Skip to main content

Surface Plasmon Resonance on Nanoscale Organic Films

  • Chapter
  • First Online:
Nano-Bio-Sensing

Abstract

Over the past 20 years, surface plasmon resonance (SPR) has evolved into a very versatile detection method, particularly in bioscience applications. Not only the scientific literature has greatly expanded, but also the various commercial vendors of instrumentation, detection chips, and reagents have emerged. In the scientific sphere, the accent lies more and more on fabrication of nanostructures with interesting optical behavior (plasmonics), while in the R&D area, there are many new miniaturization efforts and combination with other detection methods, such as electrochemistry and quartz crystal microbalance (QCM). The present chapter will focus on the latest developments in making functional biochemical coatings for SPR detection as well as will review the basic theory behind the detection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The extinction (E) of a thin film is calculated by the usual relation: \(E = \chi.d = - \ln \left( T \right) = - \ln \left( {I/I_0 } \right)\), where I 0 is the intensity of the incident beam and I that of the transmitted light, T being the transmittance of the film.

  2. 2.

    In the ellipsometric literature, the convention \(\hat n = n - {\rm{j}}k,\) is often used, but then the k-values are expressed as negative numbers.

  3. 3.

    With the use of hydrogel layers on the gold surface, the SPR method is close to affinity chromatography in which the adsorption and desorption can be monitored directly, instead of monitoring the analyte released from the surface with a down-stream detector.

  4. 4.

    In fact, with surface concentrations for x and b, the term (ax) may not be directly used, because a is in mol/L and b in mol/dm2. Thus, a condition of depletion of a should be checked (see Chap. 5 of [7] for a mathematical evaluation).

  5. 5.

    Svante Arrhenius (1859–1927) was a Swedish scientist, and one of the founders of the science of physical chemistry: originally he was a physicist, but he is often regarded as a chemist. The Arrhenius equation he developed based on the work by J. H. van‘t Hoff. He was also the first to develop a theory of the greenhouse effect caused by carbon dioxide.

  6. 6.

    A recent scan of the literature readily reveals that most studies with direct detection using SPR instrumentation move in the low nanomolar range [18].

References

  1. Kretschmann E (1968) Radioactive decay of non radiative surface plasmons excited by light. Z. Naturforsch A 23a:2135–2136

    Google Scholar 

  2. Ritchie R H, Arakawa E T, Cowan J J, Hamm R N (1968) Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21:1530–1533

    Google Scholar 

  3. Kretschmann E (1971) The determination of the optical constants of metals by excitation of surface plasmons. Z. Phys. A 241:313–324

    Google Scholar 

  4. Raether H (1988) Surface Plasmons. Springer-Verlag, Berlin

    Google Scholar 

  5. Nylander C, Lundstrom I, Liedberg B (1983) Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4:299–304

    Google Scholar 

  6. Homola J (2006) Surface Plasmon Resonance Based Sensors. Springer-Verlag Heidelberg

    Google Scholar 

  7. Schasfoort R B M, Tudos A J (2004) Handbook of Surface Plasmon Resonance. RSC Publishing, Cambridge

    Google Scholar 

  8. Förch R, Schönherr H, Jenkins A T A (Eds) (2009) Surface Design: Applications in Bioscience and Nanotechnology. VCH/Wiley, Weinheim

    Google Scholar 

  9. Faraday M (1857) Experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. Lond. 147:145–181

    Google Scholar 

  10. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 4:377–445

    Google Scholar 

  11. Hutter E, Fendler J H (2004) Exploitation of localized surface plasmon resonance. Adv. Mater. 16:1685–1706

    Google Scholar 

  12. Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A, Nuzzo R G (2008) Nanostructured plasmonic sensors. Chem. Rev. 108:494–521

    Google Scholar 

  13. Born M, Wolf E (1987) Principles of Optics. Pergamon Press, Oxford

    Google Scholar 

  14. Otto A (1968) Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216:398–410

    Google Scholar 

  15. Azzam R M A, Bashara N M (1987) Ellipsometry and Polarised Light. Elsevier, Amsterdam

    Google Scholar 

  16. Sadowski J W, Korhonen I K J, Peltonen J P K (1995) Characterisation of thin films and their structures in surface plasmon resonance measurements. Opt. Eng. 34:2581–2586

    Google Scholar 

  17. Salamon Z, Macleod H A, Tollin G (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. Part I. & 2. Biochim. Biophys. Acta 1331:117–129, 131–152

    Google Scholar 

  18. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108:462–493

    Google Scholar 

  19. Theye M L (1970) Investigation of the optical properties of Au by means of thin semitransparent films. Phys. Rev. B 2:3060–3078

    Google Scholar 

  20. Dold B, Mecke R (1965) Optische Eigenschaften von Edelmetallen, Übergangsmetallen und deren Legierungen im Infrarot (1. Teil). Optik 22:435–446

    Google Scholar 

  21. Heavens O S (1960) Optical properties of thin films. Rep. Prog. Phys. 23:1–675

    Google Scholar 

  22. Schiebener P, Straub J, Levelt-Sengers, J M H, Gallagher J S (1990) Refractive index of water and steam as function of wavelength, temperature and density. J. Phys. Chem. Ref. Data 19:677

    Google Scholar 

  23. Ghosh G (1997) Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Appl. Opt. 36:1540–1546

    Google Scholar 

  24. Nelson B P, Frutos A G, Brockman J M, Corn R M (1999) Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments. Anal. Chem. 71:3928–3934

    Google Scholar 

  25. De Feijter J A, Benjamins J, Veer F A (1978) Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface. Biopolymers 17:1759–1772

    Google Scholar 

  26. Vörös J (2004) The density and refractive index of adsorbing protein layers. Biophys. J. 87:553–561

    Google Scholar 

  27. Qian R L, Mhatre R, Krull I S (1997) Characterization of antigen-antibody complexes by size-exclusion chromatography coupled with low-angle light-scattering photometry and viscometry. J. Chromatogr. A 787:101–109

    Google Scholar 

  28. Ball V, Ramsden J J (1998) Buffer dependence of refractive index increments. Biopolymers 46:489–492

    Google Scholar 

  29. Arwin H (1986) Optical properties of thin layers of bovine serum albumin, γ-globulin, and hemoglobin. Appl. Spectrosc. 40:313–318

    Google Scholar 

  30. Oudshoorn R C G, Kooyman R P H, Greve J (1996) Refractive index and layer thickness of on adsorbing protein as reporters of monolayer formation. Thin Solid Films 284–285:836–840

    Google Scholar 

  31. Sadowski J W, Lekkala J, Vikholm I (1991) Biosensors based on surface plasmons excited in non-noble metals. Biosens. Bioelectron. 6:439–444

    Google Scholar 

  32. Mayer C, Schalkhammer T (2005) Bioanalytical sensing using noble metal colloids. Top. Fluoresc. Spectrosc. 8:135–195

    Google Scholar 

  33. Kontio J M, Husu H, Simonen J, Huttunen M J, Tommila J, Pessa M, Kauranen M (2009) Source nanoimprint fabrication of gold nanocones with ∼10 nm tips for enhanced optical interactions. Opt. Lett. 34:1979–1981

    Google Scholar 

  34. Dahlin A, Zäch M, Rindzevicius T, Käll M, Sutherland D S, Höök F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J. Am. Chem. Soc. 127:5043–5048

    Google Scholar 

  35. Turkevich J, Stevenson P C, Hillier J A (1951) Study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday. Soc. 11:55–75

    Google Scholar 

  36. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspension. Nat. Phys. Sci. 241:20–21

    Google Scholar 

  37. Jana N R, Gearheart L, Murphy C J (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 13:2313–2322

    Google Scholar 

  38. Jadzinsky P D, Calero G, Ackerson C J, Bushnell, D A, Kornberg, R D (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318:430–433

    Google Scholar 

  39. Slot J W, Geuze H J (1985) A new method for preparing gold probes for multiple-labelling cytochemistry. Eur. J. Cell. Biol. 38:87–93

    Google Scholar 

  40. Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 94:801

    Google Scholar 

  41. Link S L, El-Sayed M A (1999) Size and temperature dependence of the plasmon adsorption of colloidal gold nanoparticles. J. Phys. Chem. 103:4212–4217

    Google Scholar 

  42. Creighton J A, Eadon D G (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 87:3881–3891

    Google Scholar 

  43. Englebienne P, Van Hoonacker A, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy 17:255–273

    Google Scholar 

  44. Haiss W, Thanh N T K, Aveyard J, Fernig D G (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 79:4215–4221

    Google Scholar 

  45. Khlebtsov N G (2008) Determination of size and concentration of gold nano-particles from extinction spectra. Anal. Chem. 80:6620–6625

    Google Scholar 

  46. Englebienne P (1998) Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123:1599–1603

    Google Scholar 

  47. Gribnau T C J, Leuvering J H W, van Hell H (1986) Particle-labelled immunoassays: a review. J. Chrom. B 376:175–189

    Google Scholar 

  48. Brooks D E, Devine D V, Harris P C, Harris J E, Miller M E, Olal A D, Spiller L J, Xie Z C (1999) RAMP™: a rapid, quantitative whole blood immunochromatographic platform for point-of-care testing. Clin. Chem. 45:1676–1678

    Google Scholar 

  49. Lyon L A, Musick M D, Natan M J (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal. Chem. 70:5177–5183

    Google Scholar 

  50. Liedberg B, Nylander C, Lundström I (1995) Biosensing with surface plasmon resonance – how it all started. Biosens. Bioelectron. 10:i–ix

    Google Scholar 

  51. McDonnell J M (2001) Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. Curr. Opin. Chem. Biol. 5:572–577

    Google Scholar 

  52. Arnold F H, Schofield S A, Blanch H W (1986) Analytical affinity chromatography: I. Local equilibrium theory and the measurement of association and inhibition constants. J. Chrom. A 355:1–12 & Arnold F H, Blanch H W (1986) Analytical affinity chromatography: II. Rate theory and the measurement of biological binding kinetics. J. Chrom. A 355:13–27

    Google Scholar 

  53. Cannon M J et al. (2004) Comparative analyses of a small molecule/enzyme interaction by multiple users of Biacore technology. Anal. Biochem. 330:98–113

    Google Scholar 

  54. Katsamba PS et al. (2006) Kinetic analysis of a high-afnity antibody/antigen interaction performed by multiple Biacore users. Anal. Biochem. 352:208–221

    Google Scholar 

  55. Navratilova I et al. (2007) Thermodynamic benchmark study using Biacore technology. Anal. Biochem. 364:67–77

    Google Scholar 

  56. Rich R L (2009) A global benchmark study using affinity-based biosensors. Anal. Biochem. 386:194–216

    Google Scholar 

  57. Karlsson R, Fält A (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J. Immunol. Methods 200:121–133

    Google Scholar 

  58. Morton T A, Myszka D G, Chaiken I M (1995) Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration. Anal. Biochem. 227:176–185

    Google Scholar 

  59. Rich R L, Myszka D G (2010) Grading the commercial optical biosensor literature – class of 2008: “The Mighty Binders”. J Mol. Recognit. 23:1–64

    Google Scholar 

  60. de Crescenzo G, Boucher C, Durocher Y, Jolicoeur M (2008) Kinetic characterization by surface plasmon resonance-based biosensors: principle and emerging trends. Cell. Mol. Bioeng. 1:204–215

    Google Scholar 

  61. Price N, Nairn J (2009) Exploring Proteins: A Student’s Guide to Experimental Skills and Methods. Oxford University Press, Oxford

    Google Scholar 

  62. Sips R (1950) On the structure of a catalyst surface. J. Chem. Phys. 18:1024

    Google Scholar 

  63. García-Calzóna J A, Díaz-García M E (2006) Review: characterization of binding sites in molecularly imprinted polymers. Sens. Actuators B 123:1180–1194

    Google Scholar 

  64. Vijayendran R A, Leckband D E (2001) A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 73:471–480

    Google Scholar 

  65. Selinger J V, Rabbany S Y (1997) Theory of heterogeneity in displacement reactions. Anal. Chem. 69:170–174

    Google Scholar 

  66. Jaroniec M, Madey R (1988) Physical Adsorption on Heterogeneous Solids. Elsevier, Amsterdam

    Google Scholar 

  67. Koopal L K, Vos C H W (1993) Adsorption on heterogeneous surfaces. Calculation of the adsorption energy distribution function or the affinity spectrum. Langmuir 9:2593–2605

    Google Scholar 

  68. Puzly A M, Matynia T, Gawdzik B, Poddubnaya O I (1999) Use of CONTIN for calculation of energy distribution. Langmuir 15:6016–6025

    Google Scholar 

  69. Press W H, Flannery B P, Teukolsky S A, Vetterling W T (1986) Numerical Recipes. Cambridge University Press, New York, p 502

    Google Scholar 

  70. Malmborg A-C, Michaëlsson A, Ohlin M, Jansson b, Borrebäck C A K (1992) Real time analysis of antibody-antigen reaction kinetics. Scand. J. Immunol. 35:643–650

    Google Scholar 

  71. Karlsson R, Katsamba P S, Nordin H, Pol E, Myszka D G (2006) Analyzing a kinetic titration series using affinity biosensors. Anal. Biochem. 349:136–147

    Google Scholar 

  72. Myszka D G, He X, Dembo M, Morton T A, Goldstein B (1998) Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. Biophys. J. 75:583–594

    Google Scholar 

  73. Önell A, Andersson K (2005) Kinetic determinations of molecular interactions using Biacore-minimum data requirements for efficient experimental design. J. Mol. Recognit. 18:307–317

    Google Scholar 

  74. Svitel J, Boukari H, Van Ryk D, Willson R, Schuck P (2007) Probing the functional heterogeneity of surface binding sites by analysis of experimental binding traces and the effect of mass transport limitation. Biophys. J. 92:1742–1758

    Google Scholar 

  75. Myszka D A, Morton T A (1998) CLAMP: a biosensor kinetic data analysis program. Trends Biochem. Sci. 23:149–150

    Google Scholar 

  76. Lipschultz C A, Li Y, Smith-Gill S (2000) Experimental design for analysis of complex kinetics using surface plasmon resonance. Methods 20:310–318

    Google Scholar 

  77. Myszka D A (1999) Improving biosensor analysis. J Mol. Recognit. 12:279–284

    Google Scholar 

  78. Thevenot D R, Toth K, Durst R A, Wilson G S (1999) Pure Appl. Chem. 71:2333–2348

    Google Scholar 

  79. Wortberg M, Orban M, Renneberg R, Cammann K (1996) Fluorimetric immunosensors. In: Kress-Rogers E (Ed) Handbook of Biosensors and Electronic noses. CRC Press, Boca Raton, p 371

    Google Scholar 

  80. Eddowes M J (1987–1988) Direct immunochemical sensing: basic chemical principles and fundamental limitations. Biosensors 3:1–15

    Google Scholar 

  81. (2003) Biacore 3000 Instrument Handbook. GE Healthcare, Uppsala

    Google Scholar 

  82. Jonsson B, Löfås S, Lindquist G (1991) Immobilization of proteins to carboxy methyl dextran-modified gold surface for biospecific analysis in surface plasmon resonance sensors. Anal. Biochem. 198:268–277

    Google Scholar 

  83. Löfås S, Jönsson B (1992) A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J. Chem. Soc. Commun. 21:1526–1528

    Google Scholar 

  84. Kambhampati D (Ed) (2005) Protein Microarray Technology. VCH/Wiley, Weinheim

    Google Scholar 

  85. Boozer C, Kim G, Cong S, Guan H, Londergan T (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr. Opin. Biotechnol. 17:400–405

    Google Scholar 

  86. Eddings M A, Eckman J W, Arana C A, Papalia G A, Connolly J E, Gale B. K, Myszka D G (2009) “Spot and hop”: internal referencing for surface plasmon resonance imaging using a three-dimensional microfluidic flow cell array. Anal. Biochem. 385:309–313

    Google Scholar 

  87. Beusink J B, Lokate A M C, Besselink G A J, Pruijn G J M, Schasfoort R B M (2008) Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosens. Bioelectron. 23:839–844

    Google Scholar 

  88. Albers W M, Vikholm I, Viitala T, Peltonen J (2001) Interfacial and materials aspects of the immobilisation of biomolecules onto solid surfaces. In: Nalwa HS (Ed) Handbook of Surfaces and Interfaces of Materials. Academic Press, San Diegop. p. 1–(1/N)31

    Google Scholar 

  89. Shankaran D R, Miura N (2007) Trends in interfacial design for surface plasmon resonance based immunoassays. J. Phys. D: Appl. Phys. 40:7187–7200

    Google Scholar 

  90. Gutiérrez-Gallego R, Bosch J, Such-Sanmartín G, Segura J (2009) Surface plasmon resonance immunoassays – a perspective. Growth Horm. IGF Res. 19:388–398

    Google Scholar 

  91. Bilitewski U (2006) Review: protein-sensing assay formats and devices. Anal. Chim. Acta 568:232–247

    Google Scholar 

  92. Förch R, Schönherr H, Jenkins A T A (Eds) (2009) Surface Design: Applications in Bioscience and Nanotechnology. Wiley/VCH, Weinheim

    Google Scholar 

  93. Lofas S, Johnsson B, Tegendal K, Ronnberg I (1993) Dextran modified gold surface plasmon resonance sensors: immunoreactivity of immobilized antibodies and antibody–surface interaction studies. Colloids Surf. B 1:83–89

    Google Scholar 

  94. Stigter E C A, de Jong G J, van Bennekom W P (2005) An improved coating for the isolation and quantitation of interferon-γ in spiked plasma using surface plasmon resonance (SPR). Biosens. Bioelectron. 21:474–482

    Google Scholar 

  95. Löfås S (1995) Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface plasmon resonance. Pure Appl. Chem. 67:829–834

    Google Scholar 

  96. Löfås S, Johnsson B, Edström Å, Hansson A, Lindqvist G, Müller-Hillgren R-M, Stigh L (1995) Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors. Biosens. Bioelectron. 10:813–822

    Google Scholar 

  97. GE Healthcare (2010) Data sheet No. 28–9681–84 AA, Sensor Chip CM7

    Google Scholar 

  98. Myszka D G (2004) Analysis of small-molecule interactions using Biacore S51 technology. Anal. Biochem. 329:316–323

    Google Scholar 

  99. Rich R L, Day Y S N, Morton T A, Myszka D G (2001) High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. Anal. Biochem. 296:197–207

    Google Scholar 

  100. Cannon M J, Myszka D G, Bagnato J D, Alpers D H, West F G, Grissom C B (2002) Anal. Biochem. 305:1–9

    Google Scholar 

  101. Rich R L, Hoth L R, Geoghegan K F, Brown T A, LeMotte P K, Simons S P, Hensley P, Myszka D G (2002) Kinetic analysis of estrogen receptor-ligand interactions. Proc. Natl. Acad. Sci. U.S.A. 99:8562–8567

    Google Scholar 

  102. Johnson B, Löfås S, Lindquist G, Edström Å, Müller-Hillgren R-M, Hansson A (1995) Comparison of methods for immobilisation to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies. J. Mol. Recognit. 8:125–131

    Google Scholar 

  103. Volden S, Kaizheng Z, Nystrom B, Glomm W R (2009) Use of cellulose derivatives on gold surfaces for reduced nonspecific adsorption of immunoglobulin G. Colloids Surf. B, 72:266–271

    Google Scholar 

  104. Kyprianou D, Guerreiro A R, Chianella I, Piletska E V, Fowler S A, Karim K, Whitcombe M J, Turner A P F, Piletsky S A (2009) New reactive polymer for protein immobilisation on sensor surfaces. Biosens. Bioelectron. 24:1365–1371

    Google Scholar 

  105. Iwasaki Y, Omichi Y, Iwata R (2008) Site-specific dense immobilization of antibody fragments on polymer brushes supported by silicone nanofilaments. Langmuir 24:8427–8430

    Google Scholar 

  106. F. Khan, M. He, M.J. Taussig, Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on ninitrilotriacetic acid surfaces. Anal. Chem. 78 (2006) 3072–3079

    Google Scholar 

  107. Y. Huang, R. Shi, X. Zhong, D. Wang, M. Zhao, Y. Li, Enzyme-linked immunosorbent assays for insulin-like growth factor-I using six-histidine tag fused proteins. Anal. Chim. Acta 596 (2007) 116–123

    Google Scholar 

  108. Morgan H, Taylor D M (1992) A surface plasmon resonance immunosensor based on the streptavidin–biotin complex. Biosens. Bioelectron. 7:405–510

    Google Scholar 

  109. Bonroy K, Frederix F, Reekmans G, Dewolf E, De Palma R, Borghs G, Declerck P, Goddeeris B (2006) Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers. J. Immunol. Methods 312:167–181

    Google Scholar 

  110. Nagatomo K, Kawaguchi T, Miura N, Toko K, Matsumoto K (2009) Development of a sensitive surface plasmon resonance immunosensor for detection of 2,4-dinitrotoluene with a novel oligo (ethylene glycol)-based sensor surface. Talanta 79:1142–1148

    Google Scholar 

  111. Vikholm I, Viitala T, Albers W M, Peltonen J (1999) Highly efficient immobilisation of antibody fragments to functionalised lipid monolayers. Biochim. Biophys. Acta 1421:39–52

    Google Scholar 

  112. Goto Y, Matsuno R, Konno T, Takai M, Ishihara K (2008) Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins. Biomacromolecules 9:828–833

    Google Scholar 

  113. Yuan Y, He H, Lee L J (2009) Protein A-based antibody immobilization onto polymeric microdevices for enhanced sensitivity of enzyme-linked immunosorbent assay. Biotechnol. Bioeng. 102:891–901

    Google Scholar 

  114. Lekkala J O, Sadowski J W (1994) Surface plasmon immunosensors. In: Aizawa M (Ed) Chemical Sensor Technology. Kodansha, Tokyo 5:199–213

    Google Scholar 

  115. Oh B K, Lee W, Chun B S, Bae Y M, Lee W H, Choi J W (2005) Surface plasmon resonance immunosensor for the detection of Yersinia enterocolitica. Colloids Surf. A 257–258:369–374

    Google Scholar 

  116. Svensson H G et al. (1998) Protein LA, a novel hybrid protein with unique single-chain Fv antibody- and Fab-binding properties. Eur. J. Biochem. 258:890–896

