Skip to main content

Kinetic Theory of Superthermal Electron Transport

  • Chapter
  • First Online:
Kinetic Theory of the Inner Magnetospheric Plasma

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 372))

  • 1174 Accesses

Abstract

It is important to develop a comprehensive kinetic theory of superthermal electron transport that is equally valid in the ionosphere and in the plasmasphere, and that self-consistently couples the conjugate magnetospheric hemispheres. It can be shown that such a self-consistent approach produces significant changes in the superthermal electron distributions compared with “pure” ionospheric or plasmaspheric calculations. In order to develop such an approach, it is necessary to consider a numerical solution of the kinetic equation for the superthermal electrons that is equally valid for the entire geomagnetic field line, including the transport of these electrons around the globe. Such an approach is presented in this chapter in a rather general form that includes relativistic electrons and highly non-steady state conditions like, for example, artificial electron beam injections from spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel, B., Thorne, R.M.: Electron scattering loss in the Earth's inner magnetosphere. 2. Sensitivity to model parameters. J. Geophys. Res. 103, 2397–2407 (1998)

    Article  ADS  Google Scholar 

  • Albert, J.M.: Analysis of quasi-linear diffusion coefficients. J. Geophys. Res. 104, 2429–2441 (1999)

    Article  ADS  Google Scholar 

  • Alfvén, H., Fälthammar, C.-G.: Cosmical Electrodynamics, Fundamental Principles. Oxford University Press, London (1963)

    MATH  Google Scholar 

  • Anderson, D.A., Tannehill, J.C., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer. Hemisphere Publishing, Washington, DC (1984)

    MATH  Google Scholar 

  • Anderson, P.C., Carpenter, D.L., Tsuruda, K., Mukai, T., Rich, F.J.: Multisatellite observations of rapid subauroral ion drifts (SAID). J. Geophys. Res. 106, 29585–29599 (2001)

    Article  ADS  Google Scholar 

  • Arnoldy, R.L.: Fine structure and pitch angle dependence of synchronous orbit electron injections. J. Geophys. Res. 91, 13411–13421 (1986)

    Article  ADS  Google Scholar 

  • Arnoldy, R.L., Moore, T.E.: Longitudinal structure of substorm injections at synchronous orbit. J. Geophys. Res. 88, 6213–6220 (1983)

    Article  ADS  Google Scholar 

  • Avakyan, S.V., Vlasov, M.N., Krinberg, I.A.: Comparison of the fluxes and spectra of Auger electrons and photoelectrons in the Earth's ionosphere and plasma sphere. Geomagn. Aeron. 17, 54–57 (1977)

    ADS  Google Scholar 

  • Banks, P.M., Nagy, A.F.: Concerning the influence of elastic scattering upon photoelectron transport and escape. J. Geophys. Res. 75, 1902–1910 (1970)

    Article  ADS  Google Scholar 

  • Banks, P.M., Chappell, C.R., Nagy, A.F.: A new model for the interaction of auroral electrons with the atmosphere: Spectral degradation, backscatter optical emission, and ionization. J. Geophys. Res. 79, 1459–1470 (1974)

    Article  ADS  Google Scholar 

  • Banks, P.M., Fraser-Smith, A.C., Gilchrist, B.E., Harker, K.J., Storey, L.R.O., Williamson, P.R.: New concepts in ionospheric modification. AFGL-TR-88-0133. Air Force Geophysics Laboratory (1987)

    Google Scholar 

  • Banks, P.M., Gilchrist, B.E., Neubert, T., Meyers, N., Raitt, W.J., Williamson, P.R., Fraser-Smith, A.C., Sasaki, S.: Charge-2 rocket observations of vehicle charging and charge neutralization. Adv. Space Res. 10(7), 133–136 (1990)

    Article  ADS  Google Scholar 

  • Barfield, J.N., DeForest, S.E., Williams, D.J.: Simultaneous observations of substorm electrons: Explorer 45 and ATS 5. J. Geophys. Res. 82, 531–536 (1977)

    Article  ADS  Google Scholar 

  • Baumjohann, W., Paschmann, G., Cattell, C.A.: Average plasma properties in the central plasma sheet. J. Geophys. Res. 94, 6597–6606 (1989)

    Article  ADS  Google Scholar 

  • Beliaev, S.T., Budker, G.I.: Relativistic kinetic equation. DAN 107, 807–810 (1956) [English translation: Sov. Phys. Dokl. 1, 218–222 (1956)]

    Google Scholar 

  • Bell, K.L., Stafford, R.P.: Photoionization cross sections for atomic oxygen. Planet. Space Sci. 40, 1419–1424 (1992)

    Article  ADS  Google Scholar 

  • Beutier, T., Boscher, D.: A three-dimensional analysis of the electron radiation belt by the Salammbô. J. Geophys. Res. 100, 14853–14861 (1995)

    Article  ADS  Google Scholar 

  • Bilitza, D.: Progress report on IRI status. Adv. Space Res. 10(11), 3–5 (1990)

    Article  ADS  Google Scholar 

  • Birn, J., Thomsen, M.F., Borovsky, J.E., Reeves, G.D., McComas, D.J., Belian, R.D.: Characteristic plasma properties during dispersionless substorm injections at geosynchronous orbit. J. Geophys. Res. 102, 2309–2324 (1997)

    Article  ADS  Google Scholar 

  • Boonsiriseth, A., Thorne, R.M., Lu, G., Jordanova, V.K., Thomsen, M.F., Ober, D.M., Ridley, A.J.: A semiempirical equatorial mapping of AMIE convection electric potentials (MACEP) for the January 10, 1997, magnetic storm, J. Geophys. Res. 106, 12, 903, (2001)

    Google Scholar 

  • Borovsky, J.E., Thomsen, M.F., McComas, D.J.: The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin? J. Geophys. Res. 102, 22089–22097 (1997)

    ADS  Google Scholar 

  • Borovsky, J.E., Thomsen, M.F., Elphic, R.C.: The driving of the plasma sheet by the solar wind. J. Geophys. Res. 103, 17617–17639 (1998)

    Article  ADS  Google Scholar 

  • Bourdarie, S., Boscher, D., Beutier, T., Sauvaud, J.-A., Blanc, M.: Magnetic storm modeling in the Earth's electron belt by the Salammbô code. J. Geophys. Res. 101, 27171–21176 (1996)

    Article  ADS  Google Scholar 

  • Bourdarie, S., Boscher, D., Beutier, T., Sauvaud, J.-A., Blanc, M.: Electron and proton radiation belt dynamic simulations during storm periods: A new asymmetric convection–diffusion model J. Geophys. Res. 102, 17541–17552 (1997)

    Article  ADS  Google Scholar 

  • Brice, N.M.: Bulk motion of the magnetosphere. J. Geophys. Res. 72, 5193–5211 (1967)

    Article  ADS  Google Scholar 

  • Buchanan, H.L.: Electron beam propagation in the ion-focused regime. Phys. Fluids 30, 221–231 (1987)

    Article  ADS  Google Scholar 

  • Buonsanto, M.J.: Comparison of incoherent scatter observations of electron density, and electron and ion temperature at Millstone Hill with the international reference ionosphere. J. Atmos. Terr. Phys. 51, 441–468 (1989)

    Article  ADS  Google Scholar 

  • Burch, J.L., Mende, S.B., Mitchell, D.G., et al.: Views of Earth's magnetosphere with the IMAGE satellite. Science 291, 619–624 (2001)

    Article  ADS  Google Scholar 

  • Burke, W.J., Rubin, A.G., Hardy, D.A., Holeman, E.G.: Banded electron structures in the plasmasphere. J. Geophys. Res. 100, 7759–7769 (1995)

    Article  ADS  Google Scholar 

  • Burke, W.J., Maynard, N.C., Hagan, M.P., Wolf, R.A., Wilson, G.R., Gentile, L.C., Gussenhoven, M.S., Huang, C.Y., Garner, T.W., Rich, F.J.: Electrodynamics of the inner magnetosphere observed in the dusk sector by CRRES and DMSP during the magnetic storm of June 4–6, 1991. J. Geophys. Res. 103, 29399–29418 (1998)

    Article  ADS  Google Scholar 

  • Carpenter, D.L., Park, C.G.: On what ionospheric workers should know about the plasmapause–plasmasphere. Rev. Geophys. 11, 133–154 (1973)

    Article  ADS  Google Scholar 

  • Chandler, M.O., Kozyra, J.U., Horwitz, J.L., Comfort, R.H., Brace, L.C.: Modeling of the thermal plasma in the outer plasmasphere – a magnetospheric heat source. In: Moore, T.E., Waite, J.H. (eds.) Modeling Magnetospheric Plasma. Geophys. Monogr. Ser., vol. 44, pp. 101–105. AGU, Washington, DC (1988)

    Chapter  Google Scholar 

  • Chen, M.W., Schulz, M., Lyons, L.R., Gorney, D.J.: Stormtime transport of ring current and radiation belt ions. J. Geophys. Res. 98, 3835–3849 (1993)

    Article  ADS  Google Scholar 

  • Chen, M.W., Lyons, L.R., Schulz, M.: Simulations of phase space distributions of storm-time proton ring current. J. Geophys. Res. 99, 5745–5759 (1994)

    Article  ADS  Google Scholar 

  • Chen, M.W., Schulz, M., Lyons, L.R.: Modeling of ring current formation and decay: A review. In: Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., Arballo, J.K. (eds.) Magnetic Storms. Geophys. Monogr. Ser., vol. 98, pp. 173–186. AGU, Washington, DC (1997)

    Chapter  Google Scholar 

  • Chen, M.W., Roeder, J.R., Fennell, J.F., Lyons, L.R., Lambour, R.L., Schulz, M.: Proton ring current pitch angle distributions: Comparison of simulations with CRRES observations. J. Geophys. Res. 104, 17379–17389 (1999)

    Article  ADS  Google Scholar 

  • Chen, M.W., Schulz, M., Lu, G., Lyons, L.R.: Quasi-steady drift paths in a model magnetosphere with AMIE electric field: Implications for ring current formation. J. Geophys. Res. 108(A5), 1180 (2003). doi: 10.1029/2002JA009584

    Article  Google Scholar 

  • Christon, S.P., Williams, D.J., Mitchell, D.G., Frank, L.A., Huang, C.Y.: Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions. J. Geophys. Res. 94, 13409–13424 (1989)

    Article  ADS  Google Scholar 

  • Comfort, R.H., Richards, P.G., Craven, P.D., Chandler, M.O.: Problems in simulating ion temperatures in low density flux tubes. In: Horwitz, J.L., Singh, N., Burch, J.L. (eds.) Cross-Scale Coupling in Space Plasmas. Geophys. Monogr. Ser., vol. 93, pp. 155–160. AGU, Washington, DC (1995)

    Chapter  Google Scholar 

  • Conway, R.R.: Photoabsorption and Photoionization Cross Sections: A Compilation of Recent Measurements. Memo Rep. 6155. Naval Research Laboratory, Washington, DC (1988)

    Google Scholar 

  • Corcuff, P., Corcuff, J., Carpenter, D.L., Chappell, C.R., Vigneron, J., Kleimenova, N.: La plasmasphère en période de recouvrement magnétique. Etude combinée des données satellites OGO 4, OGO 5 et des sekfflements reçus au sol. Ann. Geophys. 28, 679–696 (1972)

    Google Scholar 

  • Daglis, I.A., Kozyra, J.U.: Outstanding issues of ring current dynamics. J. Atmos. Solar-Terr. Phys. 64, 253–264 (2002)

    Article  ADS  Google Scholar 

  • Davidson, R.C.: Physics of Nonneutral Plasmas. Addison-Wesley, New York (1990)

    Google Scholar 

  • DeForest, S.E., McIlwain, C.E.: Plasma clouds in the magnetosphere. J. Geophys. Res. 76, 3587–3611 (1971)

    Article  ADS  Google Scholar 

  • Doering, J.P., Peterson, W.K., Bostrom, C.O., Potemra, T.A.: High resolution daytime photoelectron energy spectra from AE-E. Geophys. Res. Lett. 3, 129–131 (1976)

    Article  ADS  Google Scholar 

  • Eather, R.H., Mende, S.B., Judge, R.J.R.: Plasma injection at synchronous orbit and spatial and temporal auroral morphology. J. Geophys. Res. 81, 2805–2824 (1976)

    Article  ADS  Google Scholar 

  • Ebihara, Y., Ejiri, M.: Simulation study on fundamental properties of the storm-time ring current. J. Geophys. Res. 105, 15843–15859 (2000)

    Article  ADS  Google Scholar 

  • Ejiri, M.: Trajectory traces of charged particles in the magnetosphere. J. Geophys. Res. 83, 4798–4810 (1978)

    Article  ADS  Google Scholar 

  • Ejiri, M., Hoffman, R.A., Smith, P.H.: The convection electric field model for the magnetosphere based on Explorer 45 observations. J. Geophys. Res. 83, 4811–4815 (1978)

    Article  ADS  Google Scholar 

  • Ejiri, M., Hoffman, R.A., Smith, P.H.: Energetic particle penetrations into the inner magnetosphere. J. Geophys. Res. 85, 653–663 (1980)

    Article  ADS  Google Scholar 

  • Evans, D.S., Moore, T.E.: Precipitating electrons associated with the diffuse aurora: Evidence for electrons of atmospheric origin in the plasma sheet. J. Geophys. Res. 84, 6451–6457 (1979)

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Popecki, M., Möbius, E., Jordanova, V.K., Desai, M.I., Fitzenreiter, R.J., Ogilvie, K.W., Matsui, H., Lepri, S., Zurbuchen, T., Mason, G.M., Lawrence, G.R., Burlaga, L.F., Lepping, R.P., Dwyer, J.R., McComas, D.: Wind and ACE observations during the great flow of 1–4 May 1998: Relation to solar activity and implications for the magnetosphere. J. Geophys. Res. 107 (2002). doi: 10.1029/2001JA000188

    Google Scholar 

  • Fennelly, J.A., Torr, D.G.: Photoionization and photoabsorption cross sections of O, N2, O2, and N for aeronomic calculations. At. Data Nucl. Data Tables 51, 321–363 (1992)

    Article  ADS  Google Scholar 

  • Fisher, A.S., Pantell, R.H., Feinstein, J., Deloney, T.L., Reid, M.B.: Propagation of a picosecond-duration, relativistic electron beam through hydrogen at atmospheric pressures. J. Appl. Phys. 64, 575–580 (1988)

    Article  ADS  Google Scholar 

  • Fok, M.-C., Kozyra, J.U., Nagy, A.F., Rasmussen, C.E., Khazanov, G.V.: A decay model of equatorial ring current and the associated aeronomical consequences. J. Geophys. Res. 98, 19381–19393 (1993)

    Article  ADS  Google Scholar 

  • Foster, J.C., Holt, J.M., Musgrove, R.G., Evans, D.S.: Ionospheric convection associated with discrete levels of particle precipitation. Geophys. Res. Lett. 13, 656–659 (1986)

    Article  ADS  Google Scholar 

  • Gastman, I.J.: Theoretical investigation and plasma line measurements of conjugate photoelectrons in the ionosphere. Ph.D. Thesis, University of Michigan, Ann Arbor (1973)

    Google Scholar 

  • Gefan, G.D.: The ionosphere–plasmasphere transport of suprathermal electrons. Ph.D. Thesis, Irkutsk University, Irkutsk, Russia (1985)

    Google Scholar 

  • Gefan, G.D., Khazanov, G.V.: Non-steady-state conditions of filling up the geomagnetic trap with superthermal electrons. Ann. Geophys. 8, 519–525 (1990)

    ADS  Google Scholar 

  • Gefan, G.D., Trukhan, A.A., Khazanov, G.V.: A method of calculating auroral electron fluxes. Ann. Geophys. 3, 135–140 (1985)

    ADS  Google Scholar 

  • Gloeckler, G., Fisk, L.A., Hefti, S., Schwadron, N.A., Zurbuchen, T.H., Ipavich, F.M., Geiss, J., Bochsler, P., Wimmer-Schweingruber, R.F.: Unusual composition of the solar wind in the 2–3 May 1998 CME observed with SWICS on ACE. Geophys. Res. Lett. 26, 157–160 (1999)

    Article  ADS  Google Scholar 

  • Gosling, J.T.: The solar flare myth. J. Geophys. Res. 98, 18937–18949 (1993)

    Article  ADS  Google Scholar 

  • Guiter, S.M., Gombosi, T.I., Rasmussen, C.E.: Two-stream modeling of plasmaspheric refilling. J. Geophys. Res. 100, 9519–9526 (1995)

    Article  ADS  Google Scholar 

  • Habash-Krause, L.: The relativistic beam-atmosphere interaction. Ph.D. Thesis, University of Michigan, Ann Arbor (1998)

    Google Scholar 

  • Hamilton, D.C., Gloeckler, G., Ipavich, F.M., Studemann, W., Wilkey, B., Kremser, G.: Ring current development during the great geomagnetic storm of February 1986. J. Geophys. Res. 93, 14343–14355 (1988)

    Article  ADS  Google Scholar 

  • Hamilton, R.J, Lu, E.T., Petrosian, V.: Numerical solution of the time-dependent kinetic equation for electrons in magnetized plasma. Astrophys. J. 354, 726–734 (1990)

    Article  ADS  Google Scholar 

  • Hamlin, D.A., Karplus, R., Vik, R.C., Watson, K.M.: Mirror and azimuthal drift frequencies for geomagnetically trapped particles. J. Geophys. Res. 66, 1–4 (1961)

    Article  ADS  Google Scholar 

  • Hedin, A.E.: Extension of the MSIS thermospheric model into the middle and lower atmosphere. J. Geophys. Res. 96, 1159–1172 (1991)

    Article  ADS  Google Scholar 

  • Hinteregger, H.E.: Representations of solar EUV fluxes for aeronomical applications. Adv. Space Res. 1, 39–52 (1981)

    Article  ADS  Google Scholar 

  • Hinton, F.L.: Collisional transport in plasma. In: Rosenbluth, M.N., Sagdeev, R.Z. (eds.) Handbook of Plasma Physics, vol. 1. North-Holland, Amsterdam (1983a)

    Google Scholar 

  • Hinton, F.L.: Collisional transport in plasma. In: Galeev, A.A., Sudan, R.N. (eds.) Basic Plasma Physics, vol. 1, pp. 147–197. North-Holland, New York (1983b)

    Google Scholar 

  • Huang, C.Y., Frank, L.A.: A statistical study of the central plasma sheet: Implications for substorm models. Geophys. Res. Lett. 13, 652–655 (1986)

    Article  ADS  Google Scholar 

  • Hultqvist, B., Aparicio, B., Borg, H., Arnoldy, R., Moore, T.E.: Decrease of keV electron and ion fluxes in the dayside magnetosphere during the early phase of magnetospheric disturbances. Planet. Space Sci. 29, 107–126 (1981)

    Article  ADS  Google Scholar 

  • Humphries, Jr., S.: Charged Particle Beams. Wiley-Interscience, New York (1990)

    Google Scholar 

  • Jasperse, J.R., Smith, E.R.: The photoelectron flux in the Earth's ionosphere at energies in the vicinity of photoionization peaks. Geophys. Res. Lett. 5, 843–846 (1978)

    Article  ADS  Google Scholar 

  • Jordanova, V.K., Kistler, L.M., Kozyra, J.U., Khazanov, G.V., Nagy, A.F.: Collisional losses of ring current ions. J. Geophys. Res. 101, 111–126 (1996)

    Article  ADS  Google Scholar 

  • Jordanova, V.K., Kozyra, J.U., Nagy, A.F., Khazanov, G.V.: Kinetic model of the ring current-atmosphere interactions. J. Geophys. Res. 102, 14279–14291 (1997)

    Article  ADS  Google Scholar 

  • Jordanova, V.K., Kistler, L.M., Farrugia, C.J., Torbert, R.B.: Effects of inner magnetospheric convection on ring current dynamics: March 10–12, 1998. J. Geophys. Res. 106, 29705–29720 (2001)

    Article  ADS  Google Scholar 

  • Kaye, S.M., Kivelson, M.G.: Time dependent convection electric fields and plasma injection. J. Geophys. Res. 84, 4183–4188 (1979)

    Article  ADS  Google Scholar 

  • Kerns, K.J., Hardy, D.A., Gussenhoven, M.S.: Modeling of convection boundaries seen by CRRES in 120-eV to 28-keV particles. J. Geophys. Res. 99, 2403–2414 (1994)

    Article  ADS  Google Scholar 

  • Khazanov, G.V.: The Kinetics of the Electron Plasma Component of the Upper Atmosphere. Nauka, Moscow (1979) [English translation: #80-50707, National Translation Center, Washington, DC (1980)]

    Google Scholar 

  • Khazanov, G.V., Gefan, G.D.: The kinetics of ionosphere–plasmasphere transport of superthermal electrons. Phys. Solariterr. Potsdam 19, 65–80 (1982)

    Google Scholar 

  • Khazanov, G.V., Liemohn, M.W.: Non-steady-state ionosphere–plasmasphere coupling of superthermal electrons. J. Geophys. Res. 100, 9669–9681 (1995)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Liemohn, M.W.: Comparison of photoelectron theory against observations. In: Horwitz, J.L., Gallagher, D.L., Peterson, W.K. (eds.) Geospace Mass and Energy Flow. Geophys. Monogr. Ser., vol. 104, pp. 333–342. AGU, Washington, DC (1998)

    Google Scholar 

  • Khazanov, G.V., Liemohn, M.W.: Transport of photoelectrons in the nightside magnetosphere. J. Geophys. Res. (2002). doi: 10.1029/2001JA000163

    Google Scholar 

  • Khazanov, G.V., Koen, M.A., Baraishhuk, S.I.: Trapped photoelectrons and secondary electrons in the midlatitude plasmasphere, I, II. Cosmic Res. 15(68–72), 379–382 (1977)

    ADS  Google Scholar 

  • Khazanov, G.V., Koen, M.A., Burenkov, S.I.: A numerical solution to the kinetic equation for photoelectrons taking into account the free and trapped zones. Cosmic Res. 17, 741–747 (1979)

    ADS  Google Scholar 

  • Khazanov, G.V., Koen, M.A., Konikov, Yu.V., Sidorov, I.M.: Simulation of ionosphere–plasmasphere coupling taking into account ion inertia and temperature anisotropy. Planet. Space Sci. 32, 585–598 (1984)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Gombosi, T.I., Nagy, A.F., Koen, M.A.: Analysis of the ionosphere–plasmasphere transport of superthermal electrons. 1. Transport in the plasmasphere. J. Geophys. Res. 97, 16887–16895 (1992)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Liemohn, M.W., Gombosi, T.I., Nagy, A.F.: Non-steady-state transport of superthermal electrons in the plasmasphere. Geophys. Res. Lett. 20, 2821–2824 (1993a)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Neubert, T., Gefan, G.D., Trukhan, A.A., Mishin, E.V.: A kinetic description of electron beam ejection from spacecraft. Geophys. Res. Lett. 20, 1999–2002 (1993b)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Neubert, T., Gefan, G.D.: A unified theory of ionosphere–plasmasphere transport of suprathermal electrons. IEEE Trans. Plasma Sci. 22, 187–198 (1994)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Moore, T.E., Liemohn, M.W., Jordanova, V.K., Fok, M-C.: Global, collisional model of high-energy photoelectrons. Geophys. Res. Lett. 23, 331–334 (1996)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Liemohn, M.W., Kozyra, J.U., Moore, T.E.: Inner magnetospheric superthermal electron transport: Photoelectron and plasma sheet electron sources. J. Geophys. Res. 103, 23485–23501 (1998)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Liemohn, M.W., Krivorutsky, E.N., Kozyra, J.U., Gilchrist, B.E.: Interhemispheric transport of relativistic electron beams. Geophys. Res. Lett. 26, 581–584 (1999a)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Liemohn, M.W., Krivorutsky, E.N., Albert, J.M., Kozyra, J.U., Gilchrist, B.E.: Relativistic electron beam propagation in the Earth's magnetosphere. J. Geophys. Res. 104, 28587–28599 (1999b)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Liemohn, M.W., Krivorutsky, E.N., Albert, J.M., Kozyra, J.U., Gilchrist, B.E.: On the influence of the initial pitch angle distribution on relativistic electron beam dynamics. J. Geophys. Res. 105, 16093–16094 (2000a)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Liemohn, M.W., Kozyra, J.U.: Global energy deposition to the topside ionosphere from superthermal electrons. J. Atmos. Solar-Terr. Phys. 62, 947–954 (2000b)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Liemohn, M.W., Newman, T.S., Fok, M.-C., Spiro, R.W.: Self-consistent magnetosphere-ionosphere coupling: Theoretical studies. J. Geophys. Res. (2003b). doi: 10.1029/2002JA009624

    Google Scholar 

  • Khazanov, G.V., Liemohn, M.W., Newman, T.S., Fok, M.-C., Ridley, A.J.: Magnetospheric convection electric field dynamics and stormtime particle energization: Case study of the magnetic storm of 4 May 1998. Ann. Geophys. 22, 497–510 (2004a)

    Article  ADS  Google Scholar 

  • Khazanov, G.V., Liemohn, M.W., Fok, M.-C., Newman, T.S., Ridley, A.J.: Stormtime particle energization with AMIE potentials. J. Geophys. Res. 109, A05209 (2004b). doi: 10.1029/2003JA010186

    Article  ADS  Google Scholar 

  • Koons, H.C., Fennell, J.F.: Particle and wave dynamics during plasma injections. J. Geophys. Res. 88, 6221–6229 (1983)

    Article  ADS  Google Scholar 

  • Kozyra, J.U., Valladares, C.E., Carlson, H.C., Buonsanto, M.J., Slater, D.W.: A theoretical study of seasonal and solar cycle variations of stable aurora red arcs. J. Geophys. Res. 95, 12219–12234 (1990)

    Article  ADS  Google Scholar 

  • Kozyra, J.U., Fok, M.-C., Sanchez, E.R., Evans, D.S., Hamilton, D.C., Nagy, A.F.: The role of precipitation losses in producing the rapid early recovery phase of the great magnetic storm of February 1986. J. Geophys. Res. 103, 6801–6814 (1998)

    Article  ADS  Google Scholar 

  • Kozyra, J.U., Liemohn, M.W., Clauer, C.R., Ridley, A.J., Thomsen, M.F., Borovsky, J.E., Roeder, J.R., Jordanova, V.K.: Two-step Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm. J. Geophys. Res. 107(A8), 1224 (2002). doi: 10.1029/2001JA000023

    Article  Google Scholar 

  • Krinberg, I.A., Matafonov, G.K.: Coulomb collision-induced photoelectron trapping by the geomagnetic field and electron gas heating in the plasmasphere. Ann. Geophys. 34, 89–96 (1978)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Physical Kinetics. Pergamon, New York (1981)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Quantum Electrodynamics. Pergamon, New York (1982)

    Google Scholar 

  • Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • Lejeune, G.: “Two stream” photoelectron distributions with interhemispheric coupling: A mixing of analytical and numerical methods. Planet. Space Sci. 27, 561–576 (1979)

    Article  ADS  Google Scholar 

  • Lejeune, J., Wormser, F.: Diffusion of photoelectrons along a field line inside the plasmasphere. J. Geophys. Res. 81, 2900–2916 (1976)

    Article  ADS  Google Scholar 

  • LeVeque, R.J., Numerical Methods for Conservation Laws, 2nd ed. Birkhauser, Boston, MA (1992)

    Book  MATH  Google Scholar 

  • Liemohn, M.W., Khazanov, G.V.: Non-steady-state coupling processes in superthermal electron transport. In: Horwitz, J.L., Singh, N., Burch, J.L. (eds.) Cross-Scale Coupling in Space Plasmas. Geophys. Monogr. Ser., vol. 93, pp. 181–191. AGU, Washington, DC (1995)

    Chapter  Google Scholar 

  • Liemohn, M.W., Khazanov, G.V.: Determining the significance of electrodynamic coupling between superthermal electrons and thermal plasma. In: Horwitz, J.L., Gallagher, D.L., Peterson, W.K. (eds.) Geospace Mass and Energy Flow. Geophys. Monogr. Ser., vol. 104, pp. 343–348. AGU, Washington, DC (1998)

    Google Scholar 

  • Liemohn, M.W., Khazanov, G.V., Moore, T.E., Guiter, S.M.: Self-consistent superthermal electron effects on plasmaspheric refilling. J. Geophys. Res. 102, 7523–7536 (1997a)

    Article  ADS  Google Scholar 

  • Liemohn, M.W., Khazanov, G.V., Kozyra, J.U.: Guided plasmaspheric hiss interactions with superthermal electrons. 1. Resonance curves and timescales. J. Geophys. Res. 102, 11619–11623 (1997b)

    Article  ADS  Google Scholar 

  • Liemohn, M.W., Khazanov, G.V., Kozyra, J.U.: Banded electron structure formation in the inner magnetosphere. Geophys. Res. Lett. 25, 877–880 (1998)

    Article  ADS  Google Scholar 

  • Liemohn, M.W., Kozyra, J.U., Jordanova, V.K., Khazanov, G.V., Thomsen, M.F., Cayton, T.E.: Analysis of early phase ring current recovery mechanisms during geomagnetic storms. Geophys. Res. Lett. 26, 2845–2848 (1999)

    Article  ADS  Google Scholar 

  • Liemohn, M.W., Kozyra, J.U., Thomsen, M.F., Roeder, J.L., Lu, G., Borovsky, J.E., Cayton, T.E.: Dominant role of the asymmetric ring current in producing the stormtime Dst*. J. Geophys. Res. 106, 10883–10904 (2001)

    Article  ADS  Google Scholar 

  • Liemohn, M.W., Kozyra, J.U., Hairston, M.R., Weimer, D.M., Lu, G., Ridley, A.J., Zurbuchen, T.H., Skoug, R.M.: Consequences of a saturated convection electric field on the ring current. Geophys. Res. Lett. 29(9), 1348 (2002). doi: 10.1029/2001GL014270

    Article  ADS  Google Scholar 

  • Link, R.: Feautrier solution of the electron transport equation. J. Geophys. Res. 97, 159–169 (1992)

    Article  ADS  Google Scholar 

  • Lummerzheim, D., Rees, M.N., Anderson, H.R.: Angular dependent transport of auroral electrons in the upper atmosphere. Planet. Space Sci. 37, 109–129 (1989)

    Article  ADS  Google Scholar 

  • Lyons, L.R.: Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves. J. Plasma Phys. 12, 417–432 (1974)

    Article  ADS  Google Scholar 

  • Lyons, L.R., Williams, D.J.: Quantitative Aspects of Magnetospheric Physics. Springer, New York (1984)

    Google Scholar 

  • Lyons, L.R., Thorne, R.M., Kennel, C.F.: Pitch-angle diffusion of radiation belt electrons with the plasmasphere. J. Geophys. Res. 77, 3455–3474 (1972)

    Article  ADS  Google Scholar 

  • Ma, C.-Y., Summers, D.: Correction to “Formation of power-law energy spectra in space plasmas by stochastic acceleration due to whistler-mode waves”. Geophys. Res. Lett. 26, 1121–1124 (1999)

    Article  ADS  Google Scholar 

  • Mantas, G.P.: The theory of photoelectron thermalization and transport in the ionosphere. Planet. Space Sci. 23, 337–354 (1975)

    Article  ADS  Google Scholar 

  • Mantas, G.P., Walker, J.C.G.: The penetration of soft electrons into the ionosphere. Planet. Space Sci. 24, 409–423 (1976)

    Article  ADS  Google Scholar 

  • Mayaud, P.N.: Derivation, Meaning, and Use of Geomagnetic Indices. Geophys. Monogr. Ser., vol. 22. AGU, Washington, DC (1980)

    Book  Google Scholar 

  • Maynard, N.C., Chen, A.J.: Isolated cold plasma regions: Observations and their relation to possible production mechanisms. J. Geophys. Res. 80, 1009–1013 (1975)

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barraclough, B.L., Donart, J.R., Elphic, R.C., Gosling, J.T., Moldwin, M.B., Moore, K.R., Thomsen, M.F.: Magnetospheric plasma analyzer: Initial three-spacecraft observations from geosynchronous orbit. J. Geophys. Res. 98, 13453–13465 (1993)

    Article  ADS  Google Scholar 

  • McIlwain, C.E.: Substorm injection boundaries. In: McCormac, B.M. (ed.) Magnetospheric Physics, pp. 143–154. D. Reidel, Dordrecht (1974)

    Chapter  Google Scholar 

  • McIlwain, C.E.: A Kp dependent equatorial electric field model. Adv. Space Res. 6, 187–197 (1986)

    Article  ADS  Google Scholar 

  • McIlwain, C.E.: Processes acting upon outer zone electrons. In: Lemaire, J.F., Heynderickx, D., Baker, D.N. (eds.) Radiation Belts: Models and Standards. Geophys. Monogr. Ser., vol. 97, pp. 15–26. AGU, Washington, DC (1996)

    Chapter  Google Scholar 

  • McTiernan, J.M., Petrosian, V.: The behavior of beams of relativistic electrons under the influence of collisions and synchrotron losses. Astrophys. J. 359, 524–540 (1990)

    Article  ADS  Google Scholar 

  • Moore, T.E., Arnoldy, R.L.: Plasma pitch angle distributions near the substorm injection front. J. Geophys. Res. 87, 265–270 (1982)

    Article  ADS  Google Scholar 

  • Moore, T.E., Arnoldy, R.L., Feynmann, J., Hardy, D.A.: Propagating substorm injection fronts. J. Geophys. Res. 86, 6713–6726 (1981)

    Article  ADS  Google Scholar 

  • Nagy, A.F., Banks, P.M.: Photoelectron fluxes in the ionosphere. J. Geophys. Res. 75, 6260–6270 (1970)

    Article  ADS  Google Scholar 

  • Neubert, T., Gilchrist, B., Wilderman, S., Habash, L., Wang, H.J.: Relativistic electron beam propagation in the Earth's atmosphere: modeling results. Geophys. Res. Lett. 23, 1009–1012 (1996)

    Article  ADS  Google Scholar 

  • Newberry, I.T., Comfort, R.H., Richards, P.G., Chappell, C.R.: Thermal He+ in the plasmasphere: Comparison of observations with numerical calculations. J. Geophys. Res. 94, 15265–15276 (1989)

    Article  ADS  Google Scholar 

  • Nishida, A.: Formation of the plasmapause or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail. J. Geophys. Res. 71, 5669–5679 (1966)

    Article  ADS  Google Scholar 

  • O'Brien, K.J.: Theory of ion-hose instability. J. Appl. Phys. 65, 9–17 (1989)

    Article  ADS  Google Scholar 

  • Oran, E.S., Strickland, D.J.: Photoelectron flux in the Earth's ionosphere. Planet. Space Sci. 26, 1161–1177 (1978)

    Article  ADS  Google Scholar 

  • Park, C.G., Carpenter, D.L., Wiggin, D.B.: Electron density in the plasmasphere: Whistler data on solar cycle, annual, and diurnal variations. J. Geophys. Res. 83, 3137–3144 (1978)

    Article  ADS  Google Scholar 

  • Petrosian, V.: Directivity of bremsstrahlung radiation from relativistic beams and the gamma rays from solar flares. Astrophys. J. 299, 987–993 (1985)

    Article  ADS  Google Scholar 

  • Porter, H.S., Varosi, F., Mayr, H.G.: Iterative solution of the multistream electron transport equation. 1. Comparison with laboratory beam injection experiments. J. Geophys. Res. 92, 5933–5959 (1987)

    Article  ADS  Google Scholar 

  • Potter, D.: Computational Physics. Wiley, New York (1973)

    MATH  Google Scholar 

  • Prather, M.J., McElroy, M.B., Rodriguez, J.: Photoelectrons in the upper atmosphere: A formulation incorporating effects of transport. Planet. Space Sci. 26, 131–138 (1978)

    Article  ADS  Google Scholar 

  • Rairden, R.L., Frank, L.A., Craven, J.D.: Geocoronal imaging with Dynamics Explorer. J. Geophys. Res. 91, 13613–13630 (1986)

    Article  ADS  Google Scholar 

  • Rasmussen, C.E., Guiter, S.M., Thomas, S.G.: Two-dimensional model of the plasmasphere: refilling time constants. Planet. Space Sci. 41, 35–42 (1993)

    Article  ADS  Google Scholar 

  • Richmond, A.D., Kamide, Y.: Mapping electrodynamic features of the high-latitude ionosphere from localized observations: Technique. J. Geophys. Res. 93, 5741–5759 (1988)

    Article  ADS  Google Scholar 

  • Ridley, A.J., Lu, G., Clauer, C.R., Papitashvili, V.O.: A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique. J. Geophys. Res. 103, 4023 (1998)

    Article  ADS  Google Scholar 

  • Ridley, A.J., Lu, G., Clauer, C.R., Papitashvili, V.O.: Reply, J. Geophys. Res. 104, 4393 (1999)

    Article  ADS  Google Scholar 

  • Ridley, A.J., Liemohn, M.W.: A model-derived description of the penetration electric field. J. Geophys. Res. 107(A8), 1151 (2002). doi: 10.1029/2001JA000051

    Article  Google Scholar 

  • Roederer, J.G.: Dynamics of Geomagnetically Trapped Radiation. Springer, New York (1970)

    Book  Google Scholar 

  • Rossi, B., Olbert, S.: Introduction to the Physics of Space. McGraw-Hill, New York (1970)

    Google Scholar 

  • Rowland, D., Wygant, J.: Dependence of the large-scale, inner magnetospheric electric field on geomagnetic activity. J. Geophys. Res. 103, 14959–14964 (1998)

    Article  ADS  Google Scholar 

  • Sanatani, S., Hanson, W.B.: Plasma temperature in the magnetosphere. J. Geophys. Res. 75, 769–775 (1970)

    Article  ADS  Google Scholar 

  • Schulz, M., Lanzerotti, L.J.: Particle Diffusion in the Radiation Belts. Springer, New York (1974)

    Book  Google Scholar 

  • Sheldon, R.B.: Ion transport and loss in the Earth's quiet ring current. 2. Diffusion and magnetosphere–ionosphere coupling. J. Geophys. Res. 99, 5705–5720 (1994)

    Article  ADS  Google Scholar 

  • Siambis, J.G.: Relativistic fluid model of the resistive hose instability. Phys. Fluids B 4, 3390–3395 (1992)

    Article  ADS  Google Scholar 

  • Sheldon, R.B., Hamilton, D.C.: Ion transport and loss in the Earth’s quiet ring current. 1. Data and standard model, J. Geophys. Res. 98, 13491–13508 (1993)

    Google Scholar 

  • Skoug, R.M., Bame, S.J., Feldman, W.C., Gosling, J.T., McComas, D.J., Steinberg, J.T., Tokar, R.L., Riley, P., Burlaga, L.F., Ness, N.F., Smith, C.W.: A prolonged He+ enhancement within a coronal mass ejection in the solar wind. Geophys. Res. Lett. 26, 161–164 (1999)

    Article  ADS  Google Scholar 

  • Solomon, S.C., Hays, P.B., Abreu, V.J.: The auroral 6300 Å emission: Observations and modeling. J. Geophys. Res. 93, 9867–9882 (1988)

    Article  ADS  Google Scholar 

  • Stamnes, K.: Analytic approach to auroral electron transport and energy degradation. Planet. Space Sci. 28, 427–441 (1980)

    Article  ADS  Google Scholar 

  • Stern, D.P.: The motion of a proton in the equatorial magnetosphere. J. Geophys. Res. 80, 595–599 (1975)

    Article  ADS  Google Scholar 

  • Strickland, D.J., Book, D.L., Coffey, T.P., Fedder, J.A.: Transport equation techniques for the deposition of auroral electrons. J. Geophys. Res. 81, 2755–2764 (1976)

    Article  ADS  Google Scholar 

  • Swartz, W.E., Bailey, G.J., Moffett, R.J.: Electron heating resulting from interhemispherical transport of photoelectrons. Planet. Space Sci. 23, 589–598 (1975)

    Article  ADS  Google Scholar 

  • Takahashi, T.: Energy degradation and transport of photoelectrons escaping from the upper ionosphere. Rept. Ionos. Space Res. Jpn. 27, 79–86 (1973)

    Google Scholar 

  • Takahashi, S., Iyemori, T., Takeda, M.: A simulation of the storm-time ring current. Planet. Space Sci. 38, 1133–1141 (1990)

    Article  ADS  Google Scholar 

  • Torr, M.R., Torr, D.G., Richards, P.G., Yung, S.P.: Mid- and low-latitude model of thermospheric emissions. 1. O+(2P) 7320 Å and N2(2P) 3371 Å. J. Geophys. Res. 95, 21147–21168 (1990)

    Article  ADS  Google Scholar 

  • Tsyganenko, N.A., Stern, D.P.: Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res. 101, 27187–27198 (1996)

    Article  ADS  Google Scholar 

  • Victor, G.A., Kirby-Docken, K., Dalgarno, A.: Calculations of the equilibrium photoelectron flux in the thermosphere. Planet. Space Sci. 24, 679–681 (1976)

    Article  ADS  Google Scholar 

  • Volland, H.: A semiempirical model of large-scale magnetospheric electric fields. J. Geophys. Res. 78, 171–180 (1973)

    Article  ADS  Google Scholar 

  • Weimer, D.R.: A flexible, IMF dependent model of high-latitude electric potentials having “space weather” applications. Geophys. Res. Lett. 23, 2549–2552 (1996)

    Article  ADS  Google Scholar 

  • Winningham, J.D., Decker, D.T., Kozyra, J.U., Jasperse, J.R., Nagy, A.F.: Energetic (>60 eV) atmospheric photoelectrons. J. Geophys. Res. 94, 15335–15348 (1989)

    Article  ADS  Google Scholar 

  • Wolf, R.A., Spiro, R.W.: Numerical modeling of the ring current and plasmasphere. Space Sci. Rev. 80, 199–216 (1997)

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: Effects of magnetic clouds on the occurrence of geomagnetic storms: The first 4 years of Wind. J. Geophys. Res. 107, 1314 (2002). doi: 10.1029/2001JA000161

    Article  Google Scholar 

  • Yanenko, N.N.: The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables. Springer, New York (1971)

    MATH  Google Scholar 

  • Yeh, H.-C., Foster, J.C., Rich, F.J., Swider, W.: Stormtime electric field penetration observed at mid-latitude. J. Geophys. Res. 96, 5707–5721 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George V. Khazanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Khazanov, G.V. (2011). Kinetic Theory of Superthermal Electron Transport. In: Kinetic Theory of the Inner Magnetospheric Plasma. Astrophysics and Space Science Library, vol 372. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6797-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6797-8_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6796-1

  • Online ISBN: 978-1-4419-6797-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics