Skip to main content

Melanocortin Control of Cell Trafficking in Vascular Inflammation

  • Chapter
Melanocortins: Multiple Actions and Therapeutic Potential

Abstract

Over 20 years of research based upon application of experimental models of inflammation and tissue injury have revealed exquisite controlling functions for melanocortin hormones and, subsequently, their synthetic derivatives. More recent discoveries have shed light on the receptor targets responsible for these effects, leading to what could be the next step-change for this line of research, the development of novel therapeutics for the control of human inflammatory pathologies. Here we review some of this work with particular emphasis on more recent studies that have substantiated the activities of melanocortin peptides to reveal important regulatory functions for their receptors in vascular inflammation and disease models. Moreover, we summarise the drug discovery activities (for what is published knowledge) attempting to capitalise on this wealth of research on melanocortins, though we should not forget the successful employment of ACTH to treat human gouty arthritis. Altogether, this chapter would corroborate and flare the enthusiasm for this line of research, as we are confident that the right times might have arrived to develop novel anti-arthritic and tissue-protective compounds that will be acting by mimicking the way our endogenous melanocortins would act to exert their homeostatic and check-point functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hart F. Corticosteroid therapy in the rheumatic disorders. In: Huskisson E, ed. Anti-rheumatic drugs New York: Praeger, 1983;497–508.

    Google Scholar 

  2. Hench PS, Kendall EC, Slocumb CH et al. The effect of the adrenal cortex (17-hydroxy-11-dehydrocortisone: compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis; preliminary report. Proc Staff Meet Mayo Clin 1949; 24:181–197.

    CAS  Google Scholar 

  3. Dougherty TF, White A. Influence of hormones on lymphoid tissue structure and function. The role of the pituitary adrenotrophic hormone in the regulation of the lymphocytes and other cellular elements of the blood. Endocrinology 1944; 35:1–14.

    Article  CAS  Google Scholar 

  4. Gutman AB, Yu TF. Effects of ACTH in gout. Am J Med 1950; 9:24–30.

    Article  CAS  PubMed  Google Scholar 

  5. Saunders RH, Adams E. Changes in circulating leukocytes following administration of adrenal cortex extract and adrenocorticotropic hormone (ACTH) in infectious mononucleosis and chronic lymphatic leukaemia. Blood 1950; 5:732–738.

    PubMed  Google Scholar 

  6. Ritter J, Kerr LD, Valeriano-Marcet J et al. ACTH revisited: effective treatment for acute crystal induced synovitis in patients with multiple medical problems. J Rheumatol 1994; 21:696–699.

    CAS  PubMed  Google Scholar 

  7. Schlesinger N. Overview of the management of acute gout and the role of adrenocorticotropic hormone. Drugs 2008; 68:407–415.

    Article  CAS  PubMed  Google Scholar 

  8. Gantz I, Fong TM. The melanocortin system. Am J Physiol Endocrinol Metab 2003; 284:E468–474.

    CAS  PubMed  Google Scholar 

  9. Ley K, Laudanna C, Cybulsky MI et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 2007; 7:678–689.

    Article  CAS  PubMed  Google Scholar 

  10. Nathan C. Points of control in inflammation. Nature 2002; 420:846–852.

    Article  CAS  PubMed  Google Scholar 

  11. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 2006; 6:173–182.

    Article  CAS  PubMed  Google Scholar 

  12. Choi EY et al. Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science 2008; 322:1101–1104.

    Article  CAS  PubMed  Google Scholar 

  13. Perretti M. Endogenous mediators that inhibit the leukocyte-endothelium interaction. Trends in Pharmacological Sciences 1997; 18:418–425.

    CAS  PubMed  Google Scholar 

  14. Serhan CN et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J 2007; 21:325–332.

    Article  CAS  PubMed  Google Scholar 

  15. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol 2005; 6:1191–1197.

    Article  CAS  PubMed  Google Scholar 

  16. Kubes P, Granger DN. Leukocyte-endothelial cell interactions evoked by mast cells. Cardiovasc Res 1996; 32:699–708.

    CAS  PubMed  Google Scholar 

  17. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5:953–964.

    Article  CAS  PubMed  Google Scholar 

  18. Getting SJ. Targeting melanocortin receptors as potential novel therapeutics. Pharmacol Ther 2006; 111:1–15.

    Article  CAS  PubMed  Google Scholar 

  19. Catania A, Gatti S, Colombo G et al. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev 2004; 56:1–29.

    Article  CAS  PubMed  Google Scholar 

  20. Lipton JM. Modulation of host defense by the neuropeptide alpha-MSH. Yale J Biol Med 1990; 63:173–182.

    CAS  PubMed  Google Scholar 

  21. Lipton JM, Macaluso A, Hiltz ME et al. Central administration of the peptide alpha-MSH inhibits inflammation in the skin. Peptides 1991; 12:795–798.

    Article  CAS  PubMed  Google Scholar 

  22. Chiao H et al. Alpha-melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats. J Clin Invest 1997; 99:1165–1172.

    Article  CAS  PubMed  Google Scholar 

  23. Gatti S et al. Inhibitory effects of the peptide (CKPV)2 on endotoxin-induced host reactions. J Surg Res 2006; 131:209–214.

    Article  CAS  PubMed  Google Scholar 

  24. Kang L et al. A selective small molecule agonist of the melanocortin-1 receptor inhibits lipopolysaccharide-induced cytokine accumulation and leukocyte infiltration in mice. J Leukoc Biol 2006; 80:897–904.

    Article  CAS  PubMed  Google Scholar 

  25. Ceriani G et al. The neuropeptide alpha-melanocyte-stimulating hormone inhibits experimental arthritis in rats. Neuroimmunomodulation 1994; 1:28–32.

    Article  CAS  PubMed  Google Scholar 

  26. Manna SK, Aggarwal BB. Alpha-melanocyte-stimulating hormone inhibits the nuclear transcription factor NF-kappa B activation induced by various inflammatory agents. J Immunol 1998; 161:2873–2880.

    CAS  PubMed  Google Scholar 

  27. Ichiyama T et al. Alpha-melanocyte-stimulating hormone inhibits NF-kappaB activation and IkappaBalpha degradation in human glioma cells and in experimental brain inflammation. Exp Neurol 1999; 157:359–365.

    Article  CAS  PubMed  Google Scholar 

  28. Lipton JM et al. Mechanisms of antiinflammatory action of alpha-MSH peptides. In vivo and in vitro evidence. Ann N Y Acad Sci 1999; 885:173–182.

    Article  CAS  PubMed  Google Scholar 

  29. Chiao H et al. Alpha-melanocyte-stimulating hormone reduces endotoxin-induced liver inflammation. J Clin Invest 1996; 97:2038–2044.

    Article  CAS  PubMed  Google Scholar 

  30. Gatti S et al. Alpha-melanocyte-stimulating hormone protects the allograft in experimental heart transplantation. Transplantation 2002; 74:1678–1684.

    Article  CAS  PubMed  Google Scholar 

  31. Leoni G et al. Inflamed phenotype of the mesenteric microcirculation of melanocortin type 3 receptor-null mice after ischemia-reperfusion. FASEB J 2008; 22:4228–4238.

    Article  CAS  PubMed  Google Scholar 

  32. Catania A, Airaghi L, Colombo G et al. Alpha-melanocyte-stimulating hormone in normal human physiology and disease states. Trends Endocrinol Metab 2000; 11:304–308.

    Article  CAS  PubMed  Google Scholar 

  33. Bilenko MV. Ischemia and Reperfusion of Various Organs: Injury Mechanisms, Methods of Prevention and Treatment Nova Science Publishers, 2000.

    Google Scholar 

  34. Bazzani C et al. Protective effect of melanocortin peptides in rat myocardial ischemia. J Pharmacol Exp Ther 2001; 297:1082–1087.

    CAS  PubMed  Google Scholar 

  35. Getting SJ et al. MC-3 receptor and the inflammatory mechanisms activated in acute myocardial infarct. J Leukoc Biol 2004; 76:845–853.

    Article  CAS  PubMed  Google Scholar 

  36. Chiao H et al. Alpha-melanocyte-stimulating hormone inhibits renal injury in the absence of neutrophils. Kidney Int 1998; 54:765–774.

    Article  CAS  PubMed  Google Scholar 

  37. Lee YS, Park JJ, Chung KY. Change of melanocortin receptor expression in rat kidney ischemia-reperfusion injury. Transplant Proc 2008; 40:2142–2144.

    Article  CAS  PubMed  Google Scholar 

  38. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3:23–35.

    Article  CAS  PubMed  Google Scholar 

  39. Star RA et al. Evidence of autocrine modulation of macrophage nitric oxide synthase by alpha-melanocytestimulating hormone. Proc Natl Acad Sci USA 1995; 92:8016–8020.

    Article  CAS  PubMed  Google Scholar 

  40. Blalock JE. Proopiomelanocortin-derived peptides in the immune system. Clinical Endocrinology 1985; 22:823–827.

    Article  CAS  PubMed  Google Scholar 

  41. Getting SJ et al. POMC gene-derived peptides activate melanocortin type 3 receptor on murine macrophages, suppress cytokine release and inhibit neutrophil migration in acute experimental inflammation. J Immunol 1999; 162:7446–7453.

    CAS  PubMed  Google Scholar 

  42. Lam CW, Getting SJ, Perretti M. In vitro and in vivo induction of heme oxygenase 1 in mouse macrophages following melanocortin receptor activation. J Immunol 2005; 174:2297–2304.

    CAS  PubMed  Google Scholar 

  43. Getting SJ et al. [D-Trp8]-gamma-melanocyte-stimulating hormone exhibits anti-inflammatory efficacy in mice bearing a nonfunctional MC1R (recessive yellow e/e mouse). Mol Pharmacol 2006; 70:1850–1855.

    Article  CAS  PubMed  Google Scholar 

  44. Getting SJ, Allcock GH, Flower R et al. Natural and synthetic agonists of the melanocortin receptor type 3 possess anti-inflammatory properties. J Leukoc Biol 2001; 69:98–104.

    CAS  PubMed  Google Scholar 

  45. Taherzadeh S et al. Alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages. Am J Physiol 1999; 276:R1289–1294.

    CAS  PubMed  Google Scholar 

  46. Bhardwaj R et al. Evidence for the differential expression of the functional alpha-melanocyte-stimulating hormone receptor MC-1 on human monocytes. J Immunol 1997; 158:3378–3384.

    CAS  PubMed  Google Scholar 

  47. Mandrika I, Muceniece R, Wikberg JE. Effects of melanocortin peptides on lipopolysaccharide/ interferon-gamma-induced NF-kappaB DNA binding and nitric oxide production in macrophage-like RAW 264.7 cells: evidence for dual mechanisms of action. Biochem Pharmacol 2001; 61:613–621.

    Article  CAS  PubMed  Google Scholar 

  48. Woolley DE. The mast cell in inflammatory arthritis. N Engl J Med 2003; 348:1709–1711.

    Article  CAS  PubMed  Google Scholar 

  49. Galli SJ et al. Mast cells as ”tunable“ effector and immunoregulatory cells: recent advances. Annu Rev Immunol 2005; 23:749–786.

    Article  CAS  PubMed  Google Scholar 

  50. Adachi S, Nakano T, Vliagoftis H et al. Receptor-mediated modulation of murine mast cell function by alpha-melanocyte stimulating hormone. J Immunol 1999; 163:3363–3368.

    CAS  PubMed  Google Scholar 

  51. Artuc M et al. Human mast cells in the neurohormonal network: expression of POMC, detection of precursor proteases and evidence for IgE-dependent secretion of alpha-MSH. J Invest Dermatol 2006; 126:1976–1981.

    Article  CAS  PubMed  Google Scholar 

  52. Oliani SM et al. Fluctuation of annexin-A1 positive mast cells in chronic granulomatous inflammation. Inflamm Res 2008; 57:450–456.

    Article  CAS  PubMed  Google Scholar 

  53. Getting SJ, Di Filippo C, D’Amico M et al. The melanocortin peptide HP228 displays protective effects in acute models of inflammation and organ damage. Eur J Pharmacol 2006; 532:138–144.

    Article  CAS  PubMed  Google Scholar 

  54. Getting SJ et al. Melanocortin 3 receptors control crystal-induced inflammation. FASEB J 2006; 20:2234–2241.

    Article  CAS  PubMed  Google Scholar 

  55. Manna SK, Sarkar A, Sreenivasan Y. Alpha-melanocyte-stimulating hormone down-regulates CXC receptors through activation of neutrophil elastase. Eur J Immunol 2006; 36:754–769.

    Article  CAS  PubMed  Google Scholar 

  56. Capsoni F et al. The synthetic melanocortin (CKPV)2 exerts broad anti-inflammatory effects in human neutrophils. Peptides 2007; 28:2016–2022.

    Article  CAS  PubMed  Google Scholar 

  57. Oktar BK, Yuksel M, Alican I. The role of cyclooxygenase inhibition in the effect of alpha-melanocytestimulating hormone on reactive oxygen species production by rat peritoneal neutrophils. Prostaglandins Leukot Essent Fatty Acids 2004; 71:1–5.

    Article  CAS  PubMed  Google Scholar 

  58. Hartmeyer M et al. Human dermal microvascular endothelial cells express the melanocortin receptor type 1 and produce increased levels of IL-8 upon stimulation with alpha-melanocyte-stimulating hormone. J Immunol 1997; 159:1930–1937.

    CAS  PubMed  Google Scholar 

  59. Scholzen TE et al. Alpha-melanocyte stimulating hormone prevents lipopolysaccharide-induced vasculitis by down-regulating endothelial cell adhesion molecule expression. Endocrinology 2003; 144:360–370.

    Article  CAS  PubMed  Google Scholar 

  60. Hill RP, MacNeil S, Haycock JW. Melanocyte stimulating hormone peptides inhibit TNF-alpha signaling in human dermal fibroblast cells. Peptides 2006; 27:421–430.

    Article  CAS  PubMed  Google Scholar 

  61. Becher E et al. Human peripheral blood-derived dendritic cells express functional melanocortin receptor MC-1R. Ann N Y Acad Sci 1999; 885:188–195.

    Article  CAS  PubMed  Google Scholar 

  62. Brzoska T et al. Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev 2008; 29:581–602.

    Article  CAS  PubMed  Google Scholar 

  63. Cooper A et al. Alpha-melanocyte-stimulating hormone suppresses antigen-induced lymphocyte proliferation in humans independently of melanocortin 1 receptor gene status. J Immunol 2005; 175:4806–4813.

    CAS  PubMed  Google Scholar 

  64. Robbins LS et al. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 1993; 72:827–834.

    Article  CAS  PubMed  Google Scholar 

  65. Chen AS et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000; 26:97–102.

    Article  CAS  PubMed  Google Scholar 

  66. Maaser C et al. Crucial role of the melanocortin receptor MC1R in experimental colitis. Gut 2006; 55:1415–1422.

    Article  CAS  PubMed  Google Scholar 

  67. Getting SJ et al. Redundancy of a functional melanocortin 1 receptor in the anti-inflammatory actions of melanocortin peptides: studies in the recessive yellow (e/e) mouse suggest an important role for melanocortin 3 receptor. J Immunol 2003; 170:3323–3330.

    CAS  PubMed  Google Scholar 

  68. Getting SJ et al. A role for MC3R in modulating lung inflammation. Pulm Pharmacol Ther 2008; 21:866–873.

    Article  CAS  PubMed  Google Scholar 

  69. Raap U et al. Alpha-melanocyte-stimulating hormone inhibits allergic airway inflammation. J Immunol 2003; 171:353–359.

    CAS  PubMed  Google Scholar 

  70. Huszar D et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88:131–141.

    Article  CAS  PubMed  Google Scholar 

  71. Butler AA et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000; 141:3518–3521.

    Article  CAS  PubMed  Google Scholar 

  72. Ellacott KL, Murphy JG, Marks DL et al. Obesity-induced inflammation in white adipose tissue is attenuated by loss of melanocortin-3 receptor signaling. Endocrinology 2007; 148:6186–6194.

    Article  CAS  PubMed  Google Scholar 

  73. Chen W et al. Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 1997; 91:789–798.

    Article  CAS  PubMed  Google Scholar 

  74. Taylor AW, Kitaichi N, Biros D. Melanocortin 5 receptor and ocular immunity. Cell Mol Biol (Noisy-le-grand) 2006; 52:53–59.

    CAS  Google Scholar 

  75. Matsubara M, Albone E, Gorman JH et al. Alpha-melanocyte stimulating hormone fused transferrin: A novel adjunct to reperfusion therapy for acute MI. Journal of Cardiac Failure 2007; 13:S92.

    Article  Google Scholar 

  76. Giuliani D et al. Both early and delayed treatment with melanocortin 4 receptor-stimulating melanocortins produces neuroprotection in cerebral ischemia. Endocrinology 2006; 147:1126–1135.

    Article  CAS  PubMed  Google Scholar 

  77. Kelly JM et al. Immobilized alpha-melanocyte stimulating hormone 10-13 (GKPV) inhibits tumor necrosis factor-alpha stimulated NF-kappaB activity. Peptides 2006; 27:431–437.

    Article  CAS  PubMed  Google Scholar 

  78. Holder JR et al. Characterization of aliphatic, cyclic and aromatic N-terminally “capped” His-D-Phe-Arg-Trp-NH2 tetrapeptides at the melanocortin receptors. Eur J Pharmacol 2003; 462:41–52.

    Article  CAS  PubMed  Google Scholar 

  79. Todorovic A et al. N-terminal fatty acylated His-dPhe-Arg-Trp-NH(2) tetrapeptides: influence of fatty acid chain length on potency and selectivity at the mouse melanocortin receptors and human melanocytes. J Med Chem 2005; 48:3328–3336.

    Article  CAS  PubMed  Google Scholar 

  80. Doi K et al. AP214, an analogue of alpha-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int 2008; 73:1266–1274.

    Article  CAS  PubMed  Google Scholar 

  81. Fan W et al. Role of melanocortinergic neurones in feeding and the agouti obesity syndrome. Nature 1997; 385:165–168.

    Article  CAS  PubMed  Google Scholar 

  82. Getting SJ, Schioth HB, Perretti M. Dissection of the anti-inflammatory effect of the core and C-terminal (KPV) alpha-melanocyte-stimulating hormone peptides. J Pharmacol Exp Ther 2003; 306:631–637.

    Article  CAS  PubMed  Google Scholar 

  83. Grieco P et al. Design and synthesis of highly potent and selective melanotropin analogues of SHU9119 modified at position 6. Biochem Biophys Res Commun 2002; 292:1075–1080.

    Article  CAS  PubMed  Google Scholar 

  84. Grieco P et al. Extensive structure-activity studies of lactam derivatives of MT-II, SHU-9119: their activity and selectivity at human melanocortin receptors 3, 4 and 5. J Pept Res 2003; 62:199–206.

    Article  CAS  PubMed  Google Scholar 

  85. Grieco P et al. D-Amino acid scan of gamma-melanocyte-stimulating hormone: importance of Trp(8) on human MC3 receptor selectivity. J Med Chem 2000; 43:4998–5002.

    Article  CAS  PubMed  Google Scholar 

  86. Mayorov AV et al. Development of cyclic gamma-MSH analogues with selective hMC3R agonist and hMC3R/hMC5R antagonist activities. J Med Chem 2006; 49:1946–1952.

    Article  CAS  PubMed  Google Scholar 

  87. Herpin TF et al. Discovery of tyrosine-based potent and selective melanocortin-1 receptor small-molecule agonists with anti-inflammatory properties. J Med Chem 2003; 46:1123–1126.

    Article  CAS  PubMed  Google Scholar 

  88. Skottner A et al. Anti-inflammatory potential of melanocortin receptor-directed drugs. Ann N Y Acad Sci 2003; 994:84–89.

    Article  CAS  PubMed  Google Scholar 

  89. Sharma HS et al. Neuroprotective effects of melanocortins in experimental spinal cord injury. An experimental study in the rat using topical application of compounds with varying affinity to melanocortin receptors. J Neural Transm 2006; 113:463–476.

    Article  CAS  PubMed  Google Scholar 

  90. Chuang IC et al. Intramuscular electroporation with the pro-opiomelanocortin gene in rat adjuvant arthritis. Arthritis Res Ther 2004; 6:R7–R14.

    Article  CAS  PubMed  Google Scholar 

  91. Getting SJ, Christian HC, Flower RJ et al. Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis Rheum 2002; 46:2765–2775.

    Article  CAS  PubMed  Google Scholar 

  92. Schulte-Herbruggen O et al. Alpha-MSH promotes spontaneous post-ischemic pneumonia in mice via melanocortin-receptor-1. Exp Neurol 2008; 210:731–739.

    Article  PubMed  Google Scholar 

  93. Deng J, Hu X, Yuen PS et al. Alpha-melanocyte-stimulating hormone inhibits lung injury after renal ischemia/reperfusion. Am J Respir Crit Care Med 2004; 169:749–756.

    Article  PubMed  Google Scholar 

  94. Ottani A et al. Vagus nerve mediates the protective effects of melanocortins against cerebral and systemic damage after ischemic stroke. J Cereb Blood Flow Metab 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Perretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Patel, H.B., Leoni, G., Melendez, T.M., Sampaio, A.L.F., Perretti, M. (2010). Melanocortin Control of Cell Trafficking in Vascular Inflammation. In: Catania, A. (eds) Melanocortins: Multiple Actions and Therapeutic Potential. Advances in Experimental Medicine and Biology, vol 681. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6354-3_7

Download citation

Publish with us

Policies and ethics