Skip to main content

The Early Evolution of Hox Genes: A Battle of Belief?

  • Chapter
Hox Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 689))

Abstract

For more than a century the origin of metazoan animals and for less than three years the early evolution of Hox genes has been debated. Both discussions are intrinsically tied together. New data from whole genome sequencing and recent progress in phylogeny of basal metazoans allow to provide an answer. The evolution of diploblastic animals (Placozoa, Porifera, Ctenophora and Cnidaria) and Bilateria (all higher animals) went parallel. The early split of these two lineages led to the evolution of a Hox system in Bilateria and the presence of Hox-like genes in Cnidaria and Placozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Slack JM, Holland PW, Graham CF. The zootype and the phylotypic stage. Nature 1993; 361:490–2.

    Article  CAS  PubMed  Google Scholar 

  2. Miller DJ, Miles A. Homeobox genes and the zootype. Nature 1993; 365:215–6.

    Article  CAS  PubMed  Google Scholar 

  3. Schierwater B, Desalle R. Current problems with the zootype and the early evolution of Hox genes. J Exp Zool 2001; 291:169–74.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Fernandez J. Hox, ParaHox, ProtoHox: facts and guesses. Heredity 2005; 94:145–52.

    Article  CAS  PubMed  Google Scholar 

  5. Gellon G, McGinnis W. Shaping animal body plans in development and evolution by modulation of Hox expression patterns. Bioessays 1998; 20:116–25.

    Article  CAS  PubMed  Google Scholar 

  6. Prince V. The Hox Paradox: More complex(es) than imagined. Dev Biol 2002; 249:1–15.

    Article  CAS  PubMed  Google Scholar 

  7. Amores A, Suzuki T, Yan YL, et al. Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 2004; 14:1–10.

    Article  CAS  PubMed  Google Scholar 

  8. Kamm K, Schierwater B, Jakob W et al. Axial patterning and diversification in the cnidaria predate the Hox system. Curr Biol 2006; 16:920–6.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrier DE, Holland PW. Ancient origin of the Hox gene cluster. Nat Rev Genet 2001; 2:33–8.

    Article  CAS  PubMed  Google Scholar 

  10. Gauchat D, Mazet F, Berney C, et al. Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning. Proc Natl Acad Sci USA 2000; 97:4493–8.

    Article  CAS  PubMed  Google Scholar 

  11. Chourrout D, Delsuc F, Chourrout P, et al. Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 2006; 442:684–7.

    Article  CAS  PubMed  Google Scholar 

  12. Ryan JF, Mazza M E, Pang K, et al. Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS ONE 2007; 2:e153.

    Article  PubMed  CAS  Google Scholar 

  13. Schierwater B, Eitel M, Jakob W, et al. Concatenated analysis sheds light on early metazoan evolution and fuels a modern Urmetazoon hypothesis. PLoS Biology 2009; 7:e20.

    Article  PubMed  CAS  Google Scholar 

  14. Blackstone NW. A new look at some old animals. PLoS Biol 2009; 7:e7.

    Article  PubMed  CAS  Google Scholar 

  15. Dellaporta SL, Xu A, Sagasser S, et al. Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci USA 2006; 103:8751–6.

    Article  CAS  PubMed  Google Scholar 

  16. Schierwater B. My favorite animal, Trichoplax adhaerens. Bioessays 2005; 27:1294–302.

    Article  CAS  PubMed  Google Scholar 

  17. Schierwater B, de Jong D, Desalle R. Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol 2009; 41:370–9.

    Article  CAS  PubMed  Google Scholar 

  18. Srivastava M, Begovic E, Chapman J, et al. The Trichoplax genome and the nature of placozoans. Nature 2008; 454:955–60.

    Article  CAS  PubMed  Google Scholar 

  19. Dunn CW, Hejnol A, Matus DQ, et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008; 452:745–9.

    Article  CAS  PubMed  Google Scholar 

  20. Ruiz-Trillo I, Roger AJ, Burger G et al. A phylogenomic investigation into the origin of metazoa. Mol Biol Evol 2008; 25:664–72.

    Article  CAS  Google Scholar 

  21. Lavrov DV, Forget L, Kelly M et al. Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol Biol Evol 2005; 22:1231–9.

    Article  CAS  PubMed  Google Scholar 

  22. Signorovitch AY, Buss LW, Dellaporta SL. Comparative genomics of large mitochondria in placozoans. PLoS Genet 2007; 3:e13.

    Article  PubMed  CAS  Google Scholar 

  23. DeSalle R, Schierwater B. An even “newer” animal phylogeny. Bioessays 2008; 30:1043–7.

    Article  CAS  PubMed  Google Scholar 

  24. Schierwater B, DeSalle R. Can we ever identify the Urmetazoan? 10.1093/icb/icm040. Integr Comp Biol 2007; 47:670–676.

    Article  Google Scholar 

  25. Schierwater B, Kamm K, Srivastava M, et al. The early ANTP gene repertoire: insights from the placozoan genome. PLoS ONE 2008; 3:e2457.

    Article  PubMed  CAS  Google Scholar 

  26. Yanze N, Spring J, Schmidli C et al. Conservation of Hox/ParaHox-related genes in the early development of a cnidarian. Dev Biol 2001; 236:89–98.

    Article  CAS  PubMed  Google Scholar 

  27. Quiquand M, Yanze N, Schmich J, et al. More constraint on ParaHox than Hox gene families in early metazoan evolution. Dev Biol 2009; 328:173–87.

    Article  CAS  PubMed  Google Scholar 

  28. Hui JH, Holland PW, Ferrier DE. Do cnidarians have a ParaHox cluster? Analysis of synteny around a Nematostella homeobox gene cluster. Evol Dev 2008; 10:725–30.

    Article  CAS  PubMed  Google Scholar 

  29. Chiori R, Jager M, Denker E, et al. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS ONE 2009; 4:e4231.

    Article  PubMed  CAS  Google Scholar 

  30. Schierwater B, Kuhn K. Homology of Hox genes and the zootype concept in early metazoan evolution. Mol Phylogenet Evol 1998; 9:375–81.

    Article  CAS  PubMed  Google Scholar 

  31. Cartwright P, Schierwater B, Buss LW. Expression of a Gsx parahox gene, Cnox-2, in colony ontogeny in Hydractinia (Cnidaria: Hydrozoa). J Exp Zoolog B Mol Dev Evol 2006; 306:460–9.

    Article  CAS  Google Scholar 

  32. Seo HC, Edvardsen RB, Maeland AD, et al. Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 2004; 431:67–71.

    Article  CAS  PubMed  Google Scholar 

  33. Baguna J, Riutort M. The dawn of bilaterian animals: the case of acoelomorph flatworms. Bioessays 2004; 26:1046–57.

    Article  CAS  PubMed  Google Scholar 

  34. Deutsch JS. Do acoels climb up the “Scale of Beings”? Evol Dev 2008; 10:135–40.

    Article  PubMed  Google Scholar 

  35. Kamm K, Schierwater B. Ancient complexity of the nonHox ANTP gene complement in the anthozoan Nematostella vectensis. Implications for the evolution of the ANTP superclass. J Exp Zoolog B Mol Dev Evol 2006; 306:589–96.

    Article  CAS  Google Scholar 

  36. Larroux C, Fahey B, Degnan SM, et al. The NK homeobox gene cluster predates the origin of Hox genes. Curr Biol 2007; 17:706–10.

    Article  CAS  PubMed  Google Scholar 

  37. Finnerty JR, Pang K, Burton P et al. Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science 2004; 304:1335–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Schierwater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Schierwater, B., Kamm, K. (2010). The Early Evolution of Hox Genes: A Battle of Belief?. In: Deutsch, J.S. (eds) Hox Genes. Advances in Experimental Medicine and Biology, vol 689. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6673-5_5

Download citation

Publish with us

Policies and ethics