Skip to main content

Small Ubiquitin-Like Modifiers and Other Ubiquitin-Like Proteins

  • Chapter
  • First Online:
Post-Translational Modifications in Health and Disease

Part of the book series: Protein Reviews ((PRON,volume 13))

  • 1378 Accesses

Abstract

SUMOs are Small Ubiquitin-like Modifiers that are covalently conjugated to extensive sets of target proteins in cells to regulate their activity. A properly functioning sumoylation system is essential for eukaryotic life. The system comprises a set of conjugating enzymes known as E1, E2 and E3s and a set of deconjugating enzymes known as SENPs. Three mammalian SUMO family members have been identified, SUMO-1, SUMO-2 and SUMO-3. Sumoylation is involved in virtually all cellular processes including transcription, DNA damage response pathways, transport, ribosome biogenesis, pre-mRNA splicing, RNA editing and the cell cycle. Similar to ubiquitin, SUMOs form chains via internal sumoylation sites present in the flexible N-terminal parts of SUMO-2, SUMO-3 and the single SUMO family member in S. cerevisiae SMT3. SUMO-interacting proteins bind to mono- or poly-sumoylated proteins in a non-covalent manner to regulate the fate of sumoylated proteins. Sumoylation acts in concert with other post-translational modifications such as phosphorylation, acetylation and ubiquitination. In addition to SUMOs, the ubiquitin family consists of ISG15, NEDD8, ATG8, ATG12, FUBI, URM1, UFM1, FAT10, HUB1 and PUP. These protein modifiers play important roles in immunity, autophagy, ribosome biogenesis and other processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aos1:

Activation of Smt3p

ATG8:

Autophagy-related protein 8

ATG12:

Autophagy-related protein 12

E1:

SUMO activating enzyme

E2:

SUMO protein carrier protein

E3:

SUMO ligase

FAT10:

Ubiquitin-like protein FAT10

FUBI:

Ubiquitin-like protein FUBI

GMP1:

GAP-modifying protein 1

HDAC:

Histone deacetylase

HECT:

Homologous to the E6-AP carboxyl terminus

HIF:

Hypoxia-inducible factor

HUB1:

Ubiquitin-like modifier HUB1

IκBα:

NFκB inhibitor α

IR:

Internal repeats

ISG15:

Interferon-stimulated gene 15

Mdm2:

Mouse double minute 2

NDSM:

Negatively charged amino acid-dependent sumoylation motif

NEDD8:

Neural precursor cell expressed developmentally down-regulated protein 8

NFκB:

Nuclear factor κB

NPC:

Nuclear pore complex

Pc2:

Polycomb protein 2

PDSM:

Phosphorylation-dependent sumoylation motif

PIAS:

Protein inhibitor of activated STAT

PIC1:

PML-interacting clone 1

PML:

Promyelocytic leukemia protein

PUP:

Prokaryotic ubiquitin-like protein

RanBP:

Ran-binding protein

RanGAP:

Ran GTPase-activating protein

RING:

Really interesting new gene

RNF4:

RING finger protein 4

SAE:

SUMO activating enzyme

SENP:

SUMO protease

SILAC:

Stable-isotope labeling by amino acids in cell culture

SIM:

SUMO interaction motif

Siz:

SAP and Miz-finger domain-containing protein 1

SMT3:

Suppressor of mif two 3

STAT:

Signal transducer and activator of transcription

SUMO:

Small ubiquitin-like modifier

TAF:

TBP-associated factor

TBP:

TATA box binding protein

TDG:

Thymine-DNA glycosylase

Uba2:

Ubiquitin-activating enzyme E1-like

Ubc9:

Ubiquitin carrier protein 9

UBL1:

Ubiquitin-like protein 1

UFM1:

Ubiquitin-fold modifier 1

Ulp:

Ubiquitin-like-specific protease

URM1:

Ubiquitin-related modifier 1

References

  • Andersen, J.S., Matic, I., and Vertegaal, A.C. (2009) Identification of SUMO target proteins by quantitative proteomics. Methods Mol. Biol. 497:19–31.

    Article  CAS  Google Scholar 

  • Andrews, E.A., Palecek, J., Sergeant, J., et al. (2005) Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 25:185–196.

    Article  PubMed  CAS  Google Scholar 

  • Baba, D., Maita, N., Jee, J.G., et al. (2005) Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435:979–982.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, D. and O’Hare, P. (2002) Herpes simplex virus 1 ICP0 co-localizes with a SUMO-specific protease. J. Gen. Virol. 83:2951–2964.

    PubMed  CAS  Google Scholar 

  • Bayer, P., Arndt, A., Metzger, S., et al. (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280:275–286.

    Article  PubMed  CAS  Google Scholar 

  • Bernier-Villamor, V., Sampson, D.A., and Matunis, M.J. (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108:345–356.

    Article  PubMed  CAS  Google Scholar 

  • Boddy, M.N., Howe, K., Etkin, L.D., et al. (1996) PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13:971–982.

    PubMed  CAS  Google Scholar 

  • Boyer-Guittaut, M., Birsoy, K., Potel, C., et al. (2005) SUMO-1 modification of human transcription factor (TF) IID complex subunits: inhibition of TFIID promoter-binding activity through SUMO-1 modification of hsTAF5. J. Biol. Chem. 280:9937–9945.

    Article  PubMed  CAS  Google Scholar 

  • Branzei, D., Sollier, J., Liberi, G., et al. (2006) Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127:509–522.

    Article  PubMed  CAS  Google Scholar 

  • Bylebyl, G.R., Belichenko, I., and Johnson, E.S. (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 278:44113–44120.

    Article  PubMed  CAS  Google Scholar 

  • Capili, A.D. and Lima, C.D. (2007) Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J. Mol. Biol. 369:608–618.

    Article  PubMed  CAS  Google Scholar 

  • Catic, A., Fiebiger, E., Korbel, G.A., et al. (2007) Screen for ISG15-crossreactive deubiquitinases. PLoS ONE 2: e679.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, C.H., Lo, Y.H., Liang, S.S., et al. (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20:2067–2081.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J., Kang, X., Zhang, S. et al. (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131:584–595.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, S.Y., Asai, N., Costantini, F. et al. (2008) SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol 6: e310.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, H.J., Tatham, M.H., Jaffray, E., et al. (2005) Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction. Anal. Chem. 77:6310–6319.

    Article  PubMed  CAS  Google Scholar 

  • Dastur, A., Beaudenon, S., Kelley, M., et al. (2006) Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem. 281:4334–4338.

    Article  PubMed  CAS  Google Scholar 

  • Dawlaty, M.M., Malureanu, L., Jeganathan, K.B., et al. (2008) Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha. Cell 133:103–115.

    Article  PubMed  CAS  Google Scholar 

  • Denison, C., Rudner, A.D., Gerber, S.A., et al. (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol. Cell. Proteomics 4:246–254.

    Article  PubMed  CAS  Google Scholar 

  • Desterro, J.M., Thomson, J., and Hay, R.T. (1997) Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett. 417:297–300.

    Article  PubMed  CAS  Google Scholar 

  • Desterro, J.M., Rodriguez, M.S., and Hay, R.T. (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol. Cell 2:233–239.

    Article  PubMed  CAS  Google Scholar 

  • Desterro, J.M., Rodriguez, M.S., Kemp, G.D. et al. (1999) Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274:10618–10624.

    Article  PubMed  CAS  Google Scholar 

  • Ding, H., Xu, Y., Chen, Q., et al. (2005) Solution structure of human SUMO-3 C47S and its binding surface for Ubc9. Biochemistry 44:2790–2799.

    Article  PubMed  CAS  Google Scholar 

  • Dobreva, G., Dambacher, J., and Grosschedl, R. (2003) SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev.17:3048–3061.

    Article  PubMed  CAS  Google Scholar 

  • Dohmen, R.J., Stappen, R., McGrath, J.P., et al. (1995) An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J. Biol. Chem. 270:18099–18109.

    Article  PubMed  CAS  Google Scholar 

  • Duprez, E., Saurin, A.J., Desterro, J.M., et al. (1999) SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J. Cell Sci. 112 (Pt 3):381–393.

    PubMed  CAS  Google Scholar 

  • Durfee, L.A., Kelley, M.L., and Huibregtse, J.M. (2008) The basis for selective E1-E2 interactions in the ISG15 conjugation system. J. Biol. Chem. 283:23895–23902.

    Article  PubMed  CAS  Google Scholar 

  • Evdokimov, E., Sharma, P., Lockett, S.J., et al. (2008) Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. J. Cell Sci. 121:4106–4113.

    Article  PubMed  CAS  Google Scholar 

  • Geiss-Friedlander, R. and Melchior, F. (2007) Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell. Biol. 8:947–956.

    Article  PubMed  CAS  Google Scholar 

  • Gill, G. (2005) Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev. 15:536–541.

    Article  PubMed  CAS  Google Scholar 

  • Girdwood, D., Bumpass, D., Vaughan, O.A., et al. (2003) P300 transcriptional repression is mediated by SUMO modification. Mol.Cell 11:1043–1054.

    Article  PubMed  CAS  Google Scholar 

  • Girdwood. D.W., Tatham, M.H., and Hay, R.T. (2004) SUMO and transcriptional regulation. Semin. Cell Dev. Biol. 15:201–210.

    Article  PubMed  CAS  Google Scholar 

  • Gocke, C.B., Yu, H., and Kang, J. (2005) Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J. Biol. Chem. 280:5004–5012.

    Article  PubMed  CAS  Google Scholar 

  • Gong, L. and Yeh, E.T. (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J. Biol. Chem. 281:15869–15877.

    Article  PubMed  CAS  Google Scholar 

  • Gong, L., Kamitani, T., Fujise, K., et al. (1997) Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J. Biol. Chem. 272: 28198–28201.

    Article  PubMed  CAS  Google Scholar 

  • Gong, L., Millas, S., Maul, G.G., et al. (2000) Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J. Biol. Chem. 275:3355–3359.

    Article  PubMed  CAS  Google Scholar 

  • Gregoire, S. and Yang, X.J. (2005) Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol. Cell. Biol. 25:2273–2287.

    Article  PubMed  CAS  Google Scholar 

  • Haas, A.L., Ahrens, P., Bright, P.M. et al. (1987) Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J. Biol. Chem. 262:11315–11323.

    PubMed  CAS  Google Scholar 

  • Hang, J. and Dasso, M. (2002) Association of the human SUMO-1 protease SENP2 with the nuclear pore. J. Biol. Chem. 277:19961–19966.

    Article  PubMed  CAS  Google Scholar 

  • Hannich, J.T., Lewis, A., Kroetz, M.B., et al. (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J. Biol. Chem. 280:4102–4110.

    Article  PubMed  CAS  Google Scholar 

  • Hardeland, U., Steinacher, R., Jiricny, J. et al. (2002) Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21:1456–1464.

    Article  PubMed  CAS  Google Scholar 

  • Hay, R.T. (2005) SUMO: a history of modification. Mol. Cell 18:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Hecker, C.M., Rabiller, M., Haglund, K., et al. (2006) Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281:16117–16127.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, J., Lerman, L.O., and Lerman, A. (2007) Ubiquitin and ubiquitin-like proteins in protein regulation. Circ. Res. 100:1276–1291.

    Article  PubMed  CAS  Google Scholar 

  • Hietakangas, V., Anckar, J., Blomster, H.A., et al. (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl. Acad. Sci. USA 103:45–50.

    Article  PubMed  CAS  Google Scholar 

  • Hoege, C., Pfander, B., Moldovan, G.L., et al. (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141.

    Article  PubMed  CAS  Google Scholar 

  • Hori, T., Osaka, F., Chiba, T., et al. (1999) Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18:6829–6834.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T.T., Wuerzberger-Davis, S.M., Wu, Z.H., et al. (2003) Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115:565–576.

    Article  PubMed  CAS  Google Scholar 

  • Hunter. T. (2007) The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell 28:730–738.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, F. and Dikic, I. (2008) Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep. 9:536–542.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E.S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73:355–382.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E.S. and Blobel, G. (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272:26799–26802.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E.S. and Gupta, A.A. (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E.S, Schwienhorst, I., Dohmen, R.J., et al. (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16:5509–5519.

    Article  PubMed  CAS  Google Scholar 

  • Kagey, M.H., Melhuish, T.A., and Wotton, D. (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113:127–137.

    Article  PubMed  CAS  Google Scholar 

  • Kamitani, T., Kito, K., Nguyen, H.P., et al. (1998) Identification of three major sentrinization sites in PML. J. Biol. Chem. 273:26675–26682.

    Article  PubMed  CAS  Google Scholar 

  • Kerscher, O., Felberbaum, R., and Hochstrasser, M. (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22:159–180.

    Article  PubMed  CAS  Google Scholar 

  • Knipscheer, P., van Dijk, W.J., Olsen, J.V., et al. (2007) Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J. 26:2797–2807.

