Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 54))

Abstract

Cdc48 (alias p97, VCP) is an important motor and regulator for the turnover of ubiquitylated proteins, both in proteasomal degradation and in nonproteolytic pathways. The diverse cellular tasks of Cdc48 are controlled by a large number of cofactors. Substrate-recruiting cofactors mediate the specific recognition of ubiquitylated target proteins, whereas substrate-processing cofactors often exhibit ubiquitin ligase or deubiquitylating activities that enable them to modulate the ubiquitylation state of substrates. This chapter introduces the major groups of Cdc48 cofactors and discusses the versatile options of substrate-processing cofactors to control the fate of Cdc48 substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buchberger A. Cdc48 (p97) and its cofactors. In: Mayer RJ, Ciechanover AJ, Rechsteiner M, eds. Protein Degradation, Vol. 3: Cell Biology of the Ubiquitin-Proteasome System. Weinheim: Wiley-VCH, 2006:194–211.

    Google Scholar 

  2. Hanson PI, Whiteheart SW. AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol 2005; 6:519–29.

    Article  CAS  PubMed  Google Scholar 

  3. White SR, Lauring B. AAA+ ATPases: achieving diversity of function with conserved machinery. Traffic 2007; 8:1657–67.

    Article  CAS  PubMed  Google Scholar 

  4. Rape M, Hoppe T, Gorr I et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 2001; 107:667–77.

    Article  CAS  PubMed  Google Scholar 

  5. Pye VE, Dreveny I, Briggs LC et al. Going through the motions: the ATPase cycle of p97. J Struct Biol 2006; 156:12–28.

    CAS  PubMed  Google Scholar 

  6. Rabouille C, Kondo H, Newman R et al. Syntaxin 5 is a common component of the NSF-and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 1998; 92:603–10.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Satoh A, Warren G et al. VCIP135 acts as a deubiquitinating enzyme during p97-p47-mediated reassembly of mitotic Golgi fragments. J Cell Biol 2004; 164:973–8.

    Article  CAS  PubMed  Google Scholar 

  8. Meyer HH. Golgi reassembly after mitosis: the AAA family meets the ubiquitin family. Biochim Biophys Acta 2005; 1744:481–92.

    Article  PubMed  Google Scholar 

  9. Hoppe T, Matuschewski K, Rape M et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 2000; 102:577–86.

    Article  CAS  PubMed  Google Scholar 

  10. Ramadan K, Bruderer R, Spiga FM et al. Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 2007; 450:1258–62.

    Article  CAS  PubMed  Google Scholar 

  11. Meusser B, Hirsch C, Jarosch E et al. ERAD: the long road to destruction. Nat Cell Biol 2005; 7:766–72.

    Article  CAS  PubMed  Google Scholar 

  12. Bar-Nun S. The role of p97/Cdc48p in endoplasmic reticulum-associated degradation: from the immune system to yeast. Curr Top Microbiol Immunol 2005; 300:95–125.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson ES, Ma PC, Ota IM et al. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 1995; 270:17442–56.

    Article  CAS  PubMed  Google Scholar 

  14. Ghislain M, Dohmen RJ, Levy F et al. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J 1996; 15:4884–99.

    CAS  PubMed  Google Scholar 

  15. Richly H, Rape M, Braun S et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 2005; 120:73–84.

    Article  CAS  PubMed  Google Scholar 

  16. Janiesch PC, Kim J, Mouysset J et al. The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nat Cell Biol 2007; 9:379–90.

    Article  CAS  PubMed  Google Scholar 

  17. Kimonis VE, Fulchiero E, Vesa J et al. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim Biophys Acta 2008; 1782:744–8.

    CAS  PubMed  Google Scholar 

  18. Schuberth C, Buchberger A. UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97. Cell Mol Life Sci 2008; 65:2360–71.

    Article  CAS  PubMed  Google Scholar 

  19. Yeung HO, Kloppsteck P, Niwa H et al. Insights into adaptor binding to the AAA protein p97. Biochem Soc Trans 2008; 36:62–67.

    Article  CAS  PubMed  Google Scholar 

  20. Meyer H, Popp O. Role(s) of Cdc48/p97 in mitosis. Biochem Soc Trans 2008; 36:126–30.

    Article  CAS  PubMed  Google Scholar 

  21. Braun RJ, Zischka H. Mechanisms of Cdc48/VCP-mediated cell death: from yeast apoptosis to human disease. Biochim Biophys Acta 2008; 1783:1418–35.

    Article  CAS  PubMed  Google Scholar 

  22. Buchberger A, Howard MJ, Proctor M et al. The UBX domain: a widespread ubiquitin-like module. J Mol Biol 2001; 307:17–24.

    Article  CAS  PubMed  Google Scholar 

  23. Yuan X, Shaw A, Zhang X et al. Solution structure and interaction surface of the C-terminal domain from p47: a major p97-cofactor involved in SNARE disassembly. J Mol Biol 2001; 311:255–63.

    Article  CAS  PubMed  Google Scholar 

  24. Dreveny I, Kondo H, Uchiyama K et al. Structural basis of the interaction between the AAA ATPase p97/ VCP and its adaptor protein p47. EMBO J 2004; 23:1030–9.

    Article  CAS  PubMed  Google Scholar 

  25. Schuberth C, Richly H, Rumpf S et al. Shp1 and Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation. EMBO Rep 2004; 5:818–24.

    Article  CAS  PubMed  Google Scholar 

  26. Decottignies A, Evain A, Ghislain M. Binding of Cdc48p to a ubiquitin-related UBX domain from novel yeast proteins involved in intracellular proteolysis and sporulation. Yeast 2004; 21:127–39.

    Article  CAS  PubMed  Google Scholar 

  27. Hartmann-Petersen R, Wallace M, Hofmann K et al. The Ubx2 and Ubx3 cofactors direct Cdc48 activity to proteolytic and nonproteolytic ubiquitin-dependent processes. Curr Biol 2004; 14:824–8.

    Article  CAS  PubMed  Google Scholar 

  28. Alexandru G, Graumann J, Smith GT et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 2008; 134:804–16.

    Article  CAS  PubMed  Google Scholar 

  29. Bruderer RM, Brasseur C, Meyer HH. The AAA ATPase p97/VCP interacts with its alternative cofactors, Ufd1-Npl4 and p47, through a common bipartite binding mechanism. J Biol Chem 2004; 279:49609–16.

    Article  CAS  PubMed  Google Scholar 

  30. Rumpf S, Jentsch S. Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Mol Cell 2006; 21:261–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hitt R, Wolf DH. Der1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. FEMS Yeast Res 2004; 4:721–9.

    Article  CAS  PubMed  Google Scholar 

  32. Sato BK, Hampton RY. Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis. Yeast 2006; 23:1053–64.

    Article  CAS  PubMed  Google Scholar 

  33. Boeddrich A, Gaumer S, Haacke A et al. An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. EMBO J 2006; 25:1547–58.

    Article  CAS  PubMed  Google Scholar 

  34. Ballar P, Shen Y, Yang H et al. The role of a novel p97/valosin-containing protein-interacting motif of gp78 in endoplasmic reticulum-associated degradation. J Biol Chem 2006; 281:35359–68.

    Article  CAS  PubMed  Google Scholar 

  35. Morreale G, Conforti L, Coadwell J et al. Evolutionary divergence of valosin-containing protein/cell division cycle protein 48 binding interactions among endoplasmic reticulum-associated degradation proteins. FEBS J 2009; 276:1208–20.

    Article  CAS  PubMed  Google Scholar 

  36. Isaacson RL, Pye VE, Simpson P et al. Detailed structural insights into the p97-Npl4-Ufd1 interface. J Biol Chem 2007;282:21361–9.

    Article  CAS  PubMed  Google Scholar 

  37. DeLaBarre B, Brunger AT. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat Struct Biol 2003; 10:856–63.

    Article  CAS  PubMed  Google Scholar 

  38. Huyton T, Pye VE, Briggs LC et al. The crystal structure of murine p97/VCP at 3.6A. J Struct Biol 2003; 144:337–48.

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki T, Park H, Till EA et al. The PUB domain: a putative protein-protein interaction domain implicated in the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 2001; 287:1083–7.

    Article  CAS  PubMed  Google Scholar 

  40. Doerks T, Copley RR, Schultz J et al. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res 2002; 12:47–56.

    Article  CAS  PubMed  Google Scholar 

  41. Allen MD, Buchberger A, Bycroft M. The PUB domain functions as a p97 binding module in human peptide N-glycanase. J Biol Chem 2006; 281:25502–8.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao G, Zhou X, Wang L et al. Studies on peptide:N-glycanase-p97 interaction suggest that p97 phosphorylation modulates endoplasmic reticulum-associated degradation. Proc Natl Acad Sci USA 2007; 104:8785–90.

    Article  CAS  PubMed  Google Scholar 

  43. Li G, Zhao G, Schindelin H et al. Tyrosine phosphorylation of ATPase p97 regulates its activity during ERAD. Biochem Biophys Res Commun 2008; 375:247–51.

    Article  CAS  PubMed  Google Scholar 

  44. Madsen L, Seeger M, Semple CA et al. New ATPase regulators-p97 goes to the PUB. Int J Biochem Cell Biol 2009.

    Google Scholar 

  45. Iyer LM, Koonin EV, Aravind L. Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. Cell Cycle 2004; 3:1440–50.

    CAS  PubMed  Google Scholar 

  46. Mullally JE, Chernova T, Wilkinson KD. Doa1 is a Cdc48 adapter that possesses a novel ubiquitin binding domain. Mol Cell Biol 2006; 26:822–30.

    Article  CAS  PubMed  Google Scholar 

  47. Koegl M, Hoppe T, Schlenker S et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 1999; 96:635–44.

    Article  CAS  PubMed  Google Scholar 

  48. Aravind L, Koonin EV. The U box is a modified RING finger—a common domain in ubiquitination. Curr Biol 2000; 10: R132–4.

    Article  CAS  PubMed  Google Scholar 

  49. Ohi MD, Vander Kooi CW, Rosenberg JA et al. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol 2003; 10:250–5.

    Article  CAS  PubMed  Google Scholar 

  50. Kondo H, Rabouille C, Newman R et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 1997; 388:75–8.

    Article  CAS  PubMed  Google Scholar 

  51. Kano F, Kondo H, Yamamoto A et al. The maintenance of the endoplasmic reticulum network is regulated by p47, a cofactor of p97, through phosphorylation by cdc2 kinase. Genes Cells 2005; 10:333–44.

    Article  CAS  PubMed  Google Scholar 

  52. Hetzer M, Meyer HH, Walther TC et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol 2001; 3:1086–91.

    Article  CAS  PubMed  Google Scholar 

  53. Seeley ES, Kato M, Margolis N et al. Genomic analysis of homotypic vacuole fusion. Mol Biol Cell 2002; 13:782–94.

    Article  CAS  PubMed  Google Scholar 

  54. Uchiyama K, Jokitalo E, Kano F et al. VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo. J Cell Biol 2002; 159:855–66.

    Article  CAS  PubMed  Google Scholar 

  55. Dalal S, Rosser MF, Cyr DM et al. Distinct roles for the AAA ATPases NSF and p97 in the secretory pathway. Mol Biol Cell 2004; 15:637–48.

    Article  CAS  PubMed  Google Scholar 

  56. Meyer HH, Wang Y, Warren G. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J 2002; 21:5645–52.

    Article  CAS  PubMed  Google Scholar 

  57. Bays NW, Wilhovsky SK, Goradia A et al. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol Biol Cell 2001; 12:4114–28.

    CAS  PubMed  Google Scholar 

  58. Ye Y, Meyer HH, Rapoport TA. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 2001; 414:652–6.

    Article  CAS  PubMed  Google Scholar 

  59. Jarosch E, Taxis C, Volkwein C et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 2002; 4:134–9.

    Article  CAS  PubMed  Google Scholar 

  60. Rabinovich E, Kerem A, Frohlich KU et al. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 2002; 22:626–34.

    Article  CAS  PubMed  Google Scholar 

  61. Braun S, Matuschewski K, Rape M et al. Role of the ubiquitin-selective CDC48(UFD1/NPL4 )chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J 2002; 21:615–21.

    Article  CAS  PubMed  Google Scholar 

  62. Fu X, Ng C, Feng D et al. Cdc48p is required for the cell cycle commitment point at Start via degradation of the G1-CDK inhibitor Far1p. J Cell Biol 2003; 163:21–6.

    Article  CAS  PubMed  Google Scholar 

  63. Cao K, Nakajima R, Meyer HH et al. The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis. Cell 2003; 115:355–67.

    Article  CAS  PubMed  Google Scholar 

  64. Archambault V, Chang EJ, Drapkin BJ et al. Targeted proteomic study of the cyclin-Cdk module. Mol Cell 2004; 14:699–711.

    Article  CAS  PubMed  Google Scholar 

  65. Vong QP, Cao K, Li HY et al. Chromosome alignment and segregation regulated by ubiquitination of survivin. Science 2005; 310:1499–504.

    Article  CAS  PubMed  Google Scholar 

  66. Mouysset J, Deichsel A, Moser S et al. Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication. Proc Natl Acad Sci USA 2008; 105:12879–84.

    Article  CAS  PubMed  Google Scholar 

  67. Meyer HH, Shorter JG, Seemann J et al. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 2000; 19:2181–92.

    Article  CAS  PubMed  Google Scholar 

  68. Schuberth C, Buchberger A. Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat Cell Biol 2005; 7:999–1006.

    Article  CAS  PubMed  Google Scholar 

  69. Neuber O, Jarosch E, Volkwein C et al. Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nat Cell Biol 2005; 7:993–8.

    Article  CAS  PubMed  Google Scholar 

  70. Katiyar S, Li G, Lennarz WJ. A complex between peptide:N-glycanase and two proteasome-linked proteins suggests a mechanism for the degradation of misfolded glycoproteins. Proc Natl Acad Sci USA 2004; 101:13774–9.

    Article  CAS  PubMed  Google Scholar 

  71. Blom D, Hirsch C, Stern P et al. A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J 2004; 23:650–8.

    Article  CAS  PubMed  Google Scholar 

  72. Saeki Y, Tayama Y, Toh-e A et al. Definitive evidence for Ufd2-catalyzed elongation of the ubiquitin chain through Lys48 linkage. Biochem Biophys Res Commun 2004; 320:840–5.

    Article  CAS  PubMed  Google Scholar 

  73. Nakatsukasa K, Huyer G, Michaelis S et al. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 2008; 132:101–2.

    Article  CAS  PubMed  Google Scholar 

  74. Hoppe T, Cassata G, Barral JM et al. Regulation of the myosin-directed chaperone UNC-45 by a novel E3/E4-multiubiquitylation complex in C. elegans. Cell 2004; 118:337–49.

    Article  CAS  PubMed  Google Scholar 

  75. Kirisako T, Kamei K, Murata S et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J 2006; 25:4877–87.

    Article  CAS  PubMed  Google Scholar 

  76. Tokunaga F, Sakata S, Saeki Y et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 2009; 11:123–32.

    Article  CAS  PubMed  Google Scholar 

  77. Ballar P, Fang S. Regulation of ER-associated degradation via p97/VCP-interacting motif. Biochem Soc Trans 2008; 36:818–22.

    Article  CAS  PubMed  Google Scholar 

  78. Nijman SM, Luna-Vargas MP, Velds A et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123:773–86.

    Article  CAS  PubMed  Google Scholar 

  79. Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10:550–63.

    Article  CAS  PubMed  Google Scholar 

  80. Uchiyama K, Totsukawa G, Puhka M et al. p37 is a p97 adaptor required for Golgi and ER biogenesis in interphase and at the end of mitosis. Dev Cell 2006; 11:803–16.

    Article  CAS  PubMed  Google Scholar 

  81. Kawaguchi Y, Okamoto T, Taniwaki M et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994; 8:221–8.

    Article  CAS  PubMed  Google Scholar 

  82. Winborn BJ, Travis SM, Todi SV et al. The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J Biol Chem 2008; 283:26436–43.

    Article  CAS  PubMed  Google Scholar 

  83. Wang Q, Li L, Ye Y. Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J Cell Biol 2006; 174:963–71.

    Article  CAS  PubMed  Google Scholar 

  84. Zhong X, Pittman RN. Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates. Hum Mol Genet 2006; 15:2409–20.

    Article  CAS  PubMed  Google Scholar 

  85. Sowa ME, Bennett EJ, Gygi SP et al. Defining the human deubiquitinating enzyme interaction landscape. Cell 2009; 138:389–403.

    Article  CAS  PubMed  Google Scholar 

  86. Jentsch S, Rumpf S. Cdc48 (p97): a “molecular gearbox” in the ubiquitin pathway? Trends Biochem Sci 2007; 32:6–11.

    Article  CAS  PubMed  Google Scholar 

  87. Matsumoto M, Yada M, Hatakeyama S et al. Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J 2004; 23:659–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Buchberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Buchberger, A. (2010). Control of Ubiquitin Conjugation by Cdc48 and Its Cofactors. In: Groettrup, M. (eds) Conjugation and Deconjugation of Ubiquitin Family Modifiers. Subcellular Biochemistry, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6676-6_2

Download citation

Publish with us

Policies and ethics