Skip to main content

Anti-inflammatory Functions of Caspase-8

  • Conference paper
  • First Online:
Advances in TNF Family Research

Abstract

Explorations of the functions of receptors of the TNF/NGF family have led to the discovery of various signaling proteins, many of which were later found to mediate effects of other inducers as well. We now have quite detailed knowledge of the mechanisms and molecular complexes by which some of the signaling proteins mediate these additional effects. This, however, is not the case for caspase-8. This signaling protein, which was initially identified as the proximal enzyme in the induction of apoptotic death by the death receptors, was subsequently reported to serve additional functions independently of those receptors. Whereas the mechanisms by which caspase-8 mediates cell death induction have been described in detail, almost nothing is known of the way it serves other functions. Findings that we presented at the 12th Biennial TNF Conference indicate that one of the physiological roles of this enzyme is to suppress inflammation. We further showed that one way by which caspase-8 does this is by associating with the RIG-I signaling complex and inhibiting some of the signaling mechanisms that are triggered upon formation of this complex in response to cytoplasmic ribonucleic acid. We illustrated the physiological role of caspase-8 in suppressing excessive inflammation by describing a fatal chronic skin inflammatory disease that occurs in mice as a result of deletion of caspase-8 from the epidermis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothe M, Wong SC, Henzel WJ, Goeddel DV (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681–692

    Article  CAS  PubMed  Google Scholar 

  2. Brakebusch C, Nophar Y, Kemper O, Engelmann H, Wallach D (1992) Cytoplasmic truncation of the p55 tumour necrosis factor (TNF) receptor abolishes signalling, but not induced shedding of the receptor. Embo J 11:943–950

    CAS  PubMed  Google Scholar 

  3. Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268:10932–10937

    CAS  PubMed  Google Scholar 

  4. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74:845–853

    Article  CAS  PubMed  Google Scholar 

  5. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D (1995) A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 270:7795–7798

    Article  CAS  PubMed  Google Scholar 

  6. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512

    Article  CAS  PubMed  Google Scholar 

  7. Chung JY, Park YC, Ye H, Wu H (2002) All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115:679–688

    CAS  PubMed  Google Scholar 

  8. Zapata JM, Martinez-Garcia V, Lefebvre S (2007) Phylogeny of the TRAF/MATH domain. Adv Exp Med Biol 597:1–24

    Article  PubMed  Google Scholar 

  9. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    Article  CAS  PubMed  Google Scholar 

  10. Ben Moshe T, Kang TB, Kovalenko A, Barash H, Abramovitch R, Galun E, Wallach D (2008) Cell-autonomous and non-cell-autonomous functions of caspase-8. Cytokine Growth Factor Rev 19:209–217

    Article  CAS  PubMed  Google Scholar 

  11. Kovalenko A, Kim JC, Kang TB, Rajput A, Bogdanov K, Dittrich-Breiholz O, Kracht M, Brenner O, Wallach D (2009) Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J Exp Med 206:2161–2177

    Article  CAS  PubMed  Google Scholar 

  12. Kang TB, Oh G-S, Scandella E, Bolinger B, Ludewig B, Kovalenko A, Wallach D (2008) Mutation of a self-processing site in caspase-8 compromises its apoptotic but not its nonapoptotic functions in bacterial artificial chromosome-transgenic mice. J Immunol 181:2522–2532

    CAS  PubMed  Google Scholar 

  13. Ben Moshe T, Barash H, Kang TB, Kim JC, Kovalenko A, Gross E, Schuchmann M, Abramovitch R, Galun E, Wallach D (2007) Role of caspase-8 in hepatocyte response to infection and injury in mice. Hepatology 45:1014–1024

    Article  CAS  PubMed  Google Scholar 

  14. Pasparakis M, Courtois G, Hafner M, Schmidt-Supprian M, Nenci A, Toksoy A, Krampert M, Goebeler M, Gillitzer R, Israel A, Krieg T, Rajewsky K, Haase I (2002) TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417:861–866

    Article  CAS  PubMed  Google Scholar 

  15. Stratis A, Pasparakis M, Rupec RA, Markur D, Hartmann K, Scharffetter-Kochanek K, Peters T, van Rooijen N, Krieg T, Haase I (2006) Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J Clin Invest 116:2094–2104

    Article  CAS  PubMed  Google Scholar 

  16. Okabe Y, Kawane K, Nagata S (2008) IFN regulatory factor (IRF) 3/7- dependent and -independent gene induction by mammalian DNA that escapes degradation. Eur J Immunol 38:3150–3158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Wallach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Rajput, A. et al. (2011). Anti-inflammatory Functions of Caspase-8. In: Wallach, D., Kovalenko, A., Feldmann, M. (eds) Advances in TNF Family Research. Advances in Experimental Medicine and Biology, vol 691. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6612-4_25

Download citation

Publish with us

Policies and ethics