    Google Scholar 

  117. Kihlberg B M et al. (1992) Protein LG: a hybrid molecule with unique immunoglobulin binding properties. J. Biol. Chem. 267:25583–25588

    Google Scholar 

  118. Saerens D, Huang L, Bonroy K, Muyldermans S (2008) Review: antibody fragments as probe in biosensor development. Sensors. doi:10.3390/s8084669

    Google Scholar 

  119. Vareiro M M, Liu J, Knoll W, Zak K, Williams D, Jenkins A T (2005) Surface Plasmon fluorescence measurements of human chorionic gonadotropin: role of antibody orientation in obtaining enhanced sensitivity and limit of detection. Anal. Chem. 77:2426–2431

    Google Scholar 

  120. Jung Y, Jeong J Y, Chung B H (2008) Recent advances in immobilization methods of antibodies on solid supports. Analyst 133:697–701

    Google Scholar 

  121. O’Brien J C, Jones V W, Porter M D, Mosher C L, Henderson E (2000) Immunosensing platforms using spontaneously adsorbed antibody fragments on gold. Anal. Chem. 72:703–710

    Google Scholar 

  122. Weber J, Albers W M, Tuppurainen J, Link M, Gabl R, Wersing W, Schreiter M (2006) Shear mode FBARs as highly sensitive liquid biosensors. Sens. Actuators A 128:84–88

    Google Scholar 

  123. Albers W M, Auer S, Helle H, Munter T, Vikholm-Lundin I (2009) Functional characterisation of Fab’-fragments self-assembled onto hydrophilic gold surfaces. Colloids Surf. B 68:193–199

    Google Scholar 

  124. Vikholm I (2005) Self-assembly of antibody fragments and polymers onto gold for immunosensing. Sens. Actuators B 106:311–316

    Google Scholar 

  125. Vikholm-Lundin I (2005) Immunosensing based on site-directed immobilization of antibody fragments and polymers that reduce nonspecific binding. Langmuir 21:6473–6477

    Google Scholar 

  126. Vikholm-Lundin I, Albers W M (2006) Site-directed immobilisation of antibody fragments for detection of C-reactive protein. Biosens. Bioelectron. 21:1141–1148

    Google Scholar 

  127. Vikholm I. Sadowski J (2007) Method and biosensor for analysis. US Patent no. 7332327

    Google Scholar 

  128. Zayats M, Pogorelov S P, Kharitonov A B, Lioubashevski O (2003) Au nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations. Chem. Eur. J. 9:6108–6114

    Google Scholar 

  129. Hanning A, Roerade J, Delrow J J, Jorgenson R C (1999) Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution. Sens. Actuators B 54:25–36

    Google Scholar 

  130. Wink T, Zuilen S J V, Bult A, van Bennekom W P (1998) Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry. Anal. Chem. 70:827–832

    Google Scholar 

  131. Chen S-J, Chien F C, Lin G Y, Lee K C (2004) Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles. Opt. Lett. 29:1390–1392

    Google Scholar 

  132. Liu X, Sun Y, Song D Q, Zhang Q L, Tian Y, Zhang H Q (2004) Sensitivity-enhancement of wavelength-modulation surface plasmon resonance biosensor for human complement factor 4. Anal. Biochem. 333:99–104

    Google Scholar 

  133. Tian Y, Chen Y H, Song D Q, Liu X, Zhang H Q (2005) Acousto-optic tunable filter-surface plasmon resonance immunosensor for fibronectin, Anal. Chim. Acta 551:98–104

    Google Scholar 

  134. Gobi K V, Sasaki M, Shoyama Y, Miura N (2003) Highly sensitive detection of polycyclic aromatic hydrocarbons (PAHs) and association constants of the interaction between PAHs and antibodies using surface plasmon resonance immunosensor. Sens. Actuators B 89:137–143

    Google Scholar 

  135. Aldinger U, Pfeifer P, Schwotzer G, Steinrucke P (1998) A comparative study of spectral and angle-dependent SPR devices in biological applications. Sens. Actuators B 51:298–304

    Google Scholar 

  136. Besselink G A J, Kooyman R P H, van Os, P J H J, Engbers G H M, Schasfoort, R B M (2004) Signal amplification on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-specific antigen. Anal. Biochem. 333:165–173

    Google Scholar 

  137. Choi J-W, Kang D-Y, Jang Y-H, Kim H-H, Min J, Oh B-K (2008) Ultra-sensitive surface plasmon resonance based immunosensor for prostate-specific antigen using gold nanoparticle-antibody complex. Colloids Surf. B 313–314:655–659

    Google Scholar 

  138. Mangeney C et al. (2002) Synthesis and properties of water-soluble gold colloids covalently derivatized with neutral polymer monolayers. J. Am. Chem. Soc. 124:5811–5821

    Google Scholar 

  139. Albers W M, Munter T, Laaksonen P, Vikholm-Lundin I (2010) Improved functionality of antibody-colloidal gold conjugates with the aid of lipoamide-grafted N-[tris(hydroxymethyl)methyl]acrylamide polymers. J. Colloid Interface Sci. 348(1):1–8

    Google Scholar 

  140. Fouqu’e B, Schaack B, Obëıd P, Combe S, Gétin S, Barritault P, Chaton P, Chatelein F (2005) Multiple wavelength fluorescence enhancement on glass substrates for biochip and cell analyses. Biosens. Bioelectron. 20:2335–2340

    Google Scholar 

  141. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem. Rev. 109:1948–1998

    Google Scholar 

  142. Lucarelli F, Tombelli S, Minunni M, Marrazza G, Mascini M (2008) Electrochemical and piezoelectric DNA biosensors for hybridisation detection. Anal. Chim. Acta 609:139–159

    Google Scholar 

  143. Ananthanawat C, Vilaivan T, Mekboonsonglarp W, Hoven V P (2009) Thio-lated pyrrolidinyl peptide nucleic acids for the detection of DNA hybridization using surface plasmon resonance. Biosens. Bioelectron. 24:3544–3549

    Google Scholar 

  144. Liu Y, Wilson W D (2010) Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection. Methods Mol. Biol. 613:1–23

    Google Scholar 

  145. Torres-Chavolla E, Alocilja E C (2009) Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 24:3175–3182

    Google Scholar 

  146. Kohlhammer H et al. (2004) Genomic DNA-chip hybridisation in t(11;14)-positive mantle cell lymphomas shows a high frequency of aberrations and allows a refined characterization of consensus regions. Blood 104:795–801

    Google Scholar 

  147. Deng J Y, Zhang X E, Mang Y, Zhang Z P, Zhou Y F, Liu Q, Lu H B, Fu Z J (2004) Oligonucleotide ligation assay-based DNA chip for multiplex detection of single nucleotide polymorphism. Biosens. Bioelectron. 19:1277–1283

    Google Scholar 

  148. Mannelli I, Lecerf L, Guerrouache M, Goossens M, Millot M-C, Canva M (2007) DNA immobilisation procedures for surface plasmon resonance imaging (SPRI) based microarray systems. Biosens. Bioelectron. 22:803–809

    Google Scholar 

  149. Mannelli I, Courtois V, Lecaruyer P, Roger G, Millot M C, Goossens M, Canva M (2006) Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA amplified samples. Sens. Actuators B 119 583–591

    Google Scholar 

  150. Bianchi N, Rutigliano C, Tomassetti M, Feriotto G, Zorzato F, Gambari R (1997) Biosensor technology and surface plasmon resonance for real-time detection of HIV-1 genomic sequences amplified by polymerase chain reaction. Clin. Diagn. Virol. 8:199–208

    Google Scholar 

  151. Feriotto G, Borgatti M, Mischiati C, Bianchi N, Gambari R (2002) Biosensor technology and surface plasmon resonance for real-time detection of genetically modified roundup ready soybean gene sequences. J. Agric. Food Chem. 50:955–962

    Google Scholar 

  152. Silin V, Plant A (1997) Biotechnological applications of surface plasmon resonance. Tibtech 15:353–359

    Google Scholar 

  153. Nikiforov T T, Rogers Y H (1995) The use of 96-well polystyrene plate for DNA hybridization-based assays: an evaluation of different approaches to oligonucleotide immobilization. Anal. Biochem. 227:201–209

    Google Scholar 

  154. Rehman F N, Audeh M, Abrama E S, Hammond P W, Kenney M, Boles T C (1999) Immobilisation of acrylamide-modified oligonucleotides by co-polymerisation. Nucleic Acids Res. 27:649–655

    Google Scholar 

  155. Nimyer C M, Boldt L, Ceyhan B, Blohm D (1999) DNA-directed immobilization: efficient, reversible, and site-selective surface binding or proteins by means of covalent DNA streptavidin conjugates. Anal. Biochem. 268:54–63

    Google Scholar 

  156. Herne T, Tarlov M (1997) Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 119:8916–8920

    Google Scholar 

  157. Kim J H, Hong J, Yoon M, Yoon M Y, Juong H-S, Hwang H (2002) Solid-phase genetic engineering with DNA immobilized on a gold surface. J. Biotechnol. 96:213–221

    Google Scholar 

  158. Rogers Y H., Jiang-Baucom P, Huang Z J, Bogdanov V, Anderson S, Boyce-Jacino M (1999) Immobilization of oligonucleotides onto glass support via disulfide bonds: a method for preparation of DNA microarrays. Anal. Biochem. 266:23–30

    Google Scholar 

  159. Peterson A, Wolf L, Georgiadis R (2002) Hybridization of mismatched or partially matched DNA at surfaces. J. Am. Chem. Soc. 124:14601–14607

    Google Scholar 

  160. Lucarelli F, Marrazza G, Turner A P F, Mascini M (2004) Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens. Bioelectron. 19:515–530

    Google Scholar 

  161. Dugas V, Depret G, Chevalier Y, Nesme X, Souteyrand E (2004) Immobilization of single-stranded DNA fragments to solid surfaces and their repeatable specific hybridization: covalent binding or adsorption? Sens. Actuators B 101:112–121

    Google Scholar 

  162. Cloarec J-P, Chevolot Y, Laurenceau E, Phaner-Goutorbe M, Souteyrand E (2008) A multidisciplinary approach for molecular diagnostics based on biosensors and microarrays. ITBM-RBM 29:105–127

    Google Scholar 

  163. Sandström P, Boncheva M, Åkerman B (2003) Nonspecific and thiol-specific binding of DNA to Gold nanoparticles. Langmuir 19:7537–7543

    Google Scholar 

  164. Steel A B, Levicky R L, Herne T M, Tarlov M J (2000) Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys. J. 79:975–981

    Google Scholar 

  165. Steel A, Herne T, Tarlov M (1999) Electrostatic interactions of redox cations with surface-immobilized and solution DNA. Bioconjug. Chem. 10:419–423

    Google Scholar 

  166. Vikholm-Lundin I, Piskonen R, Albers W M (2007) Hybridisation of surface-immobilised single-stranded oligonucleotides and polymer monitored by surface plasmon resonance. Biosens. Bioelectron. 22:1323–1329

    Google Scholar 

  167. Vikholm-Lundin I, Piskonen R (2008) Binary monolayers of single-stranded oligonucleotides and blocking agent for hybridization. Sens. Actuators B 134:189–192

    Google Scholar 

  168. Vikholm-Lundin I, Auer S, Munter T, Fiegl H, Apostolidou S (2009) Hybridization of binary monolayers of single stranded oligonucleotides and short blocking molecules. Surf. Sci. 603:620–624

    Google Scholar 

  169. Morris V J, Kirby A R, Gunning A P (2004) Atomic Force Microscopy for Biologists. Imperial College Press, London

    Google Scholar 

  170. Eaton P, West P (2010) Atomic Force Microscopy. Oxford University Press, Oxford

    Google Scholar 

  171. Watson G S, Watson J (Eds Quantitative Measurements of Nano Forces Using Atomic Force Microscopy (AFM) – Quantifying Nano Forces in Three-Dimensions Using AFM: Applications in the Biological, Physical and Chemical Sciences. VDM Verlag, Saarbrücken

    Google Scholar 

  172. Braga P C, Ricci D (2003) Atomic Force Microscopy: Biomedical Methods and Applications (Methods in Molecular Biology, Vol 242). Humana Press, Totowa NY, USA

    Google Scholar 

  173. Morris V J, Kirby A R, Gunning A P (2010) Atomic Force Microscopy for Biologists. Imperial College Press, London

    Google Scholar 

  174. Zhang Y, Sheng S J, Shao Z (1996) Imaging biological structures with the cryo atomic force microscope. Biophys. J. 71:2168–2176

    Google Scholar 

  175. Hafner J H, Cheung C L, Woolley A T, Lieber C M (2001) Structural and functional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol. 77:73–110

    Google Scholar 

  176. Hafner J H, Cheung C L, Lieber C M (1999) Growth of nanotubes for probe microscopy tips. Nature (London) 398:761–762

    Google Scholar 

  177. Cheung C L, Hafner J H, Lieber C M (2000) Carbon nanotube atomic force microscopy tips: direct growth by chemical vapour deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. U.S.A. 97:3809–3813

    Google Scholar 

  178. San Paulo A, Garcia R (2000) High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. Biophys. J. 78:1599–1605

    Google Scholar 

  179. San Paulo A, Garcia R (2000) High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. Biophys. J. 78:1599–1605

    Google Scholar 

  180. Thomson N H (2005) The substructure of immunoglobulin G resolved to 25 kDa using amplitude modulation AFM in air. Ultramicroscopy 105:103–110

    Google Scholar 

  181. Zitzler L, Herminghaus S, Mugele F (2002) Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B 66:155436–155443

    Google Scholar 

  182. Thomson N H (2005) Imaging the substructure of antibodies with tapping mode AFM in air: the importance of a water layer on mica. J Microsc. 217:193–199

    MathSciNet  Google Scholar 

  183. Lallemand D, Rouillat M H, Dugas V, Chevolot Y, Souteyrand E, Phaner-Goutorbe M (2007) AFM characterization of ss-DNA probes immobilization: a sequence effect on surface organization. J. Phys. Conf. Ser. 61:658–662

    Google Scholar 

  184. Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nanovisualisation of dynamic biomolecular processes. Prog. Surf. Sci. 83:337–437

    Google Scholar 

  185. Tappura K, Vikholm-Lundin I, Albers W M (2007) Lipoate-based imprinted self-assembled molecular thin films for biosensor applications. Biosens. Bioelectron. 22:912–919

    Google Scholar 

  186. Hoa X D, Kirk A G, Tabrizian (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of the recent progress. Biosens. Bioelectron. 23:151–160

    Google Scholar 

  187. Weber J, Albers W M, Tuppurainen J, Link M, Gabl R, Wersing W, Schreiter M (2006) Shear mode FBARs as highly sensitive liquid biosensors. Sens. Actuators A 128:84–88

    Google Scholar 

Download references

Acknowledgments

Financial support from VTT Technical Research Centre, the EU, and TEKES in various projects is gratefully acknowledged. We also express thanks to Risto Ahorinta, of ORC, Tampere University of technology, for some ellipsometric measurements reported in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem M. Albers .

Editor information

Editors and Affiliations

Appendices

Appendix A

The Jones matrix I ifor reflection/transmission at an interface between layer i and i + 1 is based on the Fresnell reflection/transmission coefficients r i and t i, according to:

$${\rm{I}}_i = \left( {\frac{1}{{t_i }}} \right)\left({\begin{array}{lll}1 & {r_i } \\{r_i } & 1\\\end{array}}\right),$$

where in the case of p-polarized light, the coefficients are:

$$r_i = \frac{{\hat n_{i+ 1} c_i - \hat n_i c_{i+ 1} }}{{\hat n_{i+ 1} c_i+ \hat n_i c_{i+ 1} }} and \,t_i = \frac{{2\hat n_i c_i }}{{\hat n_{i+ 1} c_i+ \hat n_i c_{i+1} }}$$

in the case of s-polarised light, the coefficients are:

$$r_i = \frac{{\hat n_i c_i - \hat n_{i+ 1} c_{i+ 1} }}{{\hat n_i c_i+ \hat n_{i+ 1} c_{i+ 1} }} and\, t_i = \frac{{2\hat n_i c_i }}{{\hat n_i c_i+ \hat n_{i+ 1} c_{i+ 1} }}.$$

The Jones matrix L i for the light absorption in layer i takes the form, according to the Lambert-Beer law as:

$${{\rm{L}}_i = \left( {\begin{array}{lll}{{\rm{e}}^{ - i\beta _i } } & 0 \\0 &{{\rm{e}}^{i\beta_i}} \\\end{array}} \right)\,\rm with\,\, \beta _i = \frac{{2\pi }}{\lambda }d_i }\it \hskip-3pt n_i \it c_i $$

(when using the convention \(\hat n = n+ ik)\,\) \(where\, c_i = \cos (\theta _i ) = \sqrt {1 - \frac{{\hat n_1^2 }}{{\hat n_i^2 }}\sin ^2 (\theta _1 )}.\)

Appendix B

Reaction Schemes and rate equations for the most frequently used binding systems, from [57] in modified form.

One-to-one reaction

$${\bf{A}}{\rm{ }}+{\rm{ }}{\bf{B}} \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over{\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}} {\bf{AB}}$$
$${\rm{d}}R/{\rm{d}}t = k_{\rm{a}} \cdot \left[ {\rm{A}} \right] \cdot (R_{{\rm{max}}} - R){\rm{ }} - k_{\rm{d}} \cdot R$$

One-to-one reaction with mass transfer

$${\bf{A}}^\ast \mathbin{\bf{A}}{\rm{ }}+ {\rm{ }}{\bf{B}} \mathbin {\bf{AB}}$$
$${\rm{d}}\left[ {\rm{A}} \right]/{\rm{d}}t{\rm{ }} = k_{\rm{t}} \cdot \left( {\left[ {{\rm{A}}^\ast} \right] - \left[ {\rm{A}} \right]} \right){\rm{ }}-k_{\rm{a}} \cdot \left[ {\rm{A}} \right] \cdot \left( {R_{{\rm{max}}} - R} \right){\rm{ }}+ k_{\rm{d}} \cdot R$$
$${\rm{d}}R/{\rm{d}}t = k_{\rm{a}} \cdot \left[ {\rm{A}} \right] \cdot \left( {R_{{\rm{max}}} - R} \right){\rm{ }}-k_{\rm{d}} \cdot R$$

One-to-two reaction (bivalent analyte)

$${\bf{A}}{\rm{ }}+ {\rm{ }}{\bf{B}} \mathbin {\bf{AB}}\,\,\,\,\,\,\,{\rm{ }}{\bf{A}}{\rm{ }}+ {\rm{ }}{\bf{AB}} \mathbin {\bf{A}}_{\bf{2}} {\bf{B}}$$
$${\rm{d}}R_{\rm{1}} /{\rm{d}}t = k_{{\rm{a1}}} \cdot \left[ {\rm{A}} \right] \cdot \left( {R_{{\rm{max}}} - R_{\rm{1}} - R_{\rm{2}} } \right){\rm{ }}-k_{{\rm{d1}}} \cdot R_{\rm{1}} -k_{{\rm{a2}}} \cdot \left[ {\rm{A}} \right] \cdot R_{\rm{1}}+ k_{{\rm{d2}}} \cdot R_{\rm{2}} $$
$${\rm{d}}R_{\rm{2}} /{\rm{d}}t = k_{{\rm{a2}}} \cdot \left[ {\rm{A}} \right] \cdot R_{\rm{1}} -k_{{\rm{d2}}} \cdot R_{\rm{2}}$$

Two-state reaction

$${\bf{A}}{\rm{ }}+{\rm{ }}{\bf{B}} \mathbin {\bf{AB}}\,\,\,\,\,\,{\rm{ }}{\bf{AB}} \mathbin {\bf{AB}},$$
$${\rm{d}}R_{\rm{1}} /{\rm{d}}t = k_{{\rm{a1}}} \cdot \left[ {\rm{A}} \right] \cdot \left( {R_{{\rm{max}}} - R_{\rm{1}} - R_{\rm{2}} } \right){\rm{ }}-k_{{\rm{d1}}} \cdot R_{\rm{1}} -k_{{\rm{a2}}} \cdot R_1 + k_{{\rm{d2}}} \cdot R_{\rm{2}}$$
$${\rm{d}}R_{\rm{2}} /{\rm{d}}t = k_{{\rm{a2}}} \cdot R_{\rm{1}} -k_{{\rm{d2}}} \cdot R_{\rm{2}}$$

Competing analyte

$${\bf{A}}{\rm{ }}+ {\rm{ }}{\bf{B}} \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over{\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}} {\bf{AB}}\,\,\,\,\,\,\,\,{\rm{ }}{\bf{C}}{\rm{ }}+ {\rm{ }}{\bf{B}} \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over{\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}} {\bf{CB}}$$
$${\rm{d}}R_{\rm{1}} /{\rm{d}}t = k_{{\rm{a1}}} \cdot \left[ {\rm{A}} \right] \cdot \left( {R_{{\rm{max}}} - R_{\rm{1}} - p \cdot R_{\rm{2}} } \right){\rm{ }}-k_{{\rm{d1}}} \cdot R_{\rm{1}} $$
$${\rm{d}}R_{\rm{2}} /{\rm{d}}t = k_{{\rm{a2}}} \cdot \left[ {\rm{C}} \right] \cdot \left( {R_{{\rm{max}}} /p - R_{\rm{1}} /p - R_{\rm{2}} } \right){\rm{ }}-k_{{\rm{d2}}} \cdot R_{\rm{2}},$$

where A and C are the analyte species involved in the reaction, with square brackets indicating their concentration at the surface, and A* denoting species A in the bulk of the solution. B is the immobilized species, and AB, CB, AB’, and A2B are the complexes formed at the surface, with R, R 1, and R 2 are the responses of the bound species, and R max is the maximum response of species B. The parameter p is a correction factor, for example, to account for difference in molecular weight between species A and C. k is the rate constant, with a and d indicating the forward (association) and reverse (dissociation) reaction, and indices 1 and 2 indicating the equation

figure a_4

Surface Plasmon Resonance on Nanoscale Organic Films

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Albers, W.M., Vikholm-Lundin, I. (2011). Surface Plasmon Resonance on Nanoscale Organic Films. In: Carrara, S. (eds) Nano-Bio-Sensing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6169-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6169-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6168-6

  • Online ISBN: 978-1-4419-6169-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics