trials. Anesthesiology. 2008;109:941–4.

    PubMed  Google Scholar 

  74. Sun LS, Li G, DiMaggio CJ, et al. Feasibility and pilot study of the Pediatric Anesthesia Neuro Development Assessment (PANDA) project. J Neurosurg Anesthesiol. 2012;24:382–8.

    PubMed Central  PubMed  Google Scholar 

  75. Kinsler V, Bulstrode N. The role of surgery in the management of congenital melanocytic naevi in children: a perspective from Great Ormond Street Hospital. J Plast Reconstr Aesthet Surg. 2009;62(5):595–601.

    PubMed  Google Scholar 

  76. Rappaport B, Mellon D, Simone A, et al. Defining safe use of anesthesia in children. N Engl J Med. 2011;364:1387–90.

    CAS  PubMed  Google Scholar 

  77. Davidson AJ, et al. Performance of entropy and Bispectral Index as measures of anaesthesia effect in children of different ages. Br J Anaesth. 2005;95(5):674–9.

    CAS  PubMed  Google Scholar 

  78. Abajian JC, et al. Spinal anesthesia for surgery in the high-risk infant. Anesth Analg. 1984;63(3):359–62.

    CAS  PubMed  Google Scholar 

  79. Kurth CD, et al. Postoperative apnea in preterm infants. Anesthesiology. 1987;66(4):483–8.

    CAS  PubMed  Google Scholar 

  80. Allen GS, et al. Postoperative respiratory complications in ex-premature infants after inguinal herniorrhaphy. J Pediatr Surg. 1998;33(7):1095–8.

    CAS  PubMed  Google Scholar 

  81. Cote CJ, et al. Postoperative apnea in former preterm infants after inguinal herniorrhaphy. A combined analysis. Anesthesiology. 1995;82(4):809–22.

    CAS  PubMed  Google Scholar 

  82. Malviya S, Swartz J, Lerman J. Are all preterm infants younger than 60 weeks postconceptual age at risk for postanesthetic apnea? Anesthesiology. 1993;78(6):1076–81.

    CAS  PubMed  Google Scholar 

  83. Welborn LG, et al. Anemia and postoperative apnea in former preterm infants. Anesthesiology. 1991;74(6):1003–6.

    CAS  PubMed  Google Scholar 

  84. Zagol K, Lake DE, Vergales B, et al. Anemia, apnea of prematurity, and blood transfusions. J Pediatr. 2012;161:417–21.

    PubMed  Google Scholar 

  85. Henderson-Smart DJ, Steer PA. Caffeine versus theophylline for apnea in preterm infants. Cochrane Database Syst Rev (1):CD000273.

    Google Scholar 

  86. Welborn LG, et al. Postoperative apnea in former preterm infants: prospective comparison of spinal and general anesthesia. Anesthesiology. 1990;72(5):838–42.

    CAS  PubMed  Google Scholar 

  87. Murphy JJ, Swanson T, Ansermino M, Milner R. The frequency of apneas in premature infants after inguinal hernia repair: do they need overnight monitoring in the intensive care unit? J Pediatr Surg. 2008;43:865–8.

    PubMed  Google Scholar 

  88. Shenkman Z, Erez I, Freud E, et al. Risk factors for spinal anesthesia in preterm infants undergoing inguinal hernia repair. J Pediatr (Rio J). 2012;88:222–6.

    Google Scholar 

  89. Frawley G, Ingelmo P. Spinal anaesthesia in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24:337–51.

    PubMed  Google Scholar 

  90. William JM, et al. Post-operative recovery after inguinal herniotomy in ex-premature infants: comparison between sevoflurane and spinal anaesthesia. Br J Anaesth. 2001;86(3):366–71.

    CAS  PubMed  Google Scholar 

  91. Craven PD, et al. Regional (spinal, epidural, caudal) versus general anaesthesia in preterm infants undergoing inguinal herniorrhaphy in early infancy. Cochrane Database Syst Rev. 2003;3, CD003669.

    PubMed  Google Scholar 

  92. Walther-Larsen S, Rasmussen LS. The former preterm infant and risk of post-operative apnoea: recommendations for management. Acta Anaesthesiol Scand. 2006;50(7):888–93.

    CAS  PubMed  Google Scholar 

  93. Dohi S, Naito H, Takahashi T. Age-related changes in blood pressure and duration of motor block in spinal anesthesia. Anesthesiology. 1979;50(4):319–23.

    CAS  PubMed  Google Scholar 

  94. Oberlander TF, et al. Infants tolerate spinal anesthesia with minimal overall autonomic changes: analysis of heart rate variability in former premature infants undergoing hernia repair. Anesth Analg. 1995;80(1):20–7.

    CAS  PubMed  Google Scholar 

  95. Hermanns H, et al. Sedation during spinal anaesthesia in infants. Br J Anaesth. 2006;97(3):380–4.

    CAS  PubMed  Google Scholar 

  96. Lacroix F. Epidemiology and morbidity of regional anaesthesia in children. Curr Opin Anaesthesiol. 2008;21(3):345–9.

    PubMed  Google Scholar 

  97. Giaufre E, Dalens B, Gombert A. Epidemiology and morbidity of regional anesthesia in children: a one-year prospective survey of the French-Language Society of Pediatric Anesthesiologists. Anesth Analg. 1996;83(5):904–12.

    CAS  PubMed  Google Scholar 

  98. Williams RK, et al. The safety and efficacy of spinal anesthesia for surgery in infants: the Vermont Infant Spinal Registry. Anesth Analg. 2006;102(1):67–71.

    PubMed  Google Scholar 

  99. Walker SM, Yaksh TL. Neuraxial analgesia in neonates and infants: a review of clinical and preclinical strategies for the development of safety and efficacy data. Anesth Analg. 2012;115:638–62.

    CAS  PubMed  Google Scholar 

  100. Easley RB, et al. Aseptic meningitis after spinal anesthesia in an infant. Anesthesiology. 1999;91(1):305–7.

    CAS  PubMed  Google Scholar 

  101. Luz G, et al. Spinal anaesthesia and meningitis in former preterm infants: cause-effect? Paediatr Anaesth. 1999;9(3):262–4.

    CAS  PubMed  Google Scholar 

  102. Faillace WJ, Warrier I, Canady AI. Paraplegia after lumbar puncture. In an infant with previously undiagnosed hemophilia A. Treatment and peri-operative considerations. Clin Pediatr (Phila). 1989;28(3):136–8.

    CAS  Google Scholar 

  103. De Saint Blanquat L, et al. Preoperative coagulation tests in former preterm infants undergoing spinal anaesthesia. Paediatr Anaesth. 2002;12(4):304–7.

    PubMed  Google Scholar 

  104. Pollock JE. Transient neurologic symptoms: etiology, risk factors, and management. Reg Anesth Pain Med. 2002;27(6):581–6.

    PubMed  Google Scholar 

  105. Selander D. Neurotoxicity of local anesthetics: animal data. Reg Anesth. 1993;18(6 Suppl):461–8.

    CAS  PubMed  Google Scholar 

  106. Perez-Castro R, et al. Cytotoxicity of local anesthetics in human neuronal cells. Anesth Analg. 2009;108(3):997–1007.

    CAS  PubMed  Google Scholar 

  107. Shenkman Z, et al. Spinal anesthesia in 62 premature, former-premature or young infants–technical aspects and pitfalls. Can J Anaesth. 2002;49(3):262–9.

    PubMed  Google Scholar 

  108. Frumiento C, Abajian JC, Vane DW. Spinal anesthesia for preterm infants undergoing inguinal hernia repair. Arch Surg. 2000;135(4):445–51.

    CAS  PubMed  Google Scholar 

  109. Polaner DM, Drescher J. Pediatric regional anesthesia: what is the current safety record? Paediatr Anaesth. 2011;21:737–42.

    PubMed  Google Scholar 

  110. Cook-Sather SD, Litman RS. Modern fasting guidelines in children. Best Pract Res Clin Anaesthesiol. 2006;20(3):471–81.

    PubMed  Google Scholar 

  111. Soreide E, et al. Pre-operative fasting guidelines: an update. Acta Anaesthesiol Scand. 2005;49(8):1041–7.

    CAS  PubMed  Google Scholar 

  112. Apfelbaum JL, Caplan RA, Connis RT, et al. American Society of Anesthesiologsts committee on Standard and practice parameters. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures. Anesthesiology. 2011;114:495–511.

    Google Scholar 

  113. Smith I, Kranke P, Murat I, et al. Perioperative fasting in adults and children: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2011;28:556–9.

    PubMed  Google Scholar 

  114. Brady MC, et al. Preoperative fasting for preventing perioperative complications in children. Cochrane Database Syst Rev. 2009;4, CD005285.

    PubMed  Google Scholar 

  115. Cavell B. Gastric emptying in infants fed human bilk or infant formula. Acta Paediatr Scand. 1981;70:639–41.

    CAS  PubMed  Google Scholar 

  116. Kelleher J, Mallya P, Wyllie J. Premedication before intubation in UK neonatal units: a decade of change? Arch Dis Child Fetal Neonatal Ed. 2009;94:F332–5.

    CAS  PubMed  Google Scholar 

  117. Carbajal R, Eble B, Anand KJ. Premedication for tracheal intubation in neonates: confusion or controversy? Semin Perinatol. 2007;31(5):309–17.

    PubMed  Google Scholar 

  118. Kumar P, Denson SE, Mancuso TJ, Committee on Fetus and Newborn, Section on Anesthesiology and Pain Medicine. Clinical report-premedication for nonemergency endotracheal intubation in the neonate. Pediatrics. 2010;125:608–15.

    PubMed  Google Scholar 

  119. Chaudhary R, et al. Use of premedication for intubation in tertiary neonatal units in the United Kingdom. Paediatr Anaesth. 2009;19(7):653–8.

    PubMed  Google Scholar 

  120. Duncan HP, Zurick NJ, Wolf AR. Should we reconsider awake neonatal intubation? A review of the evidence and treatment strategies. Paediatr Anaesth. 2001;11(2):135–45.

    CAS  PubMed  Google Scholar 

  121. Barrington KJ. Premedication for endotracheal intubation in the newborn infant. Paediatr Child Health. 2011;16:159–64.

    PubMed Central  PubMed  Google Scholar 

  122. Marshall TA, et al. Physiologic changes associated with endotracheal intubation in preterm infants. Crit Care Med. 1984;12(6):501–3.

    CAS  PubMed  Google Scholar 

  123. Stow PJ, McLeod ME, Burrows FA, et al. Anterior fontanelle pressure responses to tracheal intubation in the awake and anaesthetized infant. Br J Anaesth. 1986;60:167–70.

    Google Scholar 

  124. Millar C, Bissonnette B. Awake intubation increases intracranial pressure without affecting cerebral blood flow velocity in infants. Can J Anaesth. 1994;41:281–7.

    CAS  PubMed  Google Scholar 

  125. Hassid S, et al. Randomized controlled trial of sevoflurane for intubation in neonates. Paediatr Anaesth. 2007;17(11):1053–8.

    PubMed  Google Scholar 

  126. Lerman J, Heard C, Steward DJ. Neonatal tracheal intubation: an imbroglio unresolved. Paediatr Anaesth. 2010;20:585–90.

    PubMed  Google Scholar 

  127. Oei J, et al. Facilitation of neonatal nasotracheal intubation with premedication: a randomized controlled trial. J Paediatr Child Health. 2002;38(2):146–50.

    CAS  PubMed  Google Scholar 

  128. Cook-Sather SD, et al. A comparison of awake versus paralyzed tracheal intubation for infants with pyloric stenosis. Anesth Analg. 1998;86(5):945–51.

    CAS  PubMed  Google Scholar 

  129. Bhutada A, et al. Randomised controlled trial of thiopental for intubation in neonates. Arch Dis Child Fetal Neonatal Ed. 2000;82(1):F34–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Kinouchi K, et al. Duration of apnea in anesthetized infants and children required for desaturation of hemoglobin to 95 %. The influence of upper respiratory infection. Anesthesiology. 1992;77(6):1105–7.

    CAS  PubMed  Google Scholar 

  131. Patel R, et al. Age and the onset of desaturation in apnoeic children. Can J Anaesth. 1994;41(9):771–4.

    CAS  PubMed  Google Scholar 

  132. Xue F, et al. Children’s development effecting blood oxygen desaturation following apnea. Chin Med J (Engl). 1995;108(6):434–7.

    CAS  Google Scholar 

  133. Xue FS, et al. Study of the safe threshold of apneic period in children during anesthesia induction. J Clin Anesth. 1996;8(7):568–74.

    CAS  PubMed  Google Scholar 

  134. Jr Morrison JE, et al. Preoxygenation before laryngoscopy in children: how long is enough? Paediatr Anaesth. 1998;8(4):293–8.

    PubMed  Google Scholar 

  135. Ho AM, et al. Airway difficulties caused by improperly applied cricoid pressure. J Emerg Med. 2001;20(1):29–31.

    CAS  PubMed  Google Scholar 

  136. Francis S, Russell WC, Thompson JP. Complete airway obstruction in a ventilated patient after oesophageal dilatation. Br J Anaesth. 2002;89(3):517–9.

    CAS  PubMed  Google Scholar 

  137. Landsman I. Cricoid pressure: indications and complications. Paediatr Anaesth. 2004;14(1):43–7.

    PubMed  Google Scholar 

  138. Walker RW, Ravi R, Haylett K. Effect of cricoid force on airway calibre in children: a bronchoscopic assessment. Br J Anaesth. 2010;104(1):71–4.

    CAS  PubMed  Google Scholar 

  139. Lerman J. On cricoid pressure: “may the force be with you”. Anesth Analg. 2009;109(5):1363–6.

    PubMed  Google Scholar 

  140. Smith KJ, et al. Cricoid pressure displaces the esophagus: an observational study using magnetic resonance imaging. Anesthesiology. 2003;99(1):60–4.

    PubMed  Google Scholar 

  141. Rice MJ, et al. Cricoid pressure results in compression of the postcricoid hypopharynx: the esophageal position is irrelevant. Anesth Analg. 2009;109(5):1546–52.

    PubMed  Google Scholar 

  142. Warner MA, et al. Perioperative pulmonary aspiration in infants and children. Anesthesiology. 1999;90(1):66–71.

    CAS  PubMed  Google Scholar 

  143. Brimacombe JR, Berry AM. Cricoid pressure. Can J Anaesth. 1997;44(4):414–25.

    CAS  PubMed  Google Scholar 

  144. Benumof JL. Difficult laryngoscopy: obtaining the best view. Can J Anaesth. 1994;41(5 Pt 1):361–5.

    CAS  PubMed  Google Scholar 

  145. Oh J, Lim T, Chee Y, et al. Videographic analysis of glottic view with increasing cricoid pressure force. Ann Emerg Med. 2013;61:407–13.

    PubMed  Google Scholar 

  146. Ovassapian A, Salem MR. Sellick’s maneuver: to do or not do. Anesth Analg. 2009;109(5):1360–2.

    PubMed  Google Scholar 

  147. Vanner RG, Asai T. Safe use of cricoid pressure. Anaesthesia. 1999;54(1):1–3.

    CAS  PubMed  Google Scholar 

  148. Weiss M, Gerber A. Rapid sequence induction in children—it’s not a matter of time! Or is it? Paediatr Anaesth. 2008;18(10):980.

    PubMed  Google Scholar 

  149. Bordes M, Cros AM. Inhalation induction with sevoflurane in paediatrics: what is new? Ann Fr Anesth Reanim. 2006;25(4):413–6.

    CAS  PubMed  Google Scholar 

  150. Westrin P, Jonmarker C, Werner O. Thiopental requirements for induction of anesthesia in neonates and infants one to six months of age. Anesthesiology. 1989;71:344–6.

    CAS  PubMed  Google Scholar 

  151. Tibballs J, Malbezin S. Cardiovascular responses to induction of anaesthesia with thiopentone and suxamethonium in infants and children. Anaesth Intensive Care. 1988;16(3):278–84.

    CAS  PubMed  Google Scholar 

  152. Bach V, et al. A randomized comparison between midazolam and thiopental for elective cesarean section anesthesia: III. Placental transfer and elimination in neonates. Anesth Analg. 1989;68(3):238–42.

    CAS  PubMed  Google Scholar 

  153. Schrum SF, et al. Comparison of propofol and thiopental for rapid anesthesia induction in infants. Anesth Analg. 1994;78(3):482–5.

    CAS  PubMed  Google Scholar 

  154. Dubois MC, et al. Anesthesia in the management of pyloric stenosis. Evaluation of the combination of propofol-halogenated anesthetics. Ann Fr Anesth Reanim. 1993;12(6):566–70.

    CAS  PubMed  Google Scholar 

  155. Veyckemans F. Propofol for intubation of the newborn? Paediatr Anaesth. 2001;11(5):630–1.

    CAS  PubMed  Google Scholar 

  156. Welzing L, et al. Propofol as an induction agent for endotracheal intubation can cause significant arterial hypotension in preterm neonates. Paediatr Anaesth. 2010;20(7):605–11.

    PubMed  Google Scholar 

  157. Lerman J, et al. The pharmacology of sevoflurane in infants and children. Anesthesiology. 1994;80(4):814–24.

    CAS  PubMed  Google Scholar 

  158. Taylor RH, Lerman J. Minimum alveolar concentration of desflurane and hemodynamic responses in neonates, infants, and children. Anesthesiology. 1991;75:975–9.

    CAS  PubMed  Google Scholar 

  159. Picard P, Tramer MR. Prevention of pain on injection with propofol: a quantitative systematic review. Anesth Analg. 2000;90:963–9.

    CAS  PubMed  Google Scholar 

  160. Jalota L, Kalira V, George E, et al. Prevention of pain on injection of propofol: systematic review and meta-analysis. BMJ. 2011;342:d1110.

    PubMed  Google Scholar 

  161. Beh T, Splinter W, Kim J. In children, nitrous oxide decreases pain on injection of propofol mixed with lidocaine. Can J Anaesth. 2002;49:1061–3.

    PubMed  Google Scholar 

  162. Rawicz M, Brandom BW, Wolf A. The place of suxamethonium in pediatric anesthesia. Paediatr Anaesth. 2009;19(6):561–70.

    PubMed  Google Scholar 

  163. Meakin G, Walker RW, Dearlove OR. Myotonic and neuromuscular blocking effects of increased doses of suxamethonium in infants and children. Br J Anaesth. 1990;65(6):816–8.

    CAS  PubMed  Google Scholar 

  164. Khammash H, et al. Surfactant therapy in full-term neonates with severe respiratory failure. Pediatrics. 1993;92(1):135–9.

    CAS  PubMed  Google Scholar 

  165. Lemyre B, Cheng R, Gaboury I. Atropine, fentanyl and succinylcholine for non-urgent intubations in newborns. Arch Dis Child Fetal Neonatal Ed. 2009;94(6):F439–42.

    CAS  PubMed  Google Scholar 

  166. Cheng CA, Aun CS, Gin T. Comparison of rocuronium and suxamethonium for rapid tracheal intubation in children. Paediatr Anaesth. 2002;12(2):140–5.

    PubMed  Google Scholar 

  167. Rapp HJ, Altenmueller CA, Waschke C. Neuromuscular recovery following rocuronium bromide single dose in infants. Pediatr Anaesth. 2004;14:329–35.

    Google Scholar 

  168. Maruyama K, et al. Can intravenous atropine prevent bradycardia and hypotension during induction of total intravenous anesthesia with propofol and remifentanil? J Anesth. 2010;24(2):293–6.

    PubMed  Google Scholar 

  169. Taha S, Siddik-Sayyid S, Alameddine M, et al. Propofol is superior to thiopental for intubation without muscle relaxants. Can J Anaesth. 2005;52:249–53.

    PubMed  Google Scholar 

  170. Barker P, Langton JA, Wilson IG, Smith G. Movements of the vocal cords on induction of anaesthesia with thiopentone or propofol. Br J Anaesth. 1992;69:23–5.

    CAS  PubMed  Google Scholar 

  171. Ghanta S, et al. Propofol compared with the morphine, atropine, and suxamethonium regimen as induction agents for neonatal endotracheal intubation: a randomized, controlled trial. Pediatrics. 2007;119(6):e1248–55.

    PubMed  Google Scholar 

  172. Constant I, Seeman R, Murat I. Sevoflurane and epileptiform EEG changes. Paediatr Anaesth. 2005;15:266–74.

    PubMed  Google Scholar 

  173. Vakkuri A, et al. Sevoflurane mask induction of anaesthesia is associated with epileptiform EEG in children. Acta Anaesthesiol Scand. 2001;45(7):805–11.

    CAS  PubMed  Google Scholar 

  174. Yli-Hankala A, et al. Epileptiform electroencephalogram during mask induction of anesthesia with sevoflurane. Anesthesiology. 1999;91(6):1596–603.

    CAS  PubMed  Google Scholar 

  175. Hsieh SW, Lan KM, Luk HN, Jawan B. Postoperative seizures after sevoflurane anesthesia in a neonate. Acta Anaesthesiol Scand. 2004;48:662.

    Google Scholar 

  176. Pilge S, Jordan D, Kochs EF, Schnieder G. Sevoflurane-induced epileptiform electroencephalographic activity and generalized tonic-clonic seizures in a volunteer study. Anesthesiology. 2013;119:447.

    PubMed  Google Scholar 

  177. Wappler F, et al. Inhalational induction of anaesthesia with 8 % sevoflurane in children: conditions for endotracheal intubation and side-effects. Eur J Anaesthesiol. 2003;20(7):548–54.

    CAS  PubMed  Google Scholar 

  178. Politis GD, et al. Factors associated with successful tracheal intubation of children with sevoflurane and no muscle relaxant. Anesth Analg. 2002;95(3):615–20. table of contents.

    PubMed  Google Scholar 

  179. Meier S, et al. The effect of chin lift, jaw thrust, and continuous positive airway pressure on the size of the glottic opening and on stridor score in anesthetized, spontaneously breathing children. Anesth Analg. 2002;94(3):494–9. table of contents.

    PubMed  Google Scholar 

  180. Lerman J, et al. Propofol for tracheal intubation in children anesthetized with sevoflurane: a dose-response study. Paediatr Anaesth. 2009;19(3):218–24.

    PubMed  Google Scholar 

  181. Lago P, et al. Pain management in the neonatal intensive care unit: a national survey in Italy. Paediatr Anaesth. 2005;15(11):925–31.

    PubMed  Google Scholar 

  182. Saarenmaa E, Neuvonen PJ, Fellman V. Gestational age and birth weight effects on plasma clearance of fentanyl in newborn infants. Pediatrics. 2000;136:767–70.

    CAS  Google Scholar 

  183. Collins C, et al. Fentanyl pharmacokinetics and hemodynamic effects in preterm infants during ligation of patent ductus arteriosus. Anesth Analg. 1985;64(11):1078–80.

    CAS  PubMed  Google Scholar 

  184. Koehntop DE, et al. Pharmacokinetics of fentanyl in neonates. Anesth Analg. 1986;65(3):227–32.

    CAS  PubMed  Google Scholar 

  185. Dempsey EM, et al. Facilitation of neonatal endotracheal intubation with mivacurium and fentanyl in the neonatal intensive care unit. Arch Dis Child Fetal Neonatal Ed. 2006;91(4):F279–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Hamon I, et al. Effects of fentanyl administration on general and cerebral haemodynamics in sick newborn infants. Acta Paediatr. 1996;85(3):361–5.

    CAS  PubMed  Google Scholar 

  187. Davis PJ, et al. Pharmacodynamics and pharmacokinetics of high-dose sufentanil in infants and children undergoing cardiac surgery. Anesth Analg. 1987;66(3):203–8.

    CAS  PubMed  Google Scholar 

  188. Greeley WJ, de Bruijn NP. Changes in sufentanil pharmacokinetics within the neonatal period. Anesth Analg. 1988;67(1):86–90.

    CAS  PubMed  Google Scholar 

  189. Moore RA, et al. Hemodynamic and anesthetic effects of sufentanil as the sole anesthetic for pediatric cardiovascular surgery. Anesthesiology. 1985;62(6):725–31.

    CAS  PubMed  Google Scholar 

  190. Xue FS, et al. Different small-dose sufentanil blunting cardiovascular responses to laryngoscopy and intubation in children: a randomized, double-blind comparison. Br J Anaesth. 2008;100(5):717–23.

    CAS  PubMed  Google Scholar 

  191. Soulard A, et al. Optimal dose of sufentanil in children for intubation after sevoflurane induction without neuromuscular block. Br J Anaesth. 2009;102(5):680–5.

    CAS  PubMed  Google Scholar 

  192. Lerman J, Strong JA, LeDez KM, et al. Effects of age on the serum concentration of α1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharm Ther. 1989;46:219–22.

    CAS  Google Scholar 

  193. Marlow N, et al. Alfentanil pharmacokinetics in preterm infants. Arch Dis Child. 1990;65(4):349–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Davis PJ, et al. Pharmacokinetics of alfentanil in newborn premature infants and older children. Dev Pharmacol Ther. 1989;13(1):21–7.

    CAS  PubMed  Google Scholar 

  195. Pathak D, et al. Effects of alfentanil and lidocaine on the hemodynamic responses to laryngoscopy and tracheal intubation. J Clin Anesth. 1990;2(2):81–5.

    CAS  PubMed  Google Scholar 

  196. Martineau RJ, et al. Alfentanil controls the haemodynamic response during rapid-sequence induction of anaesthesia. Can J Anaesth. 1990;37(7):755–61.

    CAS  PubMed  Google Scholar 

  197. Kwak HJ, et al. Optimal bolus dose of alfentanil for successful tracheal intubation during sevoflurane induction with and without nitrous oxide in children. Br J Anaesth. 2010;104(5):628–32.

    CAS  PubMed  Google Scholar 

  198. McConaghy P, Bunting HE. Assessment of intubating conditions in children after induction with propofol and varying doses of alfentanil. Br J Anaesth. 1994;73(5):596–9.

    CAS  PubMed  Google Scholar 

  199. Steyn MP, et al. Tracheal intubation without neuromuscular block in children. Br J Anaesth. 1994;72(4):403–6.

    CAS  PubMed  Google Scholar 

  200. Pokela ML, et al. Alfentanil-induced rigidity in newborn infants. Anesth Analg. 1992;75(2):252–7.

    CAS  PubMed  Google Scholar 

  201. Allegaert K, Thewissen L, van den Anker JN. Remifentanil in neonates: a promising compound in search of its indications? Pediatr Neonatol. 2012;53:387–8.

    PubMed  Google Scholar 

  202. Penido MG, Garra R, Sammartino M, et al. Remifentanil in neonatal intensive care and anaesthesia practice. Acta Paediatr. 2010;99:1454–63.

    CAS  PubMed  Google Scholar 

  203. Choong K, et al. Remifentanil for endotracheal intubation in neonates: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2010;95(2):F80–4.

    CAS  PubMed  Google Scholar 

  204. Min SK, et al. The optimal dose of remifentanil for intubation during sevoflurane induction without neuromuscular blockade in children. Anaesthesia. 2007;62(5):446–50.

    CAS  PubMed  Google Scholar 

  205. Crawford MW, Hayes J, Tan JM. Dose-response of remifentanil for tracheal intubation in infants. Anesth Analg. 2005;100(6):1599–604.

    CAS  PubMed  Google Scholar 

  206. Hume-Smith H, et al. The effect of age on the dose of remifentanil for tracheal intubation in infants and children. Paediatr Anaesth. 2010;20(1):19–27.

    PubMed  Google Scholar 

  207. He L, et al. Effects of different doses of remifentanil on the end-tidal concentration of sevoflurane required for tracheal intubation in children. Anaesthesia. 2009;64(8):850–5.

    CAS  PubMed  Google Scholar 

  208. Morton NS. Tracheal intubation without neuromuscular blocking drugs in children. Paediatr Anaesth. 2009;19(3):199–201.

    PubMed  Google Scholar 

  209. Meretoja OA. Neuromuscular block and current treatment strategies for its reversal in children. Paediatr Anaesth. 2010;20(7):591–604.

    PubMed  Google Scholar 

  210. Brandom BW, Fine GF. Neuromuscular blocking drugs in pediatric anesthesia. Anesthesiol Clin North America. 2002;20(1):45–58.

    CAS  PubMed  Google Scholar 

  211. Eikermann M, et al. Optimal rocuronium dose for intubation during inhalation induction with sevoflurane in children. Br J Anaesth. 2002;89(2):277–81.

    CAS  PubMed  Google Scholar 

  212. Fuchs-Buder T, Tassonyi E. Intubating conditions and time course of rocuronium-induced neuromuscular block in children. Br J Anaesth. 1996;77(3):335–8.

    CAS  PubMed  Google Scholar 

  213. McCluskey A, Meakin G. Dose-response and minimum time to satisfactory intubation conditions after mivacurium in children. Anaesthesia. 1996;51(5):438–41.

    CAS  PubMed  Google Scholar 

  214. Roberts KD, et al. Premedication for nonemergent neonatal intubations: a randomized, controlled trial comparing atropine and fentanyl to atropine, fentanyl, and mivacurium. Pediatrics. 2006;118(4):1583–91.

    PubMed  Google Scholar 

  215. Meakin GH. Role of muscle relaxants in pediatric anesthesia. Curr Opin Anaesthesiol. 2007;20(3):227–31.

    PubMed  Google Scholar 

  216. Whittaker M. Plasma cholinesterase variants and the anaesthetist. Anaesthesia. 1980;35(2):174–97.

    CAS  PubMed  Google Scholar 

  217. Doucet O, et al. Prolonged neuromuscular blockade with mivacurium in a newborn. Ann Fr Anesth Reanim. 1998;17(7):725–7.

    CAS  PubMed  Google Scholar 

  218. Dubois MC, et al. Comparison of three techniques for induction of anaesthesia with sevoflurane in children. Paediatr Anaesth. 1999;9(1):19–23.

    CAS  PubMed  Google Scholar 

  219. Fitzgerald M. The development of nociceptive circuits. Nat Rev Neurosci. 2005;6(7):507–20.

    CAS  PubMed  Google Scholar 

  220. Fujinaga M, et al. Nitrous oxide lacks the antinociceptive effect on the tail flick test in newborn rats. Anesth Analg. 2000;91(1):6–10.

    CAS  PubMed  Google Scholar 

  221. Kaisti KK, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99(3):603–13.

    CAS  PubMed  Google Scholar 

  222. Weimann J. Toxicity of nitrous oxide. Best Pract Res Clin Anaesthesiol. 2003;17(1):47–61.

    CAS  PubMed  Google Scholar 

  223. Xue FS, et al. The circulatory responses to tracheal intubation in children: a comparison of the oral and nasal routes. Anaesthesia. 2007;62(3):220–6.

    CAS  PubMed  Google Scholar 

  224. Spence K, Barr P. Nasal versus oral intubation for mechanical ventilation of newborn infants. Cochrane Database Syst Rev 1999 (2): Art No. CD000948. (updated 2009).

    Google Scholar 

  225. Kuhns LR, Poznanski AK. Endotrachel tube position in the infant. J Pediatr. 1971;78:991–6.

    CAS  PubMed  Google Scholar 

  226. Todres ID, deBros F, Kramer SS, et al. Endotracheal tube displacement in the newborn infant. J Pediatr. 1976;89:126–7.

    CAS  PubMed  Google Scholar 

  227. Rost JR, Frush DP, Auten RL. Effect of neck position on endotracheal tube location in low birth weight infants. Pediatr Pulmonol. 1999;27:199–202.

    CAS  PubMed  Google Scholar 

  228. Olufolabi AJ, Charlton GA, Spargo PM. Effect of head posture on tracheal tube position in children. Anaesthesia. 2004;59(11):1069–72.

    CAS  PubMed  Google Scholar 

  229. von Ungern-Sternberg BS, et al. Desflurane but not sevoflurane impairs airway and respiratory tissue mechanics in children with susceptible airways. Anesthesiology. 2008;108(2):216–24.

    Google Scholar 

  230. Sale SM, et al. Prospective comparison of sevoflurane and desflurane in formerly premature infants undergoing inguinal herniotomy. Br J Anaesth. 2006;96(6):774–8.

    CAS  PubMed  Google Scholar 

  231. Lerman J, Johr M. Inhalational anesthesia vs total intravenous anesthesia (TIVA) for pediatric anesthesia. Paediatr Anaesth. 2009;19(5):521–34.

    PubMed  Google Scholar 

  232. Hannallah RS, et al. Propofol: effective dose and induction characteristics in unpremedicated children. Anesthesiology. 1991;74(2):217–9.

    CAS  PubMed  Google Scholar 

  233. Fudickar A, Bein B. Propofol infusion syndrome: update of clinical manifestation and pathophysiology. Minerva Anestesiol. 2009;75(5):339–44.

    CAS  PubMed  Google Scholar 

  234. Laquay N, et al. [Propofol infusion syndrome]. Ann Fr Anesth Reanim. 2010;29(5):377–86.

    CAS  PubMed  Google Scholar 

  235. Diedrich DA, Brown DR. Analytic reviews: propofol infusion syndrome in the ICU. J Intensive Care Med. 2011;26:59–72.

    PubMed  Google Scholar 

  236. Sammartino M, et al. Propofol overdose in a preterm baby: may propofol infusion syndrome arise in two hours? Paediatr Anaesth. 2010;20:973–4.

    PubMed  Google Scholar 

  237. Anand KJ. Consensus statement for the prevention and management of pain in the newborn. Arch Pediatr Adolesc Med. 2001;155(2):173–80.

    CAS  PubMed  Google Scholar 

  238. Anand KJ. Clinical importance of pain and stress in preterm neonates. Biol Neonate. 1998;73(1):1–9.

    CAS  PubMed  Google Scholar 

  239. Anand KJ, Hickey PR. Pain and its effects in the human neonate and fetus. N Engl J Med. 1987;317(21):1321–9.

    CAS  PubMed  Google Scholar 

  240. Anand KJ, Sippell WG, Aynsley-Green A. Pain, anaesthesia, and babies. Lancet. 1987;2(8569):1210.

    CAS  PubMed  Google Scholar 

  241. Taddio A, et al. Effect of neonatal circumcision on pain responses during vaccination in boys. Lancet. 1995;345(8945):291–2.

    CAS  PubMed  Google Scholar 

  242. Peters JW, et al. Does neonatal surgery lead to increased pain sensitivity in later childhood? Pain. 2005;114(3):444–54.

    PubMed  Google Scholar 

  243. Reynolds ML, Fitzgerald M. Long-term sensory hyperinnervation following neonatal skin wounds. J Comp Neurol. 1995;358(4):487–98.

    CAS  PubMed  Google Scholar 

  244. Hohmeister J, et al. Cerebral processing of pain in school-aged children with neonatal nociceptive input: an exploratory fMRI study. Pain. 2010;150(2):257–67.

    PubMed  Google Scholar 

  245. Anand KJ, et al. Effects of morphine analgesia in ventilated preterm neonates: primary outcomes from the NEOPAIN randomised trial. Lancet. 2004;363(9422):1673–82.

    CAS  PubMed  Google Scholar 

  246. Jablonka DH, Davis PJ. Opioids in pediatric anesthesia. Anesthesiol Clin North America. 2005;23(4):621–34. viii.

    CAS  PubMed  Google Scholar 

  247. Meuldermans WE, Hurkmans RM, Heykants JJ. Plasma protein binding and distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. Arch Int Pharmacodyn Ther. 1982;257(1):4–19.

    CAS  PubMed  Google Scholar 

  248. Meistelman C, et al. Effects of age on plasma protein binding of sufentanil. Anesthesiology. 1990;72(3):470–3.

    CAS  PubMed  Google Scholar 

  249. Tateishi T, et al. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg. 1996;82(1):167–72.

    CAS  PubMed  Google Scholar 

  250. Lacroix D, et al. Expression of CYP3A in the human liver-evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–34.

    CAS  PubMed  Google Scholar 

  251. Kearns GL, et al. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    CAS  PubMed  Google Scholar 

  252. Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295.

    CAS  PubMed  Google Scholar 

  253. Glenski JA, et al. Comparison of the hemodynamic and echocardiographic effects of sufentanil, fentanyl, isoflurane, and halothane for pediatric cardiovascular surgery. J Cardiothorac Anesth. 1988;2(2):147–55.

    CAS  PubMed  Google Scholar 

  254. Egan TD, et al. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology. 1993;79(5):881–92.

    CAS  PubMed  Google Scholar 

  255. Davis PJ, Cladis FP. The use of ultra-short-acting opioids in paediatric anaesthesia: the role of remifentanil. Clin Pharmacokinet. 2005;44(8):787–96.

    CAS  PubMed  Google Scholar 

  256. Wee LH, et al. Remifentanil infusion for major abdominal surgery in small infants. Paediatr Anaesth. 1999;9(5):415–8.

    CAS  PubMed  Google Scholar 

  257. Tirel O, et al. Effect of remifentanil with and without atropine on heart rate variability and RR interval in children. Anaesthesia. 2005;60(10):982–9.

    CAS  PubMed  Google Scholar 

  258. Ross AK, et al. Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth Analog. 2001;93(6):1393–401. table of contents.

    CAS  Google Scholar 

  259. Sadleir PHM, Clarke RC, Bunning DL, et al. Anaphylaxis to neuromuscular blocking drugs: incidence and cross-reactivity in Western Australia from 2002 to 2011. Br J Anaesth. 2013;110:981–7.

    CAS  PubMed  Google Scholar 

  260. Nel L, Eren E. Peri-operative anaphylaxis. Br J Clin Pharmacol. 2011;71:647–58.

    PubMed Central  PubMed  Google Scholar 

  261. Mertes PM, Alla F, Tréchot P, et al. Anaphylaxis during anesthesia in France: an 8-year national survey. J Allergy Clin Immunol. 2011;128:366–73.

    PubMed  Google Scholar 

  262. Weber F. Evidence for the need for anaesthesia in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24:475–84.

    PubMed  Google Scholar 

  263. Hermann C, et al. Long-term alteration of pain sensitivity in school-aged children with early pain experiences. Pain. 2006;125(3):278–85.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Constant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sabourdin, N., Louvet, N., Constant, I. (2015). Selection of Anesthesia Techniques for the Neonate. In: Lerman, J. (eds) Neonatal Anesthesia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6041-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6041-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6040-5

  • Online ISBN: 978-1-4419-6041-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics