Skip to main content

Food and Biotechnological Applications for Polymeric Beads and Carriers

  • Chapter
  • First Online:
Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications

Abstract

The immobilization of microorganisms or cell suspensions in beads for a variety of biotechnological and food purposes is described—information which is hard to find in currently available books. Examples include amino acid (i.e., l-aspartic acid, l-alanine, and l-phenylalanine) production, organic acid (i.e., citric acid, malic acid, gluconic acid, lactic acid) fermentation and conversion, special uses in ethanol, wine, vinegar, and sake production such as: malolactic fermentation, removal of urea from sake and wine by immobilized acid urease, beer brewing using an immobilized yeast bioreactor system, and uses in soy sauce production. Other uses related to miscellaneous flavor materials and aroma compounds are also discussed. These include, but are not limited to, biotransformation from geraniol to nerol, production of limonin, β-ionone, naringin, blue cheese flavor, vanillin, and Japanese seasoning. Special beads that serve for immobilization and are used in the milk industry, e.g., for hydrolysis of lactose in milk, are also detailed. Miscellaneous applications also include production of oligosaccharides, preservatives and bacteriocins, xylitol, carotenoids and leucrose, and cis,cis-muconic acid. Less known uses of enzymes immobilized within beads for food applications are also described. Various industrial options such as fuel ethanol production, application of gels for separation matrices, bioartificial organs, and insect-cell immobilization are included. In general, the chapter attempts to touch upon all of the novel applications of bead-immobilized cells for the food and biotechnology industries, such as the production of aroma compounds, the microbial production of bioflavors and their biotransformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Naby, M., Mok, K., and Lee, C. 1992. Production of organic acid from enzymatic hydrolyzate of starch by immobilized lactic acid bacteria. UNIDO Proc., Korea. 227–243.

    Google Scholar 

  • Abdel-Naby, M. A., Reyad, M. R., and Abdel-Fattah, A. F. 2000. Biosynthesis of cyclodextrin glucosyltransferase by immobilised Bacillus amyloliquefaciers in batch and continuous cultures. J. Biochem. Eng. 5:1–9.

    Article  CAS  Google Scholar 

  • Abelyan, V. A., and Abelyan, L. A. 1996. Production of lactic acid by immobilized cells in stirred reactors. Appl. Biochem. Microbiol. 32:495–499.

    Google Scholar 

  • Agathos, S. N. 1993. The future of insect cell culture engineering. In: Insect Cell Culture Engineering, ed. M. F. A. Goosen, A. J. Daugulis, P. Faulkner, pp. 221–240. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Agouridis, N., Bekatorou, A., Nigam, P., and Kanellaki, M. 2005. Malolactic fermentation in wine with Lactobacillus casei cells immobilized on delignified cellulosic material. J. Agr. Food Chem. 53:2546–2551.

    Article  CAS  Google Scholar 

  • Agouridis, N., Kopsahelis, N., Plessas, S., Koutinas, A. A., and Kanellaki, M. 2008. Oenococcus oeni cells immobilized on delignified cellulosic material for malolactic fermentation of wine. Bioresource Technol. 99:9017–9020.

    Article  CAS  Google Scholar 

  • Akao, G., Nagata, S., Osaki, K., and Okamoto, Y. 1982. Continuous production of shoyu-like solution by immobilized lactic acid bacteria and yeast (abstract). Annu. Meet. Soc. Fermentation Technol. Jpn, no. 26.

    Google Scholar 

  • Arnaud, J. P., Lacroix, C., and Castaigne, F. 1992. Counter diffusion of lactose and lactic acid in k-carrageenan/locust bean gum gel beads with or without entrapped lactic acid bacteria. Enzyme Microb. Technol. 14:715–724.

    Article  CAS  Google Scholar 

  • Baker, D. A., and Kirsop, B. H. 1973. Rapid beer production and conditioning using a plug fermenter. J. Inst. Brew. 79:487–494.

    CAS  Google Scholar 

  • Bare, G., Gerard, J., Jacques, P., Delaunois, V., and Thonart, P. 1992. Bioconversion of vanillin into vanillic acid by Pseudomonas fluorescens strain BTP9. Cell reactors and mutants study. Appl. Biochem. Biotechnol. 34/35:499–510.

    Article  Google Scholar 

  • Belfort, G. 1989. Report on membranes and bioreactors: a technical challenge in biotechnology. Biotechnol. Bioeng. 33:1047–1066.

    Article  CAS  Google Scholar 

  • Bergwerff, A. A., and Schloesser, J. 2003. Antibiotics and drugs, residue determination. In: Encyclopedia of Food Science and Nutrition, pp. 254–261. Amsterdam: Academic.

    Book  Google Scholar 

  • Bhugaloo Vial, P., Grajek, W., Dousset, X., and Boyaval, P. 1997. Continuous bacteriocin production with high cell density bioreactors. Enzyme Microb. Technol. 21:450–457.

    Article  CAS  Google Scholar 

  • Bishop, D. L. 1990. Gene expression using insect cells and viruses: current opinion. Biotechnology 1:62–67.

    CAS  Google Scholar 

  • Bongaerts, J., Kramer, M., Muller, U., Raeven, L., and Wubbolts, M. 2001. Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab. Eng. 3: 289–300.

    Article  CAS  Google Scholar 

  • Braconnot, H. M. 1820. Sur la conversion des matières animales en nouvelles substances par le moyen de l’acide sulfurique. Ann. Chim. Phys. Ser. 2 13:113–125.

    Google Scholar 

  • Brandani, V., Giacomo, D. G., and Spera, L. 1996. Recovery of α-amylase extracted by reverse micelles. Proc. Biochem. 31:125–128.

    Article  CAS  Google Scholar 

  • Brul, S., and Coote, P. 1999. Preservative agents in foods, mode of action and microbial resistance mechanisms. Intl. J. Food Microbiol. 50:1–17.

    Article  CAS  Google Scholar 

  • Buchholz, K., Noll-Borchers, M., and Schwengers, D. 1998. Production of leucrose by dextransucrase. Starch 50:164–172.

    Article  CAS  Google Scholar 

  • Cachon, R., Molin, P., and Divies, C. 1995. Modeling of continuous pH-stat stirred tank reactor with Lactococcus lactis ssp. lactis bv. diacetylactis immobilized in calcium alginate gel beads. Biotechnol. Bioeng. 47:567–574.

    Article  CAS  Google Scholar 

  • Calik, G., Savasci, H., Calik, P., and Ozdamar, T. H. 1999. Growth and Îş-carrageenan immobilization of Pseudomonas dacunhae cells for L-alanine production. Enzyme Microb. Technol. 24:67–74.

    Article  CAS  Google Scholar 

  • Caron, A. W., Archambault, J., and Massie, B. 1990. High-level recombinant protein productions in bioreactors using the baculovirus-insect cell expression system. Biotechnol. Bioeng. 36: 1133–1140.

    Article  CAS  Google Scholar 

  • Carvalho, W., Silva, S. S., Santos, J. C., and Converti, A. 2003. Kylitol production by Ca-alginate entrapped cells: comparison of different fermentation systems. Enzyme Microb. Technol. 32:553–559.

    Article  CAS  Google Scholar 

  • Champagne, C. P., Gaudy, C., Poncelet, D., and Neufeld, R. J. 1992. Lactococcus lactis release from calcium alginate beads. Appl. Environ. Microbiol. 58:1429–1434.

    CAS  Google Scholar 

  • Chao, Y. P, Lai, Z. J., Chen, P., and Chern, J. T. 1999. Enhanced conversion rate of L-phenylalanine by coupling reactions of transaminases and phosphoenolpyruvate carboxykinase in Escherichia coli K-12. Biotech. Progress 15:453–458.

    Article  CAS  Google Scholar 

  • Chao, Y. P., Lo, T. E., and Luo, N. S. 2000. Selective production of L-aspartic acid and L-phenylalanine by coupling reactions of aspartase and aminotransferase in Escherichia coli. Enzyme Microb. Technol. 27:19–25.

    Article  CAS  Google Scholar 

  • Chibata, I., Tosa, T., and Sato, T. 1974. Immobilized aspartase-containing microbial cells: preparation and enzymatic properties. Appl. Microbiol. 27:878–885.

    CAS  Google Scholar 

  • Chibata, I., Tosa, T., and Takamatsu, S. 1987. Continuous L-alanine production using two different immobilized microbial cell production. Methods Enzymol. 136:472–479.

    Article  CAS  Google Scholar 

  • Chih, Y. C., Kow, J. D., Dey, C. S., Chi Tsai, L., and Shin, Y. L. 1996. Production of fructooligosaccharides by immobilized mycelium of Aspergillus japonicus. J. Chem. Technol. Biotechnol. 66:135–138.

    Article  Google Scholar 

  • Colagrande, O., Silva, A., and Fumi, M. D. 1994. Recent applications of biotechnology in wine production. Rev. Biotechnol. Progr. 10:2–18.

    Article  CAS  Google Scholar 

  • Cruz, R., Cruz, V. D., Belini, M. Z., Belote, J. G., and Vieira, C. R. 1998. Production of fructooligosaccharides by the mycelia of Aspergillus japonicus immobilized in calcium alginate. Bioresource Technol. 65(1/2):139–143.

    Article  CAS  Google Scholar 

  • Cutter, C. N., and Siragusa, G. R. 1997. Growth of Brochothrix thermosphacta in ground beef following treatments with nisin in calcium alginate gels. Food Microbiol. 14:425–430.

    Article  CAS  Google Scholar 

  • Datta, R., and Tsai, S. P. 1995. Technology and economic potential of poly (lactic acid) and lactic acid derivatives. J. FEMS Microbiol. Rev. 16:221–231.

    Article  CAS  Google Scholar 

  • Deng, J. X., and Wang, Z. Y. 2007. Present situation and prospects of L-phenylalanine. Anhui Chem. Ind. 33:1–3.

    CAS  Google Scholar 

  • de Ory, I., Romero, L. E., and Cantero, D. 2004. Optimization of immobilization conditions for vinegar production. Siran, wood chips and polyurethane foam as carriers for Acetobacter aceti. Process Biochem. 39:547–555.

    Article  CAS  Google Scholar 

  • Dibner, J. J., and Butin, P. 2002. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J. Appl. Poultry Res. 11:453–463.

    CAS  Google Scholar 

  • Dominguez, J. M. 1998. Xylitol production by free and immobilized Debaryomyces hansenii. Biotechnol. Lett. 20:53–56.

    Article  CAS  Google Scholar 

  • Dong, G. Q., Kaul, R., and Mattiasson, B. 1991. Evaluation of alginate-immobilized Lactobacillus casei for lactate production. Appl. Microbiol. Biotechnol. 36:309–314.

    CAS  Google Scholar 

  • Doores, S. 1990. pH control agents and acidulants. In Food Additives, ed. A. L. Bransen, P. M. Davidson, S. Salminen, pp. 477–511. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Dovyap, Z., Bayraktar, E., and Mehmetoglu, U. 2006. Amino acid extraction and mass transfer rate in the reverse micelle system. Enzyme Microbial Technol. 38:557–562.

    Article  CAS  Google Scholar 

  • Drews, B., Specht, H., and Gubel, H. S. 1966. Unterschungen uber die fluchtigen bestandteile im bier. Monatsschr. Brauerei 19:145–156.

    CAS  Google Scholar 

  • Eskin, M. N. A. 1990. Biochemistry of Foods. San Diego: Academic.

    Google Scholar 

  • Eyal, A. M., and Bressler, E. 1993. Industrial separation of carboxylic and amino acids by liquid membranes: applicability, process considerations, and potential advantages. Biotechnol. Bioeng. 41:287–295.

    Article  CAS  Google Scholar 

  • Figueiredo, Z. M. B., and Carvalho, L. B., Jr. 1991. L-Malic acid production using immobilized Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 30:217–224.

    Article  CAS  Google Scholar 

  • Fukushima, S., Nagi, T., Fujita, K., Tanaka, A., and Fukui, S. 1978. Hydrophilic urethane prepolymers. Convenient materials for enzyme entrapment. Biotechnol. Bioeng. 20:1465.

    Article  CAS  Google Scholar 

  • Fukusima, T. 1981. Continuous alcohol fermentation of fruit juice using immobilized raw yeast bioreactor. J. Brew. Soc. Jpn 76:688.

    Google Scholar 

  • Furusaki, S., and Seki, M. 1992. Use and engineering aspects of immobilized cells in biotechnology. Adv. Biochem. Eng./Biotechnol. 46:161–185.

    Article  CAS  Google Scholar 

  • Fusee, M. C., Swann, W. E., and Calton, G. J. 1981. Immobilization of Escherichia coli cells containing aspartase activity with polyurethane and its application for L-aspartic acid production. Appl. Environ. Microbiol. 42:672–676.

    CAS  Google Scholar 

  • Gates, J. C. 1981. Basic Foods. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Gestrelius, S. 1982. Potential application of immobilized cells in the food industry. Malolactic fermentation of wine. Enzyme Eng. 6:245–250.

    CAS  Google Scholar 

  • Ghommidh, C., Cutayar, J. M., and Navarro, J. M. 1986. Continuous production of vinegar. I. Research strategy. Biotechnol. Lett. 8:13.

    Article  CAS  Google Scholar 

  • Ghommidh, C., Navarro, J. M., and Durand, G. 1982. A study of acetic acid production by immobilized Acetobacter cells: oxygen transfer. Biotechnol. Bioeng. 26:605.

    Article  Google Scholar 

  • Ghommidh, C., Navarro, J. M., and Messing, R. A. 1982. A study of acetic acid production by immobilized Acetobacter cells: product inhibition effects. Biotechnol. Bioeng. 26:1991.

    Article  Google Scholar 

  • Godtfredsen, S. E., Ottesen, M., and Svensson, B. 1981. Application of immobilized yeast and yeast coimmobilized with amyloglucosidase in brewing process. Proc. Eur. Brew. Conv. Cong. 19:505–511.

    Google Scholar 

  • Goksungur, Y., and Guvenc, U. 1997. Continuous production of lactic acid from beet molasses by L. delbrueckii IFO 3202. J. Chem. Eng. Biotechnol. 69:399–404.

    Article  CAS  Google Scholar 

  • Goksungur, Y., and Guvenc, U. 1999. Production of lactic acid from beet molasses by calcium alginate immobilized L. delbrueckii IFO 3202 batch and continuous. J. Chem. Eng. Biotechnol. 74:131–136.

    Article  CAS  Google Scholar 

  • Goosen, F. A. M. 1993. Insect cell culture engineering, an overview. In: Insect Cell Culture Engineering, ed. M. F. A. Goosen, A. J. Daugulis, P. Faulkner, pp. 1–16. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Gough, S., Barron, N., Zulbov, A., Lozinsky, V. I., and McHale, A. P. 1998. Production of ethanol from molasses at 45°C using Kluyveromyces marxianus IM3 immobilised in calcium alginate gels and polyvinyl alcohol. J. Bioprocess. Eng. 19:87–90.

    CAS  Google Scholar 

  • Grace, T. D. C. 1962. Establishment of four strains of cells from insect tissue in vitro. Nature 195:788.

    Article  CAS  Google Scholar 

  • Gu, Z. 1997. Process development of propionic acid production by fermentation. Dissert. Abs. Intl. B 58(6):3177.

    Google Scholar 

  • Guardiola, J., Iborra, J. L., Rodenas, L., and Canovas, M. 1996. Biotransformmation from geraniol to nerol by immobilized grapevine cells (V. vinifera). Appl. Biochem. Biotechnol. 56:169–180.

    Article  CAS  Google Scholar 

  • Hamada, T., Ishiyama, T., and Motai, H. 1989. Continuous fermentation of soy sauce by immobilized cells of Zygosaccharomyces rouxii in airlift reactor. Appl. Microbiol. Biotechnol. 31:346–350.

    Article  CAS  Google Scholar 

  • Hamada, T., Sugishita, M., and Motai, H. 1990. Continuous production of 4-ethylguaiacol by immobilized cells of salt-tolerant Candida versatilis in an airlift reactor. J. Ferment. Bioeng. 69:166.

    Article  CAS  Google Scholar 

  • Hamamci, H., and Ryu, D. D. Y. 1994. Production of L(+)-lactic acid using immobilized Rhizopus oryzae. Reactor performance based on kinetic model and simulation. Appl. Biochem. Biotechnol. 44:125–133.

    Article  CAS  Google Scholar 

  • Hamdy, O. S., Honecker, S., and Rehm, H. J. 1992. A comparative study on the formation of citric acid and polyols and on morphological changes of three strains of free and immobilized Aspergillus niger. Appl. Microbiol. Biotechnol. 36:518–524.

    Google Scholar 

  • Hara, S., Noziro, K., and Akiyama, Y. 1981. Japanese Patent #56-20830.

    Google Scholar 

  • Hink, W. F. 1982. Production of Autographa californica nuclear polyhedrosis virus in cells from large-scale suspension culture. In: Microbial and Viral Pesticides, ed. E. Kurstak, pp. 493–506. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Hink, W. F., and Strauss, E. M. 1980. Semi-continuous culture of the TN-368 cell line in fermenters with virus production in harvested cells. In: Invertebrate System In Vitro, ed. E. Kurstak, K. Maramorosch, A. Dubendorfer, pp. 27–33. North Holland, Amsterdam, New York: Elsevier.

    Google Scholar 

  • Hirotsune, M., Nakada, F., Hamachi, M., and Honma, T. 1987. Continuous fermentation of saccharified rice solution using immobilized yeast. J. Brew. Soc. Jpn 82:582.

    Article  CAS  Google Scholar 

  • Holden, M. A., and Yeoman, M. M. 1987. Optimization of product yield in immobilized plant cell cultures. In: Bioreactors and Biotransformations, ed. G. W. Moody and P. B. Baker, pp. 1–11. London: Elsevier.

    Google Scholar 

  • Honda, Y., Kako, M., Abiko, K., and Sogo, Y. 1993. Hydrolysis of lactose in milk. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 209–234. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Hongyu, S., Yonghong, H., Shubao, S., and Ouyang, P. K. 2003. Development of research on biocatalyst immobilization. Chem. Ind. Eng. Progress 2:18–21.

    Google Scholar 

  • Hoshino, K., Taniguchi, M., Marumoto, H., Shimizu, K., and Fujii, M. 1991. Continuous lactic acid production from raw starch in a fermentation system using a reversibility soluble-autoprecipitation amylase and immobilized cells of Lactobacillus casei. Agric. Biol. Chem. 55:479–485.

    Article  CAS  Google Scholar 

  • Hu, Y., Ouyang, P., and Yang, W. 1995. Immobilization of fumarase with Îş-carrageenan mixed gel for production L-malic acid. Chin. J. Biotechnol. 11:396–398.

    CAS  Google Scholar 

  • Iborra, J. L., Manjon, A., Canovas, M., Lozano, P., and Martinez, C. 1994. Continuous limonin degradation by immobilized Rhodococcus fascians cells in Îş-carrageenan. Appl. Microbiol. Biotechnol. 41:487–493.

    CAS  Google Scholar 

  • Idris, A., and Wahidin, S. 2006. Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41:1117–1123.

    Article  CAS  Google Scholar 

  • Idris, A., Wahidin, S., and Mat, H. B. 2003. Lactic acid fermentation from liquid pineapple waste using free and immobilized Lactobacillus delbrueckii ATCC 9646. Water Environ. Manage. Ser. 213–219.

    Google Scholar 

  • Iida, T. 1993. Fuel ethanol production by immobilized yeasts and yeast immobilization. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 163–182. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Ikeda, K. 1909. On a new seasoning. J. Chem. Soc. Tokyo 30:820–836.

    Google Scholar 

  • Inoue, T. 1981. The relationship between the performance of yeast and acetohydroxy acid formation during wort fermentation. MBAA Tech. Quart. 17:62–65.

    Google Scholar 

  • Jay, J. M., Loessner, M. J., and Golden, D. A. 2005. Nondainy fermented foods and products. In: Modern Food Microbiology, 7th ed., pp. 175–188. New York: Springer.

    Google Scholar 

  • Jiang, B., Wang, Z., and Ding, X. L. 1996. Production of high purity fructooligosaccharides with co-immobilized Aspergillus niger and enzyme. Food Ferment. Indus. 1:1–7 (in Chinese).

    Google Scholar 

  • Kaufman, E. N., Cooper, S. P., Budner, M. K., and Richardson, G. R. 1996. Continuous and simultaneous fermentation and recovery of lactic acid in a biparticle fluidized-bed bioreactor. Appl. Biochem. Biotechnol. 57/58:503–515.

    Article  CAS  Google Scholar 

  • Kautola, H., Rymowicz, W., Linko, Y. Y., and Linko, P. 1991. Production of citric acid with immobilized Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 35(4):447–449.

    Article  CAS  Google Scholar 

  • Kennedy, J. F., Humphreys, J. D., and Barker, S.A. 1980. Application of living immobilized cells to the acceleration of the continuous conversions of ethanol (wort) to acetic acid (vinegar)-hydrous titanium (IV) oxide-immobilized Acetobacter species. Enzyme Microb. Technol. 2:209.

    Article  CAS  Google Scholar 

  • Khare, S. K., Jha, K., and Gandhi, A. P. 1994. Use of agarose-entrapped Aspergillus niger cells for the production of citric acid from soy whey. Appl. Microbiol. Biotechnol. 41:571–573.

    Article  CAS  Google Scholar 

  • Kim, D. M., and Kim, H. S. 1992. Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxidoreductase of Zymomonas mobilis and inulinase. Biotechnol. Bioeng. 39:336–342.

    Article  CAS  Google Scholar 

  • King, G. A., Daugulis, A. J., Faulkner, P., and Goosen, M. F. A. 1987. Alginate-polylysine microcapsules of controlled membrane molecular weight cut off for mammalian cell culture engineering. Biotech. Progress 3:231–240.

    Article  CAS  Google Scholar 

  • Kirk, R. E., and Othmer, D. F. 1991. In: Encyclopedia of Chemical Technology, vol. 2, 4th ed., pp. 504–570. New York: Wiley.

    Google Scholar 

  • Kleemann, A., Leuchtenberger, W., Hoppe, B., and Tanner, H. 1985. Amino acids. In: Ullmann’s Encyclopedia of Industrial Chemistry, vol. A2, ed. W. Gerhartz, pp. 57–59. Weinheim, Germany: VCH Publishers.

    Google Scholar 

  • Klinkerberg, G., Lystad, K. Q., Levine, D. W., and Dyrset, N. 2001. Cell release from alginate immobilized Lactococcus lactic ssp. lactis in chitosan and alginate coated beads. J. Diary Sci. 84:1118–1127.

    Article  Google Scholar 

  • Knuth, M. E., and Sahai, O. P. (for Escagenetics Corporation) 1989. Production of flavor components by plant callus culture. PCT, International Application #890,209, Patent #8,900,820.

    Google Scholar 

  • Kondo, M., Suzuki, Y., and Kato, H. 1988. Vinegar production by Acetobacter cells immobilized on ceramic honeycomb-monolith. Hakko Kogaku Kaishi (Bull. Soc. Ferment. Technol. Jpn) 66:393.

    CAS  Google Scholar 

  • Kotzamnidis, C., Roukas, T., and Skaracis, G. 2002. Optimization of lactic acid production from beet molasses by Lactobacillus delbruekii NCIMB 8130. World J. Microbiol. Biotechnol. 18:441–448.

    Article  Google Scholar 

  • Kourkoutas, Y., Kanellaki, M., Koutinas, A. A., and Tzia, C. 2005a. Effect of fermentation conditions and immobilization supports on the wine making. J. Food Eng. 69: 115–123.

    Article  Google Scholar 

  • Kourkoutas, Y., Xolias, V., Kallis, M., Bezirtzoglou, E., and Kanellaki, Y. 2005b. Lactobacillus casei cell immobilization on fruit pieces for probiotic additive, fermented milk and lactic acid production. Process Biochem. 40:411–416.

    Article  CAS  Google Scholar 

  • Krei G. A., and Hustedt, H. 1992. Extraction of enzymes by reverse micelles. Chem. Eng. Sci. 47:99–111.

    Article  CAS  Google Scholar 

  • Kumon, S., and Kawakita, T. 1991. Amino acids. In: Biotechnology of Food Ingredients, ed. I. Goldberg, pp. 125–151. New York: Reinhold.

    Google Scholar 

  • Kunas, K. T., and Papoutsakis, E. T. 1990. Damage mechanism of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol. Bioeng. 36:473–476.

    Article  Google Scholar 

  • Kuriki, T., Yanase, M., Takata, H., and Okada, S. 1997. Production of isomalto/branched oligosaccharide syrup by using immobilized neopullulanase and preliminary evaluation of the syrup as a food additive. J. Appl. Glycosci. 44:15–22.

    CAS  Google Scholar 

  • Kuzio, J., and Faulkner, P. 1993. An overview of the molecular biology and applications of baculoviruses. In: Insect Cell Culture Engineering, ed. M. F. A. Goosen, A. J. Daugulis, P. Faulkner, pp. 17–50. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Lamboley, L., Lacroix, C., Champagne, C. P., and Vuillemard, J. C. 1997. Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology. Biotechnol. Bioeng. 56:502–516.

    Article  CAS  Google Scholar 

  • Larroche, C., Creuly, C., and Gross, J. B. 1995. Fed-batch biotransformation of β-ionone by Aspergillus niger. Appl. Microbiol. Biotechnol. 43:222–227.

    Article  CAS  Google Scholar 

  • Larroche, C., and Gross, J. B. 1989. Batch and continuous 2-heptanone production by Ca-alginate/eudragit RL entrapped spore of Penicillium roqueforti. Biotechnol. Bioeng. 34:30–38.

    Article  CAS  Google Scholar 

  • Larroche, C., Tallu, B., and Gross, J. B. 1988. Aroma production by spores of Penicillium roqueforti on synthetic medium. J. Ind. Microbiol. 3:1–8.

    Article  CAS  Google Scholar 

  • Lathika, K. M., Sharma, S., Inamdar, K. V., and Raghavan, K. G. 1995. Oxalate depletion from leafy vegetables using alginate entrapped banana oxalate oxidase. Biotechnol. Lett. 17:407–410.

    Article  CAS  Google Scholar 

  • Leach, G., Oliveira, G., and Morais, R. 1998. Production of carotenoid rich product by alginate entrapment and fluid bed drying of Dunaliella salina. J. Sci. Food Agric. 76:298–302.

    Article  CAS  Google Scholar 

  • Li, R. H., Altreuter, D. H., and Gentile, F. T. 1996. Transport characterization of hydrogel matrices for cell encapsulation. Biotechnol. Bioeng. 50:365–373.

    Article  CAS  Google Scholar 

  • Lindsey, K., and Yeoman, M. M. 1986. The viability and synthetic potential of immobilized chilli pepper cells. In: Process Engineering Aspects of Immobilized Cell Systems, ed. C. Webb, G. M. Black, B. Atkinson, pp. 304–308. Warwicksshire, England: Institute of Chemical Engineers.

    Google Scholar 

  • Lindsey, K., Yeoman, M. M., Black, G. M., and Mavituna, F. 1983. A novel method for the immobilization and culture of plant cells. FEBS Lett. 155:143–149.

    Article  CAS  Google Scholar 

  • Maicas, S., Pardo, I., and Ferrer, S., 2001. The potential of positively-charged cellulose sponge for malolactic fermentation of wine, using Oenococcus oeni. Enzyme Microb. Technol. 28: 415–419.

    Article  CAS  Google Scholar 

  • Maiorella, B., Inlow, D., Shanger, A., and Harano, D. 1988. Large-scale insect cell culture for recombinant protein production. Biotechnology 6:1406–1410.

    Article  CAS  Google Scholar 

  • Makishima, R., and Aoki, H. 1984. Bio-ceramics. Gihodoushuppan 79–94.

    Google Scholar 

  • Masschelein, C. A., and Francotte, C. 1983. Possibilities et limites d’application des reacteurs a cellules de levure immobilisees en brasserie. Cerevisiae 3:135–142.

    Google Scholar 

  • Matsumoto, K. 1993. Removal of urea from alcoholic beverages by immobilized acid urease. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 255–273. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Mavituna, F., Wilkinson, A. K., Williams, P. D., and Park, J. M. 1987. Production of secondary metabolites by immobilized plant cells in novel bioreactors. In: Bioreactors and Biotransformations, ed. G. W. Moody and P. B. Baker, pp. 26–37. London: Elsevier.

    Google Scholar 

  • Maxwell, P. C., Shapiro, L. M., and Tareza, J. E. 1986. Process for the production of muconic acid. U.S. Patent #4,588,688.

    Google Scholar 

  • Meiyan, X., Xu, E., and Zhiwen, C. 2003. Development of research on technology of immobilized cells. Food Sci. 24:158–161.

    Google Scholar 

  • Mizuno, S., Yoshikawa, N., Seki, M., Mikawa, T., and Imada, Y. 1988. Microbial production of cis,cis-muconic acid from benzoic acid. Appl. Microbiol. Biotechnol. 28:20.

    Article  CAS  Google Scholar 

  • Mizunuma, T. 1986. Soy saucelike seasoning. Bimonthly J. Microorg. 2:35.

    Google Scholar 

  • Moonmangmee, S., Toyama, H., Adachi, Teerakool, G., Lotong, N., and Matsushita, K. 2002. Purification and characterization of a novel polysaccharide involved in the pellicle produced by a thermotolerant Acetobacter strain. Biosci. Biotechnol. Biochem. 66:777–783.

    Article  CAS  Google Scholar 

  • Mori, A. 1993. Vinegar production in a fluidized-bed reactor with immobilized bacteria. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 291–313. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Mori, A., Matsumoto, N., and Imai, C. 1989. Growth behavior of immobilized acetic bacteria. Biotechnol. Lett. 11:183–188.

    Article  Google Scholar 

  • Motai, H., Fukushima, Y., Osaki, K., Okamura, K., and Imai, K. (for Kikkoman Corporation) 1989. Microorganisms or enzyme immobilization with a mixture of alginate and silica sol. U.S. Patent #4,797,358.

    Google Scholar 

  • Motai, H., Hamada, T., and Fukushima, Y. 1993. Application of a bioreactor system to soy sauce production. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 315–335. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Murhammer, D. W., and Goochee, C. F. 1988. Scale-up of insect cell cultures: protective effects of Pluronic F-68. Biotechnology 6:1411–1418.

    Article  CAS  Google Scholar 

  • Murhammer, D.W., and Goochee, C. F. 1990. Sparged animal cell bioreactors: mechanism of cell damage and Pluronic F-68 protection. Biotechnol. Progress 6:391–397.

    Article  CAS  Google Scholar 

  • Nakanishi, K., Murayama, H., Nagara, A., and Mitsui, S. 1993. Beer brewing using an immobilized yeast bioreactor system. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 275–289. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Nakanishi, K., Murayama, H., Sato, K., Nagara, A., Yasui, T., and Mitsui, S. 1989. Continuous beer brewing with yeast immobilized on granular ceramic. Hakko Kocagu Kaishi 67:509–514.

    CAS  Google Scholar 

  • Nakanishi, K., Onaka, T., Inoue, T., and Kubo, S. 1985. An immobilized yeast reactor system for rapid production of beer. Proc. 20th Eur. Brew. Conv. Cong. Helsinki, 331–338.

    Google Scholar 

  • Nanba, A., Kimura, K., and Nagi, S. 1985. Vinegar production by Acetobacter rancens cells fixed on a hollow fiber module. J. Ferment. Technol. 63:175.

    CAS  Google Scholar 

  • Naouri, P., Bernet, N., Chagnaud, P., Arnaud, A., Galzy, P., and Rios, G. 1991. Bioconversion of L-malic into L-lactic acid using a high compacting multiphasic reactor (HCMR). J. Chem. Technol. Biotechnol. 51:81–95.

    Article  CAS  Google Scholar 

  • Narziss, L., and Hellich, P. 1971. Ein beitung zur wesentlichen beschleunigung der garung und reifung des bieres. Brauwelt 111:1491–1500.

    CAS  Google Scholar 

  • Narziss, L., and Hellich, P. 1972. Rapid fermentation and maturing of beer by means of the bio-reactor. Brewers Digest 47:106–118.

    CAS  Google Scholar 

  • Navarro, J. M., Durand, B., Moil, M., and Corrieu, G. 1976. Mise en point d’un procede continu de preparation de boissons fermentees. Ind. Alimentaires Agr. 93(6):695–703.

    Google Scholar 

  • Nelson, E. K. 1919. The constitution of capsaicin, the pungent principle of capsicum. J. Am. Chem. Soc. 41:1115–1121.

    Article  CAS  Google Scholar 

  • Neufeld, R. J., Peleg, Y., Rokem, J. S., Pines, O., and Goldberg, I. 1991. L-malic acid formation by immobilized Saccharomyces cerevisiae amplified for fumarase. Enzyme Microb. Technol. 13:991–996.

    Article  CAS  Google Scholar 

  • Norton, S., Lacroix, C., and Vuillemard, J. C. 1994. Kinetic study of continuous whey permeate fermentation by immobilized Lactobacillus helveticus for lactic acid production. Enzyme Microb. Technol. 16:457–466.

    Article  CAS  Google Scholar 

  • Numata, T., Matsumoto, K., Nakamura, M., Fukuyasu, S., Watake, H., Yamaguchi, S., Kawachi, K., Kinoshita, S., and Nakamura, T. 1990. A production method of a new type of miso with a membrane bioreactor. Hakko Kogaku Kaishi 68:205.

    CAS  Google Scholar 

  • Nunokawa, Y., and Hirotsune, M. 1993. Production of soft sake by an immobilized yeast reactor system. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 235–253. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Nussinovitch, A. 2003. Water-Soluble Polymer Applications in Foods. Oxford, UK: Blackwell Science Ltd.

    Book  Google Scholar 

  • Okuhara, A. 1985. Vinegar production with Acetobacter grown on a fibrous support. J. Ferment. Technol. 63:57.

    CAS  Google Scholar 

  • Oliveira, E. A., Costa, A. A. R., Figueiredo, Z. M. B., and Carvalho, L. B., Jr. 1994. L-malic acid production by entrapped Saccharomyces cerevisiae into polyacrylamide gel beads. Appl. Biochem. Biotechnol. 47:65–72.

    Article  CAS  Google Scholar 

  • Onaka, T., Nakanishi, K., Inoue, T., and Kubo, S. 1985. Beer brewing with immobilized yeast. Bio/Technology 3:467.

    Article  CAS  Google Scholar 

  • Osuga, J., Mori, A., and Kato, J. 1984. Acetic acid production by immobilized Acetobacter acetii cells entrapped in a Îş-carrageenan gel. J. Ferment. Technol. 62:139.

    CAS  Google Scholar 

  • Osuga, J., Umemoto, K., and Mori, A. 1985. Process for production of vinegar. Japanese Patent #60-168377/1985.

    Google Scholar 

  • Ough, C. S., and Trioli, G. 1988. Urea removal from wine by an acid urease. Am. J. Enol. Vitic. 39(4):303.

    CAS  Google Scholar 

  • Panesar, R., Panesar, P. S., Singh, R. S., and Bera, M. B. 2007. Applicability of alginate entrapped yeast cells for the production of lactose-yeast cells for the production of lactose-hydrolyzed milk. J. Food Proc. Eng. 30:472–484.

    Article  Google Scholar 

  • Parajo, J. C., Dominguez, H., and Dominguez, J. M. 1996. Production of xylitol from concentrated wood hydrolysates by Debaryomyces hansenii: effect of the initial cell concentration. Biotechnol. Lett. 18:593–598.

    Article  CAS  Google Scholar 

  • Pardonova, B., Polednikova, M., Sedova, H., Kahler, M., and Ludvik, J. 1982. Biokatalysator fur die bierherestellung. Brauwissenscaft 35:254–258.

    CAS  Google Scholar 

  • Peijing, F., and Zhangcai, Y. 1993. Studies on the conversion of phenylpyruvic acid to L-phenylalanine by Alcaligenes sp. Acta Microb. Sinica 33:418–426.

    Google Scholar 

  • Polednikova, M., Sedova, H., and Kahler, M. 1981. Immobilizovane pivovarske kvasinky. Kvas. Prum. 27:193–198.

    CAS  Google Scholar 

  • Posillico, E. G. 1986. Microencapsulation technology for large-scale antibody production. Bio/Technology 4:114–117.

    Article  CAS  Google Scholar 

  • Prasad, B., and Mishra I. M. 1995. On the kinetics and effectiveness of immobilized whole cell batch cultures. J. Bioresources Technol. 53:269–275.

    CAS  Google Scholar 

  • Prehaud, C., Takehara, K., Flamand, A., and Bishop, D. H. L. 1989. Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors. Virology 173: 390–399.

    Article  CAS  Google Scholar 

  • Prevost, H., and Divies, C. 1992. Cream fermentation by mixed culture of lactococci entrapped in two-layer calcium alginate beads. Biotechnol. Lett. 14:583–588.

    Article  CAS  Google Scholar 

  • Puri, M., Marwaha, S.S., and Kothari, R. M. 1996 Comparative kinetic characterization of soluble and alginate entrapped naringinase. Enzyme Microbial. Technol. 18:281–285.

    Article  CAS  Google Scholar 

  • Rajagopalan, J., Pillutla, S. T., and Sonal, V. 1992. Optimization of critical parameters for immobilization of yeast cells to alginate gel matrix. J. Ferment. Bioeng. 73:319–322.

    Article  Google Scholar 

  • Ramagnoli, L.G., and Knorr, D. 1988. Effects of ferulic acid treatment on growth and flavor development of cultured Vanilla planifoli cells. Food Biotechnol. 2:93–104.

    Article  Google Scholar 

  • Rehr, B., Wilhelm, C., and Sahm, H. 1991. Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Appl. Microbiol. Biotechnol. 35:144–148.

    Article  CAS  Google Scholar 

  • Rickert, D. A., Glatz, C. E., and Glatz, B. A. 1998. Improved organic acid production by calcium alginate-immobilized propionibacteria. Enzyme Microb. Technol. 22:409–414.

    Article  CAS  Google Scholar 

  • Roukas, T., and Kotzekidou, P. 1998. Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture. Enzyme Microb. Technol. 22:199–204.

    Article  CAS  Google Scholar 

  • Roukas, T., and Kotzekidou, P. 1996. Continuous production of lactic acid from deproteinized whey by coimmobilized Lactobacillus casei and Lactococcus lactis cells in a packed bed reactor. Food Biotechnol. 10:231–242.

    Article  CAS  Google Scholar 

  • Rymowicz, W., Kautola, H., Wojtatowicz, M., Linko, Y. Y., and Linko, P. 1993. Studies on citric acid production with immobilized Yarrowia lipolytica in repeated batch and continuous air-lift bioreactors. Appl. Microbiol. Biotechnol. 39:1–4.

    CAS  Google Scholar 

  • Saeki, A. 1990. Vinegar production using immobilized Acetobacter aceti cells entrapped in calcium alginate gel beads. Nippon Shokuhin Kogyo Gakkaishi (J. Jpn Soc. Food Sci. Technol.) 37:191.

    Article  CAS  Google Scholar 

  • Salminen, S., and Hallikainen, A. 1990. Sweeteners. In: Food Additives, ed. A. L. Bransen, P. M. Davidson, S. Salminen, pp. 297–327. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Sato, T., Nishida, Y., Tosa, T., and Chibata, I. 1979. Immobilization of Escherichia coli cells containing aspartase activity with Îş-carrageenan enzymic properties and application for L-aspartic acid production. Biochim. Biophys. Acta 570:179–186.

    Article  CAS  Google Scholar 

  • Sato, Y., Sato, H., Sato, N., and Muraki, K. 1983. Immobilization of microorganisms and enzymes and its application. Rep. Iwate Brewing Food Manufact. Res. Inst. 17:204–209.

    Google Scholar 

  • Sato, T., and Tosa, T. 1993. Production of L-aspartic acid. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 15–24. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Seitz, W. E. 1991. Flavor building blocks. In: Biotechnology and Food Ingredients, ed. I. Goldberg, R. Williams, pp. 375–391. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Seki, M., Yoshikawa, N., Saton, M., Mizuno, S., and Ohkishi, H. 1987. In: Proc. IV Eur. Congr. Biotechnol., vol. 1, ed. O. M. Neijssel, p. 224. Amsterdam: Elsevier.

    Google Scholar 

  • Shuler, M. L., Cho, T., Wickham, T., Ogonah, O., Kool, M., Hammer, D. A., Granados, R. R., and Wood, M. A. 1990. Bioreactor development for production of viral pesticides or heterologous proteins in insect cell cultures. Ann. NY Acad. Sci. 589:399–421.

    Article  CAS  Google Scholar 

  • Sitton, O. C., Magruder, G. C., Book, N. L., and Gaddy, J. L. 1980. Comparison of immobilized cell reactor and CSTR for ethanol production. Biotechnol. Bioeng. Symp. 10:213.

    CAS  Google Scholar 

  • Smith, N. A., Goosen, M. F. A., King, G. A., Faulkner, P., and Daugulis, A. J. 1989. Toxicity analysis of encapsulation solutions and polymers in the cultivation of insect cell. Biotechnol. Lett. 3:61–66.

    Google Scholar 

  • Summers, M. D., and Smith, G. E. 1985. Gentic engineering of the genome Autographa californica nuclear polyhedrosis virus. In: Genetically Altered Viruses in the Environment, ed. B. Fields, M. Martin, D. Kamely, Banbury Rep. p. 22. Cold Spring Harbor, New York.

    Google Scholar 

  • Sun, Y., and Furusaki, S. 1990. Continuous production of acetic acid using immobilized Acetobacter aceti in a three-phase fluidized bed bioreactor. J. Ferment. Bioeng. 69:102.

    Article  CAS  Google Scholar 

  • Sutherland, J. P., Varnam, A. H., and Evans, M. G. 1986. A Color Atlas of Food Quality Control. Weert, The Netherlands: Wolfe Science.

    Google Scholar 

  • Takac, S., Akay, B., and Ozdamar T. H. 1995. Bioconversion of trans-cinnamic acid to L-phenylalanine by L-phenylalanine ammonia-lyase of Rhodotorula glutinis: parameters and kinetics. Enzyme Microb. Technol. 17:445–452.

    Article  CAS  Google Scholar 

  • Takada, M., and Hiramitsu, T. 1991. Continuous production of vinegar using bioreactor with supports of porous ceramics. Nippon Shokuhin Kogyo Gakkaishi (J. Jpn Soc. Food Sci. Technol.) 38:967.

    Article  CAS  Google Scholar 

  • Takamatsu, S., and Tosa, T. 1993. Production of L-alanine and D-aspartic acid. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 25–35. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Takamatsu, S., Tosa, T., and Chibata, I. 1986. Industrial production of L-alanine from ammonium fumarate using immobilized microbial cells of two kinds. J. Chem. Eng. Jpn 19:31–36.

    Article  CAS  Google Scholar 

  • Takata, I., Kayashima, K., Tosa, T., and Chibata, I. 1982. Immobilization of Brevibacterium flavum using Îş-carrageenan modified with amines and stability of fumarase activity of the immobilized cells. J. Appl. Biochem. 4:371.

    CAS  Google Scholar 

  • Takata, I., and Tosa, T. 1993. Production of L-malic acid. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 53–65. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Takata, I., Tosa, T., and Chibata, I. 1984. Stability of fumarase activity of Brevibacterium flavum immobilized with carageenan and Chinese gallotannin. Appl. Microbiol. Biotechnol. 19:85.

    Article  CAS  Google Scholar 

  • Takayanagi, H. 2001. Application of gels for separation matrices. In: Gels Handbook, vol. 3, Application, ed. Y. Osada, K. Kajiwara, pp. 352–361. San Diego and San Francisco: Academic.

    Chapter  Google Scholar 

  • Toda, K., and Sato, K. 1985. Simulation study on oxygen uptake rate of immobilized growing microorganisms. J. Ferment. Technol. 63:251–258.

    CAS  Google Scholar 

  • Tong, W. Y., Fu, X. Y., Lee, S. M., Yu, J., Lui, J. W., Wei, D. Z., and Koo, Y. M. 2004. Purification of L(+) lactic acid from fermentation broth with paper sludge as cellulosic feedstock using weak anion exchanger Amberlite IRA-92. Biochem. Eng. J. 18:89–96.

    Article  CAS  Google Scholar 

  • Tosa, T., Sato, T., Mori, T., and Chibata, I. 1974. Basic studies for continuous production of L-aspartic acid by immobilized Escherichia coli cells. Appl. Microbiol. 27:886–889.

    CAS  Google Scholar 

  • Totsuka, A., and Hara, A. 1981. Decomposition of malic acid in red wine by immobilized microbial cells. Hakko Kogaku Kaishi 59:231–237.

    CAS  Google Scholar 

  • Tramper, J., Van Den End, E. J., De Gooijer, C. D., Kompier, K., Van Lier, F. L. J., Usmany, M., and Vlak, J. M. 1990. Production of baculovirus in a continuous insect cell culture. Ann. NY Acad. Sci. 589:423–430.

    Article  Google Scholar 

  • Ueno, T. 2003. Lactic acid production using two food processing wastes, canned pineapple syrup and grape invertase as substrate and enzyme. Biotechnol. Lett. 5:573–577.

    Article  Google Scholar 

  • Van Lier, F. L. J., Van Den End, E. J., De Gooijer, C. D., Vlak, J. M., and Tramper, J. 1990. Continuous production of baculovirus in a cascade of insect-cell reactors. Appl. Microbiol. Biotechnol. 33:43–47.

    Article  Google Scholar 

  • Vauquelin, L. N., and Robiquet, P. J. 1806. The discovery of a new plant principle in Asparagus sativus. Ann. Chim. 57:88–93.

    Google Scholar 

  • Wada, M., Kato, J., and Chibata, I. 1980. Continuous production of ethanol using immobilized growing yeast cell. Eur. J. Appl. Microbiol. Biotechnol. 10:275.

    Article  CAS  Google Scholar 

  • Wan, J., Gordon, J. B., Muirhead, K., Hickey, M. W., and Coventry, M. J. 1997. Incorporation of nisin in micro-particles of calcium alginate. Lett. Appl. Microbiol. 24:153–158.

    Article  CAS  Google Scholar 

  • White, F. H., and Portno, A. D. 1978. Continuous fermentation by immobilized brewers yeast. J. Inst. Brew. 84:228–230.

    CAS  Google Scholar 

  • Wickham, T. J., Davis, T., Granados, R. R., Hammer, D. A., Shuler, M. L., and Wood, H. A. 1991. Baculovirus defective interfering particles are responsible for variations in recombinant protein production as a function of multiplicity of infection. Biotechnol. Lett. 13:483–488.

    Article  Google Scholar 

  • Williams, D., and Munnecke, D. M. 1981. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 23:1813.

    Article  CAS  Google Scholar 

  • Wollaston, W. H. 1810. On cystic oxide, a new species of urinary calculus. Phil. Trans. R. Soc. Lond. 100:223–230.

    Google Scholar 

  • Yamamoto, A. 1978. Amino acid (survey). In: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 2, 3rd ed., ed. M. Grayson, pp. 376–410. New York: John Wiley & Sons.

    Google Scholar 

  • Yamamoto, K., Tosa, T., and Chibata, I. 1980. Continuous production of L-alanine using Pseudomonas dacunhae immobilized with carrageenan. Biotechnol. Bioeng. 22: 2045–2054.

    Article  CAS  Google Scholar 

  • Yan, J., Bajpai, R., Iannoti, E., Popovic, M., and Mueller, R. 2001. Lactic acid fermentation from enzyme-thinned starch with immobilized Lactobacillus amylovorus. J. Chem. Biochem. Eng. 15:59–63.

    CAS  Google Scholar 

  • Yasuyuki, M., Yoshinori, K., Mitsugi, K., Yoshiki, Y., Toshio, T., Fumio, H., and Hiroshi, N. (Shokuhin Sangyo Bioreactor System Gijutsu Kenkyu Kumiai) 1989. Manufacture of seasoning materials using immobilized glutaminase. Japan Kokai Tokkyo Koho JP, Japanese Patent #01 10,957.

    Google Scholar 

  • Yeoman, M. M., Miedzybrodzka, M. B., Lindsey, K., and McLauchlan, W. R. 1980. The synthetic potential of cultured plant cells. In: Plant Cell Cultures: Results and Perspectives, ed. F. Sala, B. Parisi, R. Cella, O. Ciferri, pp. 327–343.Amsterdam/North Holland: Elsevier.

    Google Scholar 

  • Yonghong, H., Tianyu, T., Wenge Y., and Hua Z. 2009. Bioconversion of phenylpyruvic acid to l-phenylalanine by mixed-gel immobilization of Escherichia coli EP8-10. Process Biochem. 44:142–145.

    Article  CAS  Google Scholar 

  • Yoo, I. K., Seong, G. H., Chang, H. N., and Park, J. K. 1996. Encapsulation of Lactobacillus casei cells in liquid core alginate capsules for lactic acid production. Enzyme Microb. Technol. 19:428–433.

    Article  CAS  Google Scholar 

  • Yoshida, T. 1978. L-Monosodium glutamate (MSG). In: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 2, 3rd ed., ed. M. Grayson, pp. 410–421. New York: John Wiley & Sons.

    Google Scholar 

  • Yoshikawa, N., Ohta, K., Mizuno, S., and Ohkishi, H. 1993. Production of cis,cis-muconic acid from benzoic acid. In: Industrial Applications of Immobilized Biocatalysts, ed. A. Tanaka, T. Tosa, T. Kobayashi, pp. 131–147. New York and Basel: Marcel Dekker, Inc.

    Google Scholar 

  • Zacco, E., Adrian , J., Galve , R., Marco, M. P., Alegret , S., and Pividori, M. I. 2007. Electrochemical magneto immunosensing of antibiotic residues in milk. Biosens. Bioelect. 22:2184–2191.

    Article  CAS  Google Scholar 

  • Zayed, G., and Winter, J. 1998. Removal of organic pollutants and of nitrate from wastewater from the dairy industry by denitrification. Appl. Microbiol. Biotechnol. 49:469–474.

    Article  CAS  Google Scholar 

  • Zayed, G., and Zahran, A. S. 1991. Lactic acid production from salt whey using free and agar immobilized cells. Lett. Appl. Microbiol. 12:241–243.

    Article  CAS  Google Scholar 

  • Zhong, G. U., Glatz, B. A., and Glatz, C. E. 1998. Effects of propionic acid on propionibacteria fermentation. Enzyme Microb. Technol. 22:13–18.

    Article  Google Scholar 

  • Zhu, M. Y., Ai, Z. L., Zhao, Q. Y., and Dai, Q. Y. 2004. Immobilization of α-amylase in calcium alginate-gelatin hydrogels. Food Sci. 25:64–68.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Nussinovitch .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nussinovitch, A. (2010). Food and Biotechnological Applications for Polymeric Beads and Carriers. In: Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6618-6_4

Download citation

Publish with us

Policies and ethics