Skip to main content

Partially Geometric-Constrained Progressive Endmember Finding: Growing Convex Cone Volume Analysis

  • Chapter
  • First Online:
Real-Time Progressive Hyperspectral Image Processing
  • 1310 Accesses

Abstract

Chapter 7 presents a Convex Cone Volume Analysis (CCVA) approach developed by Chang et al. (2016) to finding endmembers which maximizes convex cone volumes for a given fixed number of convex cone vertices in the same way that N-FINDR maximizes simplex volumes in Chap. 6 for a given fixed number of simplex vertices. Its main idea is to project a convex cone onto a hyperplane so that the projected convex cone becomes a simplex. With this advantage, what can be derived from N-FINDR in Chap. 6 can also be applied to CCVA in Chap. 7. To reduce computational complexity and relieve the computing time required by N-FINDR, a Simplex Growing Analysis (SGA) approach developed by Chang et al. (2006) is further discussed in Chap. 10. More specifically, instead of working on fixed-size simplexes as does N-FINDR, SGA grows simplexes to find maximal volumes of growing simplexes by adding new vertices one at a time. Because CCVA can be derived from N-FINDR, it is expected that a similar approach can also be applied to SGA. This chapter develops a Growing Convex Cone Volume Analysis (GCCVA) approach, which is a parallel theory to SGA and can be considered to be a progressive version of CCVA in the same way as SGA is developed in Chap. 10 as a progressive version of N-FINDR. Accordingly, what SGA is to N-FINDR is exactly what GCCVA is to CCVA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chang, C.-I 2003. Hyperspectral imaging: techniques for spectral detection and classification. New York: Kluwer Academic/Plenum Publishers.

    Book  Google Scholar 

  • Chang, C.-I 2013. Hyperspectral data processing: algorithm design and analysis. New Jersey: Wiley.

    Book  MATH  Google Scholar 

  • Chang, C.-I, and D. Heinz. 2000. Constrained subpixel detection for remotely sensed images. IEEE Transactions on Geoscience and Remote Sensing 38(3): 1144–1159.

    Article  Google Scholar 

  • Chang, C.-I, C.C. Wu, W. Liu, and Y.C. Ouyang. 2006. A growing method for simplex-based endmember extraction algorithms. IEEE Transactions on Geoscience and Remote Sensing 44(10): 2804–2819.

    Article  Google Scholar 

  • Chang, C.-I, X. Jiao, Y. Du and M.-L. Chang. 2010a. A review of unsupervised hyperspectral target analysis. EURASIP Journal on Advanced in Signal Processing, 2010, Article ID 503752, 26 pp. doi:10.1155/2010/503752.

  • Chang, C.-I, C.C. Wu, C.-S. Lo, and M.-L. Chang. 2010b. Real-time simplex growing algorithms for hyperspecral endmember extarction. IEEE Transactions on Geoscience and Remote Sensing, IEEE Trans. on Geoscience and Remote Sensing 40(4): 1834–1850.

    Article  Google Scholar 

  • Chang, C.-I, C.H. Wen, and C.C. Wu. 2013. Relationship exploration among PPI, ATGP and VCA via theoretical analysis. International Journal of Computational Science and Engineering, 8(4): 361–367.

    Google Scholar 

  • Chang, C.-I, W. Xiong, and C.H. Wen. 2014. A theory of high order statistics-based virtual dimensionality for hyperspectrak imagery. IEEE Transactions on Geoscience and Remote Sensing 52(1): 188–208.

    Google Scholar 

  • Chang, C.-I, W. Xiong and S.Y. Chen. 2016. Convex cone volume analysis for finding endmembers in hyperspectral imagery. International Journal of Computational Science and Engineering (to appear).

    Google Scholar 

  • Chen, S.-Y. 2014. Algorithm Design and Analysis for Hyperspectral Endmember Finding. Doctoral dissertation, Departrment of Computer Science and Electrical Engineering, University of Maryland, Baltimore country, MD.

    Google Scholar 

  • Greg, I. 2010. An evaluation of three endmember extraction algorithms: ATGP, ICA-EEA and VCA, WHISPERS.

    Google Scholar 

  • Gruniger, J., A.J. Ratkowski and M.L. Hoje. 2004. The sequential maximum angle convex cone (SMACC) endmember model. In Proceedings of SPIE, algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery X, vol. 5425, 1–14.

    Google Scholar 

  • Harsanyi, J.C., W. Farrand, and C.-I Chang. 1994. Detection of subpixel spectral signatures in hyperspectral image sequences. In Annual meeting, proceedings of american society of photogrammetry and remote sensing, Reno, 236–247.

    Google Scholar 

  • Heinz, D., and C.-I Chang. 2001. Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing 39(3): 529–545.

    Article  Google Scholar 

  • Lee, D.D., and N.S. Seung. 1999. Learning the parts of objects by non-negative matrix factorization. Science 401(21): 788–791.

    Google Scholar 

  • Lopez, S., P. Horstrand, G.M. Callico, J.F. Lopez, and R. Sarmiento. 2012a. A low-computational-complexity algorithm for hyperspectral endmember extraction: modified vertex component analysis. IEEE Geoscience and Remote Sensing Letters 9(3): 502–506.

    Article  Google Scholar 

  • Lopez, S.P., G.M. Horstrand, J.F. Callico, Lopez, and R. Sarmiento. 2012b. A novel architecture for hyperspectral endmember extraction by means of the modified vertex component analysis (MVCA) algorithm. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing 5(6): 1837–1848.

    Article  Google Scholar 

  • Miao, L., and H. Qi. 2007. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing 45(3): 765–777.

    Article  Google Scholar 

  • Nascimento, J.M.P., and J.M. Dias. 2005. Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing 43(4): 898–910.

    Article  Google Scholar 

  • Xiong, W., C.T. Tsai, C.W. Yang and C.-I Chang. 2010. Convex cone-based endmember extraction for hyperspectral imagery. SPIE, vol. 7812, San Diego, CA, August 2–5, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chein-I Chang .

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chang, CI. (2016). Partially Geometric-Constrained Progressive Endmember Finding: Growing Convex Cone Volume Analysis. In: Real-Time Progressive Hyperspectral Image Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6187-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6187-7_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6186-0

  • Online ISBN: 978-1-4419-6187-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics