Skip to main content

Molecular Mechanisms and Function of the Spindle Checkpoint, a Guardian of the Chromosome Stability

  • Chapter
Polyploidization and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 676))

Abstract

For equal segregation, chromosomes, which are distributed randomly in the nucleus of interphase, must be aligned at the spindle equator in mitosis before the onset of sister chromatid separation. The spindle checkpoint is a surveillance mechanism that delays the onset of sister chromatid separation while each chromosome is on the way to the spindle equator. Failure in the function of the checkpoint results in aneuploidy/polyploidy, which would be a cause of cancer. Here, we review chromosome dynamics in mitosis, molecular mechanisms of the spindle checkpoint and finally tumorigenesis triggered by missegregation of chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Funabiki H, Murray AW. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 2000; 102:411–424.

    Article  PubMed  CAS  Google Scholar 

  2. Levesque AA, Compton DA. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J Cell Biol 2001; 154:1135–1146.

    Article  PubMed  CAS  Google Scholar 

  3. Skibbens RV, Skeen VP, Salmon ED. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol 1993; 122:859–875.

    Article  PubMed  CAS  Google Scholar 

  4. Kapoor TM, Compton DA. Searching for the middle ground: mechanisms of chromosome alignment during mitosis. J Cell Biol 2002; 157:551–556.

    Article  PubMed  CAS  Google Scholar 

  5. Kapoor TM, Lampson MA, Hergert P et al. Chromosomes can congress to the metaphase plate before biorientation. Science 2006; 311:388–391.

    Article  PubMed  CAS  Google Scholar 

  6. Cleveland DW, Mao YH, Sullivan KF. Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling. Cell 2003; 112:407–421.

    Article  PubMed  CAS  Google Scholar 

  7. Hwang LH, Lau LF, Smith DL et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 1998; 279:1041–1044.

    Article  PubMed  CAS  Google Scholar 

  8. Kim SH, Lin DP, Matsumoto S et al. Fission yeast Slp1: An effector of the Mad2-dependent spindle checkpoint. Science 1998; 279:1045–1047.

    Article  PubMed  CAS  Google Scholar 

  9. Peters JM. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 2006; 7:644–656.

    Article  PubMed  CAS  Google Scholar 

  10. Li R, Murray AW. Feedback control of mitosis in budding yeast. Cell 1991; 66:519–531.

    Article  PubMed  CAS  Google Scholar 

  11. Hoyt MA, Totis L, Roberts BT. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 1991; 66:507–517.

    Article  PubMed  CAS  Google Scholar 

  12. Winey M, Goetsch L, Baum P et al. MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 1991; 114:745–754.

    Article  PubMed  CAS  Google Scholar 

  13. Hardwick KG, Murray AW. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J Cell Biol 1995; 131:709–720.

    Article  PubMed  CAS  Google Scholar 

  14. Karess R. Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol 2005; 15:386–392.

    Article  PubMed  CAS  Google Scholar 

  15. Habu T, Kim SH, Weinstein J et al. Identification of a MAD2-binding protein, CMT2 and its role in mitosis. EMBO J 2002; 21:6419–6228.

    Article  PubMed  CAS  Google Scholar 

  16. Mao Y, Abrieu A, Cleveland DW. Activating and silencing the mitotic checkpoint through CENP-Edependent activation/inactivation of BubR1. Cell 2003; 114:87–98.

    Article  PubMed  CAS  Google Scholar 

  17. Li X, Nicklas RB. Mitotic forces control a cell-cycle checkpoint. Nature 1995; 373:630–632.

    Article  PubMed  CAS  Google Scholar 

  18. Rieder CL, Cole RW, Khodjakov A et al. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol 1995; 130:941–948.

    Article  PubMed  CAS  Google Scholar 

  19. Nicklas RB, Waters JC, Salmon ED et al. Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment, but tension is still essential. J Cell Sci 2001; 114:4173–4183.

    PubMed  CAS  Google Scholar 

  20. Waters JC, Chen RH, Murray AW et al. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J Cell Biol 1998; 141:1181–1191.

    Article  PubMed  CAS  Google Scholar 

  21. Skoufias DA, Andreassen PR, Lacroix FB et al. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc Natl Acad Sci USA 2001; 98:4492–4497.

    Article  PubMed  CAS  Google Scholar 

  22. Martin-Lluesma S, Stucke VM, Nigg EA. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 2002; 297:2267–2270.

    Article  PubMed  CAS  Google Scholar 

  23. Hori T, Haraguchi T, Hiraoka Y et al. Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. J Cell Sci 2003; 116:3347–3362.

    Article  PubMed  CAS  Google Scholar 

  24. Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20 and MAD2. J Cell Biol 2001; 154:925–936.

    Article  PubMed  CAS  Google Scholar 

  25. Luo X, Tang Z, Rizo J et al. The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol Cell 2002; 9:59–71.

    Article  PubMed  Google Scholar 

  26. Sironi L, Mapelli M, Knapp S et al. Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a’ safety belt’ binding mechanism for the spindle checkpoint. EMBO J 2002; 21:2496–2506.

    Article  PubMed  CAS  Google Scholar 

  27. Luo XL, Tang ZY, Xia GH et al. The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat Struct Mol Biol 2004; 11:338–345.

    Article  PubMed  CAS  Google Scholar 

  28. De Antoni A, Pearson CG, Cimini D et al. The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol 2005; 15:214–225.

    Article  PubMed  Google Scholar 

  29. Luo X, Fang G, Coldiron M et al. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat Struct Biol 2000; 7:224–229.

    Article  PubMed  CAS  Google Scholar 

  30. Giet R, Petretti C, Prigent C. Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol 2005; 15:241–250.

    Article  PubMed  CAS  Google Scholar 

  31. Pinsky BA, Kung C, Shokat KM et al. The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nat Cell Biol 2006; 8:78–83.

    Article  PubMed  CAS  Google Scholar 

  32. Hardwick KG, Weiss E, Luca FC et al. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 1996; 273:953–956.

    Article  PubMed  CAS  Google Scholar 

  33. Seeley TW, Wang L, Zhen JY. Phosphorylation of human MAD1 by the BUB1 kinase in vitro. Biochem Biophys Res Commun 1999; 257:589–595.

    Article  PubMed  CAS  Google Scholar 

  34. He X, Jones MH, Winey M et al. Mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe. J Cell Sci 1998; 111:1635–1647.

    PubMed  CAS  Google Scholar 

  35. Waters JC, Chen RH, Murray AW et al. Mad2 binding by phosphorylated kinetochores links error detection and checkpoint action in mitosis. Curr Biol 1999; 9:649–652.

    Article  PubMed  CAS  Google Scholar 

  36. Ahonen LJ, Kallio MJ, Daum JR et al. Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores. Curr Biol 2005; 15:1078–1089.

    Article  PubMed  CAS  Google Scholar 

  37. Wong OK, Fang G. Plx1 is the 3F3/2 kinase responsible for targeting spindle checkpoint proteins to kinetochores. J Cell Biol 2005; 170:709–719.

    Article  PubMed  CAS  Google Scholar 

  38. Rieder CL, Maiato H. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 2004; 7:637–651.

    Article  PubMed  CAS  Google Scholar 

  39. Reddy SK, Rape M, Margansky WA et al. Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature 2007; 446:921–925.

    Article  PubMed  CAS  Google Scholar 

  40. Stegmeier F, Rape M, Draviam VM et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 2007; 446:876–881.

    Article  PubMed  CAS  Google Scholar 

  41. Howell BJ, McEwen BF, Canman JC et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol 2001; 155:1159–1172.

    Article  PubMed  CAS  Google Scholar 

  42. Wojcik E, Basto R, Serr M et al. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nat Cell Biol 2001; 3:1001–1007.

    Article  PubMed  CAS  Google Scholar 

  43. Griffis ER, Stuurman N, Vale RD. Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J Cell Biol 2007; 177:1005–1015.

    Article  PubMed  CAS  Google Scholar 

  44. Shi Q, King RW. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 2005; 437:1038–1042.

    Article  PubMed  CAS  Google Scholar 

  45. Boveri T. The origin of malignant tumors. Baltimore, MD: Williams and Wilkins, 1929. Originally published in 1914 as Zur Frage der Entstehung maligner Tumoren.

    Google Scholar 

  46. Shackney SE, Smith CA, Miller BW et al. Model for the genetic evolution of human solid tumors. Cancer Res 1989; 49:3344–3354.

    PubMed  CAS  Google Scholar 

  47. Andreassen PR, Lohez OD, Lacroix FB et al. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 2001; 12:1315–1328.

    PubMed  CAS  Google Scholar 

  48. Galipeau PC, Cowan DS, Sanchez CA et al 17p (p53) allelic losses, 4N (G2/tetraploid) populations and progression to aneuploidy in Barrett’s esophagus. Proc Natl Acad Sci USA 1996; 93:7081–7084.

    Article  PubMed  CAS  Google Scholar 

  49. Fujiwara T, Bandi M, Nitta M et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 2005; 437:1043–1047.

    Article  PubMed  CAS  Google Scholar 

  50. Sotillo R, Hernando E, Diaz-Rodriguez E et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 2007; 11:9–23.

    Article  PubMed  CAS  Google Scholar 

  51. Mayer VW, Aguilera A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat Res 1990; 231:177–186.

    Article  PubMed  CAS  Google Scholar 

  52. Andalis AA, Storchova Z, Styles C et al. Defects arising from whole-genome duplications in Saccharomyces cerevisiae. Genetics 2004; 167:1109–1121.

    Article  PubMed  CAS  Google Scholar 

  53. Storchova Z, Breneman A, Cande J et al. Genome-wide genetic analysis of polyploidy in yeast. Nature 2006; 443:541–547.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Ito, D., Matsumoto, T. (2010). Molecular Mechanisms and Function of the Spindle Checkpoint, a Guardian of the Chromosome Stability. In: Poon, R.Y.C. (eds) Polyploidization and Cancer. Advances in Experimental Medicine and Biology, vol 676. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6199-0_2

Download citation

Publish with us

Policies and ethics