    Article  PubMed  CAS  Google Scholar 

  • Knipscheer, P., Flotho, A., Klug, H., et al. (2008) Ubc9 sumoylation regulates SUMO target discrimination. Mol. Cell 31:371–382.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Tomooka, Y., and Noda, M. (1992) Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem. Biophys. Res. Commun. 185:1155–1161.

    Article  PubMed  CAS  Google Scholar 

  • Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S., et al. (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 10:547–555.

    Article  PubMed  CAS  Google Scholar 

  • Lee, G.W., Melchior, F., Matunis, M.J., et al. (1998) Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. J. Biol. Chem. 273:6503–6507.

    Article  PubMed  CAS  Google Scholar 

  • Li, S.J. and Hochstrasser, M. (1999) A new protease required for cell-cycle progression in yeast. Nature 398:246–251.

    Article  PubMed  CAS  Google Scholar 

  • Li, S.J. and Hochstrasser, M. (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol. 20:2367–2377.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., Evdokimov, E., Shen, R.F., et al. (2004) Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins, and nuclear pore complex proteins: a proteomic analysis. Proc. Natl. Acad. Sci. USA 101:8551–8556.

    Article  PubMed  CAS  Google Scholar 

  • Lin, D.Y., Huang, Y.S., Jeng, J.C., et al. (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24:341–354.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.C., Penninger, J., and Karin, M. (2005) Immunity by ubiquitylation: a reversible process of modification. Nat. Rev. Immunol. 5:941–952.

    Article  PubMed  CAS  Google Scholar 

  • Lukasiak, S., Schiller, C., Oehlschlaeger, P., et al. (2008) Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon. Oncogene 27:6068–6074.

    Article  PubMed  CAS  Google Scholar 

  • Mahajan, R., Delphin, C., Guan, T., et al. (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88: 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Mahajan, R., Gerace, L., and Melchior, F. (1998) Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J. Cell Biol. 140:259–270.

    Article  PubMed  CAS  Google Scholar 

  • Makhnevych, T., Sydorskyy, Y., Xin, X., et al. (2009) Global map of SUMO function revealed by protein-protein interaction and genetic networks. Mol. Cell 33:124–135.

    Article  PubMed  CAS  Google Scholar 

  • Malakhov, M.P., Malakhova, O.A., Kim, K.I., et al. (2002) UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277:9976–9981.

    Article  PubMed  CAS  Google Scholar 

  • Malakhov, M.P., Kim, K.I., Malakhova, O.A., et al. (2003) High-throughput immunoblotting. Ubiquitin-like protein ISG15 modifies key regulators of signal transduction. J. Biol. Chem. 278:16608–16613.

    Article  PubMed  CAS  Google Scholar 

  • Mann, M. (2006) Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell. Biol. 7:952–958.

    Article  PubMed  CAS  Google Scholar 

  • Manza, L.L., Codreanu, S.G., Stamer, S.L., et al. (2004) Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem. Res. Toxicol. 17: 1706–1715.

    Article  PubMed  CAS  Google Scholar 

  • Matic, I., van Hagen, M., Schimmel, J., et al. (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. Proteomics 7:132–144.

    PubMed  CAS  Google Scholar 

  • Matunis, M.J., Coutavas, E., and Blobel, G. (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135: 1457–1470.

    Article  PubMed  CAS  Google Scholar 

  • Matunis, M.J., Wu, J., and Blobel, G. (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol.140:499–509.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza, H.M., Shen, L.N., Botting, C., et al. (2003) NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J. Biol. Chem. 278:25637–25643.

    Article  PubMed  CAS  Google Scholar 

  • Meulmeester, E. and Melchior, F. (2008) Cell biology: SUMO. Nature 452:709–711.

    Article  PubMed  CAS  Google Scholar 

  • Meulmeester, E., Kunze, M., Hsiao, H.H., et al. (2008) Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol. Cell 30:610–619.

    Article  PubMed  CAS  Google Scholar 

  • Minty, A., Dumont, X., Kaghad, M., et al. (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J. Biol. Chem. 275:36316–36323.

    Article  PubMed  CAS  Google Scholar 

  • Mizushima, N., Noda, T., Yoshimori, T., et al. (1998a) A protein conjugation system essential for autophagy. Nature 395:395–398.

    Article  PubMed  CAS  Google Scholar 

  • Mizushima, N., Sugita, H., Yoshimori, T., et al. (1998b) A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J. Biol. Chem. 273:33889–33892.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, M., Nishida, T., Honda, R., et al. (2000) Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1). Biochem. Biophys. Res. Commun. 270:1093–1096.

    Article  PubMed  CAS  Google Scholar 

  • Mossessova, E. and Lima, C.D. (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5:865–876.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, D. and Dasso, M. (2007) Modification in reverse: the SUMO proteases. Trends Biochem. Sci. 32:286–295.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, D., Ayaydin, F., Kolli, N., et al. (2006) SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. J. Cell Biol. 174:939–949.

    Article  PubMed  CAS  Google Scholar 

  • Nacerddine, K., Lehembre, F., Bhaumik, M., et al. (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9:769–779.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, D., Ingvarsdottir, K., Sterner, D.E., et al. (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev. 20:966–976.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, T., Tanaka, H., and Yasuda, H. (2000) A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur. J. Biochem. 267:6423–6427.

    Article  PubMed  CAS  Google Scholar 

  • Ohsumi, Y. and Mizushima, N. (2004) Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Dev. Biol. 15:231–236.

    Article  PubMed  CAS  Google Scholar 

  • Okuma, T., Honda, R., Ichikawa, G., et al. (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem. Biophys. Res. Commun. 254:693–698.

    Article  PubMed  CAS  Google Scholar 

  • Okura, T., Gong, L., Kamitani, T., et al. (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J. Immunol. 157:4277–4281.

    PubMed  CAS  Google Scholar 

  • Osaka. F., Kawasaki, H., Aida, N., et al. (1998) A new NEDD8-ligating system for cullin-4A. Genes Dev. 12:2263–2268.

    Article  PubMed  CAS  Google Scholar 

  • Pan, Z.Q., Kentsis, A., Dias, D.C., et al. (2004) Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23:1985–1997.

    Article  PubMed  CAS  Google Scholar 

  • Panse, V.G., Hardeland, U., Werner, T., et al. (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J. Biol. Chem. 279:41346–41351.

    Article  PubMed  CAS  Google Scholar 

  • Papouli, E., Chen, S., Davies, A.A., et al. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19:123–133.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, M.J., Mintseris, J., Ferreyra, J., et al. (2008) Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104–1107.

    Article  PubMed  CAS  Google Scholar 

  • Pedrioli, P.G., Raught, B., Zhang, X.D., et al. (2006) Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat. Methods 3:533–539.

    Article  CAS  Google Scholar 

  • Peng, J., Schwartz, D., Elias, J.E., et al. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21:921–926.

    Article  PubMed  CAS  Google Scholar 

  • Pfander, B., Moldovan, G.L., Sacher, M., et al. (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428–433.

    PubMed  CAS  Google Scholar 

  • Pichler, A., Gast, A., Seeler, J.S., et al. (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109–120.

    Article  PubMed  CAS  Google Scholar 

  • Pichler, A., Knipscheer, P., Saitoh, H., et al. (2004) The RanBP2 SUMO E3 ligase is neither. Nat. Struct. Mol. Biol. 11:984–991.

    Article  PubMed  CAS  Google Scholar 

  • Pichler, A., Knipscheer, P., Oberhofer, E., et al. (2005) SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat. Struct. Mol. Biol. 12:264–269.

    Article  PubMed  CAS  Google Scholar 

  • Pitha-Rowe, I., Hassel, B.A., and Dmitrovsky, E. (2004) Involvement of UBE1L in ISG15 conjugation during retinoid-induced differentiation of acute promyelocytic leukemia. J. Biol. Chem. 279:18178–18187.

    Article  PubMed  CAS  Google Scholar 

  • Potts, P.R. and Yu, H. (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell Biol. 25:7021–7032.

    Article  PubMed  CAS  Google Scholar 

  • Potts, P.R. and Yu, H. (2007) The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 14:581–590.

    Article  PubMed  CAS  Google Scholar 

  • Prudden, J., Pebernard, S., Raffa, G., et al. (2007) SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 26:4089–4101.

    Article  PubMed  CAS  Google Scholar 

  • Rabut, G. and Peter, M. (2008) Function and regulation of protein neddylation. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep. 9:969–976.

    Article  PubMed  CAS  Google Scholar 

  • Reich, N., Evans, B., Levy, D., et al. (1987) Interferon-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. Proc. Natl. Acad. Sci. USA 84:6394–6398.

    Article  PubMed  CAS  Google Scholar 

  • Reverter. D. and Lima, C.D. (2004) A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. Structure 12:1519–1531.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, K.J. and Zhang, D.E. (2004) ISG15: the immunological kin of ubiquitin. Semin. Cell Dev. Biol. 15: 237–246.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, M.S., Desterro, J.M., Lain, S., et al. (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18:6455–6461.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, M.S., Dargemont, C., and Hay, R.T. (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276:12654–12659.

    Article  PubMed  CAS  Google Scholar 

  • Rosas-Acosta, G., Langereis, M.A., Deyrieux, A., et al. (2005a) Proteins of the PIAS family enhance the sumoylation of the papillomavirus E1 protein. Virology 331:190–203.

    Article  PubMed  CAS  Google Scholar 

  • Rosas-Acosta, G., Russell, W.K., Deyrieux, A., et al. (2005b) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell. Proteomics 4:56–72.

    PubMed  CAS  Google Scholar 

  • Ross, S., Best, J.L., Zon, L.I., et al. (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10:831–842.

    Article  PubMed  CAS  Google Scholar 

  • Roth, W., Sustmann, C., Kieslinger, M., et al. (2004) PIASy-deficient mice display modest defects in IFN and Wnt signaling. J. Immunol. 173:6189–6199.

    PubMed  CAS  Google Scholar 

  • Sachdev, S., Bruhn, L., Sieber, H., et al. (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15:3088–3103.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, H. and Hinchey, J. (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275:6252–6258.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, H., Sparrow, D.B., Shiomi, T., et al. (1998) Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr. Biol. 8:121–124.

    Article  PubMed  CAS  Google Scholar 

  • Sampson, D.A., Wang, M., and Matunis, M.J. (2001) The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276:21664–21669.

    Article  PubMed  CAS  Google Scholar 

  • Santti, H., Mikkonen, L., Hirvonen-Santti, S., et al. (2003) Identification of a short PIASx gene promoter that directs male germ cell-specific transcription in vivo. Biochem. Biophys. Res. Commun. 308:139–147.

    Article  PubMed  CAS  Google Scholar 

  • Schimmel, J., Larsen, K.M., Matic, I., et al. (2008) The ubiquitin-proteasome system is a key component of the SUMO-2/3 cycle. Mol. Cell. Proteomics 7:2107–2122.

    Article  PubMed  CAS  Google Scholar 

  • Seufert, W., Futcher, B., and Jentsch, S. (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373:78–81.

    Article  PubMed  CAS  Google Scholar 

  • Shalizi, A., Gaudilliere, B., Yuan, Z., et al. (2006) A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311:1012–1017.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Z., Pardington-Purtymun, P.E., Comeaux, J.C., et al. (1996) UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Shen, T.H., Lin, H.K., Scaglioni, P.P., et al. (2006) The mechanisms of PML-nuclear body formation. Mol. Cell 24:331–339.

    Article  PubMed  CAS  Google Scholar 

  • Singer, J.D., Gurian-West, M., Clurman, B., et al. (1999) Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev. 13:2375–2387.

    Article  PubMed  CAS  Google Scholar 

  • Song, J., Durrin, L.K., Wilkinson, T.A., et al. (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101:14373–14378.

    Article  PubMed  CAS  Google Scholar 

  • Stankovic-Valentin, N., Deltour, S., Seeler, J., et al. (2007) An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Mol. Cell. Biol. 27:2661–2675.

    Article  PubMed  CAS  Google Scholar 

  • Steinacher, R. and Schar, P. (2005) Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr. Biol. 15:616–623.

    Article  PubMed  CAS  Google Scholar 

  • Stelter, P. and Ulrich. H.D. (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H., Leverson, J.D., and Hunter, T. (2007) Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 26:4102–4112.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, Y., Mizoi, J., Toh, E., et al. (2000) Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins. J. Biochem. 128:723–725.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, H., Hatakeyama, S., Saitoh, H., et al. (2005) Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J. Biol. Chem. 280:5611–5621.

    Article  PubMed  CAS  Google Scholar 

  • Tatham, M.H., Jaffray, E., Vaughan, O.A., et al. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276:35368–35374.

    Article  PubMed  CAS  Google Scholar 

  • Tatham, M.H., Geoffroy, M.C., Shen, L., et al. (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 10:538–546.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, H.D. (2005) Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol. 15:525–532.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, H.D. (2008) The fast-growing business of SUMO chains. Mol. Cell 32:301–305.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, H.D. (2009) The SUMO system: an overview. Methods Mol. Biol. 497:3–16.

    Article  CAS  Google Scholar 

  • Vertegaal, A.C. (2007) Small ubiquitin-related modifiers in chains. Biochem Soc. Trans. 35:1422–1423.

    Article  PubMed  CAS  Google Scholar 

  • Vertegaal, A.C., Ogg, S.C., Jaffray, E., et al. (2004) A proteomic study of SUMO-2 target proteins. J. Biol. Chem. 279: 33791–33798.

    Article  PubMed  CAS  Google Scholar 

  • Vertegaal, A.C., Andersen, J.S., Ogg, S.C., et al. (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell. Proteomics 5:2298–2310.

    Article  PubMed  CAS  Google Scholar 

  • Weger, S., Hammer, E., and Heilbronn, R. (2005) Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett. 579:5007–5012.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, V.G. and Heaton, P.R. (2008) Ubiquitin proteolytic system: focus on SUMO. Expert Rev. Proteomics 5:121–135.

    Article  PubMed  CAS  Google Scholar 

  • Wohlschlegel, J.A., Johnson, E.S., Reed, S.I., et al. (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J. Biol. Chem. 279:45662–45668.

    Article  PubMed  CAS  Google Scholar 

  • Wong, K.A., Kim, R., Christofk, H., et al. (2004) Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Mol. Cell. Biol. 24:5577–5586.

    Article  PubMed  CAS  Google Scholar 

  • Wong. J.J., Pung, Y.F., Sze, N.S., et al. (2006) HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc. Natl. Acad. Sci. USA 103:10735–10740.

    Article  PubMed  CAS  Google Scholar 

  • Wu, K., Yamoah, K., Dolios, G., et al. (2003) DEN1 is a dual function protease capable of processing the C terminus of Nedd8 and deconjugating hyper-neddylated CUL1. J. Biol. Chem. 278:28882–28891.

    Article  PubMed  CAS  Google Scholar 

  • Wykoff, D.D. and O’Shea, E.K. (2005) Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome. Mol. Cell. Proteomics 4:73–83.

    PubMed  CAS  Google Scholar 

  • Xirodimas, D.P. (2008) Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochem. Soc. Trans. 36:802–806.

    Article  PubMed  CAS  Google Scholar 

  • Xirodimas, D.P., Saville, M.K., Bourdon, J.C., et al. (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118:83–97.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Z. and Au, S.W. (2005) Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. Biochem. J. 386:325–330.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.H. and Sharrocks, A.D. (2004) SUMO promotes HDAC-mediated transcriptional repression. Mol. Cell 13:611–617.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.H., Jaffray, E., Hay, R.T., et al. (2003) Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol. Cell 12:63–74.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.H., Galanis, A., Witty, J., et al. (2006) An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J. 25:5083–5093.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Saitoh, H., and Matunis, M.J. (2002) Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol. 22:6498–6508.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X.D., Goeres, J., Zhang, H., et al. (2008) SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol. Cell 29:729–741.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X. and Blobel, G. (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. USA 102:4777–4782.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, C., Beaudenon, S.L., Kelley, M.L., et al. (2004a) The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc. Natl. Acad. Sci. USA 101:7578–7582.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y., Kwon, S.W., Anselmo, A., et al. (2004b) Broad spectrum identification of cellular small ubiquitin-related modifier (SUMO) substrate proteins. J. Biol. Chem. 279: 20999–21002.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, W., Ryan, J.J., and Zhou, H. (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J. Biol. Chem. 279:32262–32268.

    Article  PubMed  CAS  Google Scholar 

  • Zou, W. and Zhang, D.E. (2006) The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J. Biol. Chem. 281:3989–3994.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Joost Schimmel, Ivo Hendriks and Sarah Sparks for critically reading the manuscript. We thank Ivo Hendriks for preparing Table 13.1. We apologise to colleagues whose work was not cited due to space constrains. Research in the laboratory of ACOV is supported by the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred C. O. Vertegaal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

van Hagen, M., Vertegaal, A.C.O. (2011). Small Ubiquitin-Like Modifiers and Other Ubiquitin-Like Proteins. In: Vidal, C. (eds) Post-Translational Modifications in Health and Disease. Protein Reviews, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6382-6_13

Download citation

Publish with us

Policies and ethics