Skip to main content

Animal Models for Studying the Pathophysiology of Ceramide

  • Chapter
Sphingolipids as Signaling and Regulatory Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 688))

Abstract

Bioactive sphingolipids play key roles in the regulation of several fundamental biological processes such as proliferation, apoptosis and transformation. The recent development of genetically engineered mouse (GEM) models has enabled the study of functional roles of sphingolipids in normal development and disease. In this chapter, we review the phenotypes of GEM models (knockout mice) that lack sphingolipid metabolism-related enzymes, discuss what we have learned from animal models and describe future directions of animal models in sphingolipid research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohama T, Olivera A, Edsall L et al. Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 1998; 273(37):23722–23728.

    Article  CAS  PubMed  Google Scholar 

  2. Liu H, Sugiura M, Nava VE et al. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 2000; 275(26):19513–19520.

    Article  CAS  PubMed  Google Scholar 

  3. Nava VE, Lacana E, Poulton S et al. Functional characterization of human sphingosine kinase-1. FEBS Lett 2000; 473(1):81–84.

    Article  CAS  PubMed  Google Scholar 

  4. Melendez AJ, Carlos-Dias E, Gosink M et al. Human sphingosine kinase: molecular cloning, functional characterization and tissue distribution. Gene 2000; 251(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  5. Herr DR, Fyrst H, Creason MB et al. Characterization of the Drosophila sphingosine kinases and requirement for Sk2 in normal reproductive function. J Biol Chem 2004; 279(13):12685–12694.

    Article  CAS  PubMed  Google Scholar 

  6. Nishiura H, Tamura K, Morimoto Y et al. Characterization of sphingolipid long-chain base kinase in Arabidopsis thaliana. Biochem Soc Trans 2000; 28(6):747–748.

    Article  CAS  PubMed  Google Scholar 

  7. Nagiec MM, Skrzypek M, Nagiec EE et al. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J Biol Chem 1998; 273(31):19437–19442.

    Article  CAS  PubMed  Google Scholar 

  8. Mendel J, Heinecke K, Fyrst H et al. Sphingosine phosphate lyase expression is essential for normal development in Caenorhabditis elegans. J Biol Chem 2003; 278(25):22341–22349.

    Article  CAS  PubMed  Google Scholar 

  9. Morio T, Urushihara H, Saito T et al. The Dictyostelium developmental cDNA project: generation and analysis of expressed sequence tags from the first-finger stage of development. DNA Res 1998; 5(6):335–340.

    Article  CAS  PubMed  Google Scholar 

  10. Li G, Foote C, Alexander S et al. Sphingosine-1-phosphate lyase has a central role in the development of Dictyostelium discoideum. Development (Cambridge, England) 2001; 128(18):3473–3483.

    CAS  Google Scholar 

  11. Olivera A, Kohama T, Edsall L et al. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 1999; 147(3):545–558.

    Article  CAS  PubMed  Google Scholar 

  12. Igarashi N, Okada T, Hayashi S et al. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 2003; 278(47):46832–46839.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson KR, Becker KP, Facchinetti MM et al. PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem 2002; 277(38):35257–35262.

    Article  CAS  PubMed  Google Scholar 

  14. Fukuda Y, Kihara A, Igarashi Y. Distribution of sphingosine kinase activity in mouse tissues: contribution of SPHK1. Biochemical and Biophysical Research Communications 2003; 309(1):155–160.

    Article  CAS  PubMed  Google Scholar 

  15. Allende ML, Sasaki T, Kawai H et al. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 2004; 279(50):52487–52492.

    Article  CAS  PubMed  Google Scholar 

  16. Mizugishi K, Yamashita T, Olivera A et al. Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 2005; 25(24):11113–11121.

    Article  CAS  PubMed  Google Scholar 

  17. Mizugishi K, Li C, Olivera A et al. Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. J Clin Invest 2007; 117(10):2993–3006.

    Article  CAS  PubMed  Google Scholar 

  18. Zemann B, Kinzel B, Muller M et al. Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 2006; 107(4):1454–1458.

    Article  CAS  PubMed  Google Scholar 

  19. Pappu R, Schwab SR, Cornelissen I et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science: 2007; 316(5822):295–298.

    Article  CAS  PubMed  Google Scholar 

  20. Pettus BJ, Bielawski J, Porcelli AM et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. Faseb J 2003; 17(11):1411–1421.

    Article  CAS  PubMed  Google Scholar 

  21. Kawamori T, Osta W, Johnson KR et al. Sphingosine kinase 1 is up-regulated in colon carcinogenesis. Faseb J 2006; 20(2):386–388.

    CAS  PubMed  Google Scholar 

  22. Alemany R, Meyer zu Heringdorf D, van Koppen CJ et al. Formyl peptide receptor signaling in HL-60 cells through sphingosine kinase. J Biol Chem 1999; 274(7):3994–3999.

    Article  CAS  PubMed  Google Scholar 

  23. Choi OH, Kim JH, Kinet JP. Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature 1996; 380(6575):634–636.

    Article  CAS  PubMed  Google Scholar 

  24. Ibrahim FB, Pang SJ, Melendez AJ. Anaphylatoxin signaling in human neutrophils. A key role for sphingosine kinase. J Biol Chem 2004; 279(43):44802–44811.

    Article  CAS  PubMed  Google Scholar 

  25. Melendez AJ, Ibrahim FB. Antisense knockdown of sphingosine kinase 1 in human macrophages inhibits C5a receptor-dependent signal transduction, Ca2+ signals, enzyme release, cytokine production and chemotaxis. J Immunol 2004; 173(3):1596–1603.

    CAS  PubMed  Google Scholar 

  26. Michaud J, Kohno M, Proia RL et al. Normal acute and chronic inflammatory responses in sphingosine kinase 1 knockout mice. FEBS Lett 2006; 580(19):4607–4612.

    Article  CAS  PubMed  Google Scholar 

  27. Zemann B, Urtz N, Reuschel R et al. Normal neutrophil functions in sphingosine kinase type 1 and 2 knockout mice. Immunol Lett 2007; 109(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  28. Snider AJ, Kawamori T, Bradshaw SG et al. A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis. Faseb J 2009; 23(1):143–152.

    Article  CAS  PubMed  Google Scholar 

  29. Kawamori T, Kaneshiro T, Okumura M et al. Role for sphingosine kinase 1 in colon carcinogenesis. Faseb J 2009; 23(2):405–414.

    Article  CAS  PubMed  Google Scholar 

  30. Kohno M, Momoi M, Oo ML et al. Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol Cell Biol 2006; 26(19):7211–7223.

    Article  CAS  PubMed  Google Scholar 

  31. Koch J, Gartner S, Li CM et al. Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification of the first molecular lesion causing Farber disease. J Biol Chem 1996; 271(51):33110–33115.

    Article  CAS  PubMed  Google Scholar 

  32. Li CM, Park JH, He X et al. The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis and expression. Genomics 1999; 62(2):223–231.

    Article  CAS  PubMed  Google Scholar 

  33. Li CM, Hong SB, Kopal G et al. Cloning and characterization of the full-length cDNA and genomic sequences encoding murine acid ceramidase. Genomics 1998; 50(2):267–274.

    Article  CAS  PubMed  Google Scholar 

  34. Bar J, Linke T, Ferlinz K et al. Molecular analysis of acid ceramidase deficiency in patients with Farber disease. Hum Mutat 2001; 17(3):199–209.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Z, Mandal AK, Mital A et al. Human acid ceramidase gene: novel mutations in Farber disease. Mol Genet Metab 2000; 70(4):301–309.

    Article  CAS  PubMed  Google Scholar 

  36. Muramatsu T, Sakai N, Yanagihara I et al. Mutation analysis of the acid ceramidase gene in Japanese patients with Farber disease. J Inherit Metab Dis 2002; 25(7):585–592.

    Article  CAS  PubMed  Google Scholar 

  37. Li CM, Park JH, Simonaro CM et al. Insertional mutagenesis of the mouse acid ceramidase gene leads to early embryonic lethality in homozygotes and progressive lipid storage disease in heterozygotes. Genomics 2002; 79(2):218–224.

    Article  CAS  PubMed  Google Scholar 

  38. Eliyahu E, Park JH, Shtraizent N et al. Acid ceramidase is a novel factor required for early embryo survival. Faseb J 2007; 21(7):1403–1409.

    Article  CAS  PubMed  Google Scholar 

  39. Tani M, Okino N, Mori K et al. Molecular cloning of the full-length cDNA encoding mouse neutral ceramidase. A novel but highly conserved gene family of neutral/alkaline ceramidases. J Biol Chem 2000; 275(15):11229–11234.

    Article  CAS  PubMed  Google Scholar 

  40. Okino N, Mori K, Ito M. Genomic structure and promoter analysis of the mouse neutral ceramidase gene. Biochem Biophys Res Commun 2002; 299(1):160–166.

    Article  CAS  PubMed  Google Scholar 

  41. Choi MS, Anderson MA, Zhang Z et al. Neutral ceramidase gene: role in regulating ceramide-induced apoptosis. Gene 2003; 315:113–122.

    Article  CAS  PubMed  Google Scholar 

  42. El Bawab S, Roddy P, Qian T et al. Molecular cloning and characterization of a human mitochondrial ceramidase. J Biol Chem 2000; 275(28):21508–21513.

    Article  PubMed  Google Scholar 

  43. Mitsutake S, Tani M, Okino N et al. Purification, characterization, molecular cloning and subcellular distribution of neutral ceramidase of rat kidney. J Biol Chem 2001; 276(28):26249–26259.

    Article  CAS  PubMed  Google Scholar 

  44. Yoshimura Y, Tani M, Okino N et al. Molecular cloning and functional analysis of zebrafish neutral ceramidase. J Biol Chem 2004; 279(42):44012–44022.

    Article  CAS  PubMed  Google Scholar 

  45. Yoshimura Y, Okino N, Tani M et al. Molecular cloning and characterization of a secretory neutral ceramidase of Drosophila melanogaster. J Biochem 2002; 132(2):229–236.

    CAS  PubMed  Google Scholar 

  46. Okino N, Ichinose S, Omori A et al. Molecular cloning, sequencing and expression of the gene encoding alkaline ceramidase from Pseudomonas aeruginosa. Cloning of a ceramidase homologue from Mycobacterium tuberculosis. J Biol Chem 1999; 274(51):36616–36622.

    Article  CAS  PubMed  Google Scholar 

  47. Tani M, Iida H, Ito M. O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. J Biol Chem 2003; 278(12):10523–10530.

    Article  CAS  PubMed  Google Scholar 

  48. Lundgren P, Nilsson A, Duan RD. Distribution and properties of neutral ceramidase activity in rat intestinal tract. Dig Dis Sci 2001; 46(4):765–772.

    Article  CAS  PubMed  Google Scholar 

  49. Kono M, Dreier JL, Ellis JM et al. Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J Biol Chem 2006; 281(11):7324–7331.

    Article  CAS  PubMed  Google Scholar 

  50. Obeid LM, Linardic CM, Karolak LA et al. Programmed cell death induced by ceramide. Science 1993; 259(5102):1769–1771.

    Article  CAS  PubMed  Google Scholar 

  51. Kolesnick RN, Kronke M. Regulation of ceramide production and apoptosis. Annu Rev Physiol 1998; 60:643–665.

    Article  CAS  PubMed  Google Scholar 

  52. Merrill AH Jr, Jones DD. An update of the enzymology and regulation of sphingomyelin metabolism. Biochimica et Biophysica Acta 1990; 1044(1):1–12.

    CAS  PubMed  Google Scholar 

  53. Luberto C, Yoo DS, Suidan HS et al. Differential effects of sphingomyelin hydrolysis and resynthesis on the activation of NF-kappa B in normal and SV40-transformed human fibroblasts. J Biol Chem 2000; 275(19):14760–14766.

    Article  CAS  PubMed  Google Scholar 

  54. Sandhoff K, Klein A. Intracellular trafficking of glycosphingolipids: role of sphingolipid activator proteins in the topology of endocytosis and lysosomal digestion. FEBS Lett 1994; 346(1):103–107.

    Article  CAS  PubMed  Google Scholar 

  55. Quintern LE, Schuchman EH, Levran O et al. Isolation of cDNA clones encoding human acid sphingomyelinase: occurrence of alternatively processed transcripts. The EMBO Journal 1989; 8(9):2469–2473.

    CAS  PubMed  Google Scholar 

  56. Schuchman EH, Levran O, Pereira LV et al. Structural organization and complete nucleotide sequence of the gene encoding human acid sphingomyelinase (SMPD1). Genomics 1992; 12(2):197–205.

    Article  CAS  PubMed  Google Scholar 

  57. Brady RO, Kanfer JN, Mock MB et al. The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick diseae. Proc Natl Acad Sci USA 1966; 55(2):366–369.

    Article  CAS  PubMed  Google Scholar 

  58. Schneider PB, Kennedy EP. Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease. J Lipid Res 1967; 8(3):202–209.

    CAS  PubMed  Google Scholar 

  59. Horinouchi K, Erlich S, Perl DP et al. Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. Nat Genet 1995; 10(3):288–293.

    Article  CAS  PubMed  Google Scholar 

  60. Galvan C, Camoletto PG, Cristofani F et al. Anomalous surface distribution of glycosyl phosphatidyl inositol-anchored proteins in neurons lacking acid sphingomyelinase. Mol Biol Cell 2008; 19(2):509–522.

    Article  CAS  PubMed  Google Scholar 

  61. Yu ZF, Nikolova-Karakashian M, Zhou D et al. Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production and neuronal apoptosis. J Mol Neurosci 2000; 15(2):85–97.

    Article  CAS  PubMed  Google Scholar 

  62. Petrache I, Natarajan V, Zhen L et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med 2005; 11(5):491–498.

    Article  CAS  PubMed  Google Scholar 

  63. Teichgraber V, Ulrich M, Endlich N et al. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 2008; 14(4):382–391.

    Article  PubMed  Google Scholar 

  64. Grassme H, Jendrossek V, Riehle A et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 2003; 9(3):322–330.

    Article  CAS  PubMed  Google Scholar 

  65. Paris F, Fuks Z, Kang A et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001; 293(5528):293–297.

    Article  CAS  PubMed  Google Scholar 

  66. Tomiuk S, Hofmann K, Nix M et al. Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc Natl Acad Sci USA 1998; 95(7):3638–3643.

    Article  CAS  PubMed  Google Scholar 

  67. Hofmann K, Tomiuk S, Wolff G et al. Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci USA 2000; 97(11):5895–5900.

    Article  CAS  PubMed  Google Scholar 

  68. Zumbansen M, Soffel W. Neutral sphingomyelinase 1 deficiency in the mouse causes no lipid storage disease. Mol Cell Biol 2002; 22(11):3633–3638.

    Article  CAS  PubMed  Google Scholar 

  69. Guenet JL, Stanescu R, Maroteaux P et al. Fragilitas ossium: a new autosomal recessive mutation in the mouse. J Hered 1981; 72(6):440–441.

    CAS  PubMed  Google Scholar 

  70. Sillence DO, Ritchie HE, Dibbayawan T et al. Fragilitas ossium (fro/fro) in the mouse: a model for a recessively inherited type of osteogenesis imperfecta. Am J Med Genet 1993; 45(2):276–283.

    Article  CAS  PubMed  Google Scholar 

  71. Aubin I, Adams CP, Opsahl S et al. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Nat Genet 2005; 37(8):803–805.

    Article  CAS  PubMed  Google Scholar 

  72. Stoffel W, Jenke B, Block B et al. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development. Proc Natl Acad Sci USA 2005; 102(12):4554–4559.

    Article  CAS  PubMed  Google Scholar 

  73. Huitema K, van den Dikkenberg J, Brouwers JF et al. Identification of a family of animal sphingomyelin synthases. EMBO 2004; 23(1):33–44.

    Article  CAS  Google Scholar 

  74. Yamaoka S, Miyaji M, Kitano T et al. Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J Biol Chem 2004; 279(18):18688–18693.

    Article  CAS  PubMed  Google Scholar 

  75. Miyaji M, Jin ZX, Yamaoka S et al. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. J Exp Med 2005; 202(2):249–259.

    Article  CAS  PubMed  Google Scholar 

  76. Van der Luit AH, Budde M, Zerp S et al. Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin-and cholesterol-deficiency in lipid rafts. Biochem J 2007; 401(2):541–549.

    Article  PubMed  Google Scholar 

  77. Hailemariam TK, Huan C, Liu J et al. Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arterioscler Thromb Vasc Biol 2008; 28(8):1519–1526.

    Article  Google Scholar 

  78. Van Veldhoven PP, Gijsbers S, Mannaerts GP et al. Human sphingosine-1-phosphate lyase: cDNA cloning, functional expression studies and mapping to chromosome 10q22(1). Biochimica et Biophysica Acta 2000; 1487(2–3):128–134.

    Google Scholar 

  79. Van Veldhoven PP. Sphingosine-1-phosphate lyase. Methods in Enzymology 2000; 311:244–254.

    Article  PubMed  Google Scholar 

  80. Genter MB, Van Veldhoven PP, Jegga AG et al. Microarray-based discovery of highly expressed olfactory mucosal genes: potential roles in the various functions of the olfactory system. Physiol Genomics 2003; 16(1):67–81.

    Article  CAS  PubMed  Google Scholar 

  81. Schwab SR, Pereira JP, Matloubian M et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 2005; 309(5741):1735–1739.

    Article  CAS  PubMed  Google Scholar 

  82. Reiss U, Oskouian B, Zhou J et al. Sphingosine-phosphate lyase enhances stress-induced ceramide generation and apoptosis. J Biol Chem 2004; 279(2):1281–1290.

    Article  CAS  PubMed  Google Scholar 

  83. Oskouian B, Sooriyakumaran P, Borowsky AD et al. Sphingosine-1-phosphate lyase potentiates apoptosis via p53-and p38-dependent pathways and is down-regulated in colon cancer. Proc Natl Acad Sci USA 2006; 103(46):17384–17389.

    Article  CAS  PubMed  Google Scholar 

  84. Schmahl J, Raymond CS, Soriano P. PDGF signaling specificity is mediated through multiple immediate early genes. Nat Genet 2007; 39(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  85. Holland WL, Brozinick JT, Wang LP et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-and obesity-induced insulin resistance. Cell Metab 2007; 5(3):167–179.

    Article  CAS  PubMed  Google Scholar 

  86. Coetzee T, Fujita N, Dupree J et al. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 1996; 86(2):209–219.

    Article  CAS  PubMed  Google Scholar 

  87. Graf C, Zemann B, Rovina P et al. Neutropenia with impaired immune response to Streptococcus pneumoniae in ceramide kinase-deficient mice. J Immunol 2008; 180(5):3457–3466.

    Google Scholar 

  88. Jeckel D, Karrenbauer A, Burger KN et al. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 1992; 117(2):259–267.

    Article  CAS  PubMed  Google Scholar 

  89. Yamashita T, Wada R, Sasaki T et al. A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 1999; 96(16):9142–9147.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Kawamori, T. (2010). Animal Models for Studying the Pathophysiology of Ceramide. In: Chalfant, C., Poeta, M.D. (eds) Sphingolipids as Signaling and Regulatory Molecules. Advances in Experimental Medicine and Biology, vol 688. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6741-1_7

Download citation

Publish with us

Policies and ethics