Skip to main content

Neonatal Ventilation

  • Chapter
  • First Online:
Neonatal Anesthesia
  • 2069 Accesses

Abstract

Adequately ventilating the lungs is crucial in neonates since both hypo- and hyperventilation may confer respiratory and systemic consequences, in addition to contributing to the increased morbidity and mortality in pediatric anesthesia. Recently, enormous efforts have been expended to improve ventilation strategies in neonates using a “protective” and “open-lung” strategy in order to maintain optimal functional residual capacity (FRC) and to prevent ventilation-induced lung injury and bronchopulmonary dysplasia. An increased awareness of the potential harm of hyperventilating the lungs of neonates with large tidal volumes (Vt) that can lead to alveolar overdistension due to excessive shear forces and the liberation of proinflammatory cytokines, which constitute the main features of the so-called ventilation-induced lung injury, have caused a reappraisal of such a practice. Moreover, the resultant hypocapnia from hyperventilation may induce cerebral vasoconstriction and promote the development of cystic periventricular leukomalacia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murat I, Constant I, Maud'huy H. Perioperative anaesthetic morbidity in children: a database of 24,165 anaesthetics over a 30-month period. Paediatr Anaesth. 2004;14:158–66.

    Article  PubMed  Google Scholar 

  2. Bhananker SM, Ramamoorthy C, Geiduschek JM, et al. Anesthesia-related cardiac arrest in children: update from the pediatric perioperative cardiac arrest registry. Anesth Analg. 2007;105:344–50.

    Article  PubMed  Google Scholar 

  3. Moloney ED, Griffiths MJ. Protective ventilation of patients with acute respiratory distress syndrome. Br J Anaesth. 2004;92:261–70.

    Article  CAS  PubMed  Google Scholar 

  4. Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med. 1998;157:294–323.

    Article  CAS  PubMed  Google Scholar 

  5. Wiswell TE, Graziani LJ, Kornhauser MS, et al. Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high-frequency jet ventilation. Pediatrics. 1996;98:918–24.

    CAS  PubMed  Google Scholar 

  6. Kaiser JR, Gauss CH, Pont MM, Williams DK. Hypercapnia during the first 3 days of life is associated with severe intraventricular hemorrhage in very low birth weight infants. J Perinatol. 2006;26:279–85.

    Article  CAS  PubMed  Google Scholar 

  7. Keens TG, Bryan AC, Levison H, Ianuzzo CD. Developmental pattern of muscle fiber types in human ventilatory muscles. J Appl Physiol. 1978;44:909–13.

    CAS  PubMed  Google Scholar 

  8. Muller N, Volgyesi G, Becker L, et al. Diaphragmatic muscle tone. J Appl Physiol. 1979;47:279–84.

    CAS  PubMed  Google Scholar 

  9. Nicolai T. The physiological basis of respiratory support. Paediatr Respir Rev. 2006;7:97–102.

    Article  CAS  PubMed  Google Scholar 

  10. Macklem PT, Proctor DF, Hogg JC. The stability of peripheral airways. Respir Physiol. 1970;8:191–203.

    Article  CAS  PubMed  Google Scholar 

  11. Hjalmarson O, Sandberg K. Abnormal lung function in healthy preterm infants. Am J Respir Crit Care Med. 2002;165:83–7.

    Article  PubMed  Google Scholar 

  12. Menkes H, Gardiner A, Gamsu G, et al. Influence of surface forces on collateral ventilation. J Appl Physiol. 1971;31:544–9.

    CAS  PubMed  Google Scholar 

  13. Lanteri CJ, Sly PD. Changes in respiratory mechanics with age. J Appl Physiol. 1993;74:369–78.

    CAS  PubMed  Google Scholar 

  14. Sly PD, Hayden MJ, Petak F, Hantos Z. Measurement of low-frequency respiratory impedance in infants. Am J Respir Crit Care Med. 1996;154:161–6.

    Article  CAS  PubMed  Google Scholar 

  15. Garcia A, Stolar CJH. Congenital diaphragmatic hernia and protective ventilation strategies in pediatric surgery. Surg Clin N Am. 2012;92:659–68.

    Article  PubMed  Google Scholar 

  16. Brown MK, DiBlasi RM. Mechanical ventilation of the premature neonate. Respir Care. 2011;56:1298–313.

    Article  PubMed  Google Scholar 

  17. Munoz J, Guerrero JE, Escalante JL, et al. Pressure-controlled ventilation versus controlled mechanical ventilation with decelerating inspiratory flow. Crit Care Med. 1993;21:1143–8.

    Article  CAS  PubMed  Google Scholar 

  18. Kamlin CO, Davis PG. Long versus short inspiratory times in neonates receiving mechanical ventilation. Cochrane Database Syst Rev 2004: CD004503.

    Google Scholar 

  19. Keszler M. State of the art in conventional mechanical ventilation. J Perinatol. 2009;29:262–75.

    Article  CAS  PubMed  Google Scholar 

  20. Dimitriou G, Greenough A, Cherian S. Comparison of airway pressure and airflow triggering systems using a single type of neonatal ventilator. Acta Paediatr. 2001;90:445–7.

    Article  CAS  PubMed  Google Scholar 

  21. Greenough A, Donn SM. Matching ventilatory support strategies to respiratory pathophysiology. Clin Perinatol 2007;34:35–53, v–vi.

    Google Scholar 

  22. Schulze A, Rieger-Fackeldey E, Gerhardt T, et al. Randomized crossover comparison of proportional assist ventilation and patient-triggered ventilation in extremely low birth weight infants with evolving chronic lung disease. Neonatology. 2007;92:1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Sinderby C, Beck J, Spahija J, et al. Inspiratory muscle unloading by neurally adjusted ventilatory assist during maximal inspiratory efforts in healthy subjects. Chest. 2007;131:711–17.

    Article  PubMed  Google Scholar 

  24. Stein H, Howard D. Neurally adjusted ventilatory assist in neonates weighing <1500 grams: a retrospective analysis. J Pediatr. 2012;160:786–9.

    Article  PubMed  Google Scholar 

  25. Breatnach C, Conlon NP, Stack M, et al. A prospective crossover comparison of neurally adjusted ventilatory assist and pressure-support ventilation in a pediatric and neonatal intensive care unit population. Pediatr Crit Care Med. 2010;11(1):7–11.

    Article  PubMed  Google Scholar 

  26. Stein H, Alosh H, Ethington P, White DB. Prospective crossover comparison between NAVA and pressure control ventilation in premature neonates less than 1500 grams. J Perinatol. 2012. doi:10.1038/jp.2012.136 (Epub ahead of print).

  27. Keszler M, Abubakar KM. Volume guarantee ventilation. Clin Perinatol. 2007;34:107–16, vii.

    Google Scholar 

  28. Singh J, Sinha SK, Clarke P, et al. Mechanical ventilation of very low birth weight infants: is volume or pressure a better target variable? J Pediatr. 2006;149:308–13.

    Article  PubMed  Google Scholar 

  29. McCallion N, Davis PG, Morley CJ. Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst Rev. 2005: CD003666.

    Google Scholar 

  30. Wheeler KI, Schmolzer GM, Morley CJ, Davis PG. High-frequency ventilation with the Drager Babylog 8000plus: measuring the delivered frequency. Acta Paediatr. 2011;100:67–70.

    Article  CAS  PubMed  Google Scholar 

  31. Singh J, Sinha SK, Donn SM. Volume-targeted ventilation of newborns. Clin Perinatol. 2007;34:93–105, vii.

    Google Scholar 

  32. Piotrowski A, Sobala W, Kawczynski P. Patient-initiated, pressure-regulated, volume-controlled ventilation compared with intermittent mandatory ventilation in neonates: a prospective, randomised study. Intensive Care Med. 1997;23:975–81.

    Article  CAS  PubMed  Google Scholar 

  33. D'Angio CT, Chess PR, Kovacs SJ, et al. Pressure-regulated volume control ventilation vs synchronized intermittent mandatory ventilation for very low-birth-weight infants: a randomized controlled trial. Arch Pediatr Adolesc Med. 2005;159:868–75.

    Article  PubMed  Google Scholar 

  34. Kocis KC, Dekeon MK, Rosen HK, et al. Pressure-regulated volume control vs volume control ventilation in infants after surgery for congenital heart disease. Pediatr Cardiol. 2001;22:233–7.

    Article  CAS  PubMed  Google Scholar 

  35. Lampland AL, Mammel MC. The role of high-frequency ventilation in neonates: evidence-based recommendations. Clin Perinatol. 2007;34:129–44, viii.

    Google Scholar 

  36. Wiswell TE, Graziani LJ, Kornhauser MS, et al. High-frequency jet ventilation in the early management of respiratory distress syndrome is associated with a greater risk for adverse outcomes. Pediatrics. 1996;98:1035–43.

    CAS  PubMed  Google Scholar 

  37. Carlo WA, Siner B, Chatburn RL, et al. Early randomized intervention with high-frequency jet ventilation in respiratory distress syndrome. J Pediatr. 1990;117:765–70.

    Article  CAS  PubMed  Google Scholar 

  38. Keszler M, Modanlou HD, Brudno DS, et al. Multicenter controlled clinical trial of high-frequency jet ventilation in preterm infants with uncomplicated respiratory distress syndrome. Pediatrics. 1997;100:593–9.

    Article  CAS  PubMed  Google Scholar 

  39. Cronin JH. High frequency ventilator therapy for newborns. J Intensive Care Med. 1994;9:71–85.

    CAS  PubMed  Google Scholar 

  40. Thome U, Kossel H, Lipowsky G, et al. Randomized comparison of high-frequency ventilation with high-rate intermittent positive pressure ventilation in preterm infants with respiratory failure. J Pediatr. 1999;135:39–46.

    Article  CAS  PubMed  Google Scholar 

  41. Craft AP, Bhandari V, Finer NN. The sy-fi study: a randomized prospective trial of synchronized intermittent mandatory ventilation versus a high-frequency flow interrupter in infants less than 1000 g. J Perinatol. 2003;23:14–9.

    Article  PubMed  Google Scholar 

  42. Miedema M, de Jongh FH, Frerichs I, et al. The effect of airway pressure and oscillation amplitude on ventilation in preterm infants. Eur Respir J. 2012;40:479–84.

    Article  PubMed  Google Scholar 

  43. Henderson-Smart DJ, De Paoli AG, Clark RH, Bhuta T. High frequency oscillatory ventilation versus conventional ventilation for infants with severe pulmonary dysfunction born at or near term. Cochrane Database Syst Rev. 2009: CD002974.

    Google Scholar 

  44. Cools F, Henderson-Smart DJ, Offringa M, Askie LM. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2009: CD000104.

    Google Scholar 

  45. Singh SN, Malik GK, Prashanth GP, et al. High frequency oscillatory ventilation versus synchronized intermittent mandatory ventilation in preterm neonates with hyaline membrane disease: a randomized controlled trial. Indian Pediatr. 2012;49:405–8.

    Article  CAS  PubMed  Google Scholar 

  46. Courtney SE, Durand DJ, Asselin JM, et al. High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N Engl J Med. 2002;347:643–52.

    Article  PubMed  Google Scholar 

  47. Courtney SE, Barrington KJ. Continuous positive airway pressure and noninvasive ventilation. Clin Perinatol 2007;34:73–92, vi.

    Google Scholar 

  48. Shaffer TH, Alapati D, Greenspan JS, Wolfson MR. Neonatal non-invasive respiratory support: physiological implications. Pediatr Pulmonol. 2012;47:837–47.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Davis PG, Lemyre B, de Paoli AG. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2001: CD003212.

    Google Scholar 

  50. Ramanathan R, Sekar KC, Rasmussen M, et al. Nasal intermittent positive pressure ventilation after surfactant treatment from respiratory distress syndrome in preterm infants <30 weeks’ gestation: a randomized, controlled trial. J Perinatol. 2012;32:336–43.

    Article  CAS  PubMed  Google Scholar 

  51. Bernet V, Hug MI, Frey B. Predictive factors for the success of noninvasive mask ventilation in infants and children with acute respiratory failure. Pediatr Crit Care Med. 2005;6:660–4.

    Article  PubMed  Google Scholar 

  52. Ho JJ, Henderson-Smart DJ, Davis PG. Early versus delayed initiation of continuous distending pressure for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev. 2002: CD002975.

    Google Scholar 

  53. Davis PG, Henderson-Smart DJ. Nasal continuous positive airways pressure immediately after extubation for preventing morbidity in preterm infants. Cochrane Database Syst Rev. 2003: CD000143.

    Google Scholar 

  54. Meneses J, Bhandari V, Alves JG. Nasal intermittent positive-pressure ventilation vs nasal continuous positive airway pressure for preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch Pediatr Adolesc Med. 2012;166:372–6.

    Article  PubMed  Google Scholar 

  55. Kieran EA, Twomey AR, Molloy EJ, et al. Randomized trial of prongs or mask for nasal continuous positive airway pressure in preterm infants. Pediatrics. 2012;130:e1170–6.

    Article  PubMed  Google Scholar 

  56. Tapia JL, Urzua S, Bancalari A, et al. Randomized trial of early bubble continuous positive airway pressure for very low birth weight infants. J Pediatr. 2012;261:75–80.

    Article  Google Scholar 

  57. Pillow JJ, Travadi JN. Bubble CPAP: is the noise important? An in vitro study. Pediatr Res. 2005;57:826–30.

    Article  PubMed  Google Scholar 

  58. Hough JL, Johnston L, Brauer SG, et al. Effect of body position on ventilation distribution in preterm infants on continuous positive airway pressure. Pediatr Crit Care Med. 2012;13:446–51.

    Article  PubMed  Google Scholar 

  59. Liptsen E, Aghai ZH, Pyon KH, et al. Work of breathing during nasal continuous positive airway pressure in preterm infants: a comparison of bubble vs variable-flow devices. J Perinatol. 2005;25:453–8.

    Article  PubMed  Google Scholar 

  60. Migliori C, Motta M, Angeli A, Chirico G. Nasal bilevel vs. continuous positive airway pressure in preterm infants. Pediatr Pulmonol. 2005;40:426–30.

    Article  PubMed  Google Scholar 

  61. O'Brien K, Campbell C, Brown L, et al. Infant flow biphasic nasal continuous positive airway pressure (BP- NCPAPA) vs. infant flow NCPAP for the facilitation of extubation in infants’ ≤1250 grams: a randomized controlled trial. BMC Pediatr. 2012;12:43.

    Article  PubMed Central  PubMed  Google Scholar 

  62. De Paoli AG, Davis PG, Faber B, Morley CJ. Devices and pressure sources for administration of nasal continuous positive airway pressure (NCPAP) in preterm neonates. Cochrane Database Syst Rev. 2008: CD002977.

    Google Scholar 

  63. Carlo WA. Gentle ventilation: the new evidence from the SUPPORT, COIN, VON, CURPAP, Columbian network, and Neocosur Network trials. Early Human Dev. 2012;88(S2):S81–3.

    Article  Google Scholar 

  64. Wilkinson D, Andersen C, O’Donnell CPF, et al. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2011: CD006405.

    Google Scholar 

  65. Manley BJ, Dold SK, Davis PG, et al. High-flow nasal cannulae for respiratory support of preterm infants: a review of the evidence. Neonatology. 2012;102:300–8.

    Article  PubMed  Google Scholar 

  66. Jaber S, Langlais N, Fumagalli B, et al. Performance studies of 6 new anesthesia ventilators: bench tests. Ann Fr Anesth Reanim. 2000;19:16–22.

    Article  CAS  PubMed  Google Scholar 

  67. Stayer SA, Bent ST, Skjonsby BS, et al. Pressure control ventilation: three anesthesia ventilators compared using an infant lung model. Anesth Analg. 2000;91:1145–50.

    CAS  PubMed  Google Scholar 

  68. Aslanian P, El Atrous S, Isabey D, et al. Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med. 1998;157:135–43.

    Article  CAS  PubMed  Google Scholar 

  69. Tassaux D, Michotte JB, Gainnier M, et al. Expiratory trigger setting in pressure support ventilation: from mathematical model to bedside. Crit Care Med. 2004;32:1844–50.

    Google Scholar 

  70. von Goedecke A, Brimacombe J, Hormann C, et al. Pressure support ventilation versus continuous positive airway pressure ventilation with the ProSeal laryngeal mask airway: a randomized crossover study of anesthetized pediatric patients. Anesth Analg. 2005;100:357–60.

    Article  Google Scholar 

  71. Odin I, Nathan N. What are the changes in paediatric anaesthesia practice afforded by new anaesthetic ventilators? Ann Fr Anesth Reanim. 2006;25:417–23.

    Article  CAS  PubMed  Google Scholar 

  72. Nakae Y, Miyabe M, Sonoda H, et al. Comparison of the Jackson-Rees circuit, the pediatric circle, and the MERA F breathing system for pediatric anesthesia. Anesth Analg. 1996;83:488–92.

    CAS  PubMed  Google Scholar 

  73. Von Ungern-Sternberg BS, Saudan S, Regli A, et al. Should the use of modified Jackson Rees T-piece breathing system be abandoned in preschool children? Paediatr Anaesth. 2007;17:654–60.

    Article  Google Scholar 

  74. Spears RS, Yeh A, Fisher DM, Zwaas MS. The “educated hand”: can anesthesiologists assess changes in neonatal pulmonary compliance manually? Anesthesiology. 1991;75:693–6.

    Article  PubMed  Google Scholar 

  75. Schily M, Koumoukelis H, Lerman J, Creighton RE. Can pediatric anesthesiologists detect an occluded tracheal tube in neonates? Anesth Analg. 2001;93:66–70.

    Article  CAS  PubMed  Google Scholar 

  76. Weiss M, Gerber AC. Induction of anaesthesia and intubation in children with a full stomach. Time to rethink! Anaesthesist. 2007;56:1210–16.

    Article  CAS  PubMed  Google Scholar 

  77. Eich C, Timmermann A, Russo SG, et al. A controlled rapid-sequence induction technique for infants may reduce unsafe actions and stress. Acta Anaesthesiol Scand. 2009;53:1167–72.

    Article  CAS  PubMed  Google Scholar 

  78. Rothen HU, Sporre B, Engberg G, et al. Prevention of atelectasis during general anaesthesia. Lancet. 1995;345:1387–91.

    Article  CAS  PubMed  Google Scholar 

  79. von Ungern-Sternberg BS, Regli A, Schibler A, et al. The impact of positive end-expiratory pressure on functional residual capacity and ventilation homogeneity impairment in anesthetized children exposed to high levels of inspired oxygen. Anesth Analg. 2007;104:1364–8.

    Article  Google Scholar 

  80. Tobin MJ. Advances in mechanical ventilation. N Engl J Med. 2001;344:1986–96.

    Article  CAS  PubMed  Google Scholar 

  81. Akca O, Liem E, Suleman MI, et al. Effect of intra-operative end-tidal carbon dioxide partial pressure on tissue oxygenation. Anaesthesia. 2003;58:536–42.

    Article  CAS  PubMed  Google Scholar 

  82. Oski FA. Clinical implications of the oxyhemoglobin dissociation curve in the neonatal period. Crit Care Med. 1979;7:412–18.

    Article  CAS  PubMed  Google Scholar 

  83. Becker MA, Donn SM. Real-time pulmonary graphic monitoring. Clin Perinatol. 2007;34:1–17, v.

    Google Scholar 

  84. Adams AB, Cakar N, Marini JJ. Static and dynamic pressure-volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome. Respir Care. 2001;46:686–93.

    CAS  PubMed  Google Scholar 

  85. Babik B, Petak F, Asztalos T, et al. Components of respiratory resistance monitored in mechanically ventilated patients. Eur Respir J. 2002;20:1538–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Habre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Habre, W. (2015). Neonatal Ventilation. In: Lerman, J. (eds) Neonatal Anesthesia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6041-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6041-2_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6040-5

  • Online ISBN: 978-1-4419-6041-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics