Skip to main content

Alternative Splicing in Stem Cell Self-Renewal and Diferentiation

  • Chapter
The Cell Biology of Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 695))

Abstract

This chapter provides a review of recent advances in understanding the importance of alternative pre-messenger RNA splicing in stem cell biology. The majority of transcribed pre-mRNAs undergo RNA splicing where introns are excised and exons are juxtaposed to form mature messenger RNA sequences. This regulated, selective removal of whole or portions of exons by alternative splicing provides avenues for control of RNA abundance and proteome diversity. We discuss several examples of key alternative splicing events in stem cell biology and provide an overview of recently developed microarray and sequencing technologies that enable systematic and genome-wide assessment of the extent of alternative splicing during stem cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandenberger R, Wei H, Zhang S et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 2004; 22(6):707–716.

    Article  PubMed  Google Scholar 

  2. Brandenberger R, Khrebtukova I, Thies RS et al. MPSS profiling of human embryonic stem cells. BMC Dev Biol 2004; 4:10.

    Article  PubMed  Google Scholar 

  3. Miura T, Luo Y, Khrebtukova I et al. Monitoring early differentiation events in human embryonic stem cells by massively parallel signature sequencing and expressed sequence tag scan. Stem Cells Dev 2004; 13(6):694–715.

    Article  CAS  PubMed  Google Scholar 

  4. Bhattacharya B, Cai J, Luo Y et al. Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiating embryoid bodies. BMC Dev Biol 2005; 5:22.

    Article  PubMed  Google Scholar 

  5. Jurica MS, Moore MJ. Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 2003; 12(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  6. Nilsen TW. The spliceosome: the most complex macromolecular machine in the cell? Bioessays 2003; 25(12):1147–1149.

    Article  PubMed  Google Scholar 

  7. Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 2005; 6(5):386–398.

    Article  CAS  PubMed  Google Scholar 

  8. Martinez-Contreras R, Cloutier P, Shkreta L et al. hnRNP proteins and splicing control. Adv Exp Med Biol 2007; 623:123–147.

    Article  PubMed  Google Scholar 

  9. Blencowe BJ. Alternative splicing: new insights from global analyses. Cell 2006; 126(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  10. Wang ET, Sandberg R, Luo S et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456(7221):470–476.

    Article  CAS  PubMed  Google Scholar 

  11. Pritsker M, Doniger TT, Kramer LC et al. Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci USA 2005; 102(40):14290–14295.

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5):861–872.

    Article  CAS  PubMed  Google Scholar 

  13. Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858):1917–1920.

    Article  CAS  PubMed  Google Scholar 

  14. Lowry WE, Richter L, Yachechko R et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 2008; 105(8):2883–2888.

    Article  CAS  PubMed  Google Scholar 

  15. Tai MH, Chang CC, Kiupel M et al. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 2005; 26(2):495–502.

    Article  CAS  PubMed  Google Scholar 

  16. Zangrossi S, Marabese M, Broggini M et al. Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells 2007; 25(7):1675–1680.

    Article  CAS  PubMed  Google Scholar 

  17. Atlasi Y, Mowla SJ, Ziaee SA et al. OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells 2008; 26(12):3068–3074.

    Article  CAS  PubMed  Google Scholar 

  18. Cauffman G, Liebaers I, Van Steirteghem A et al. POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells 2006; 24(12):2685–2691.

    Article  CAS  PubMed  Google Scholar 

  19. Lee J, Kim HK, Rho JY et al. The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem 2006; 281(44):33554–33565.

    Article  CAS  PubMed  Google Scholar 

  20. He X, Treacy MN, Simmons DM et al. Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 1989; 340(6228):35–41.

    Article  CAS  PubMed  Google Scholar 

  21. Theodorou E, Dalembert G, Heffelfinger C et al. A high throughput embryonic stem cell screen identifies Oct-2 as a bifunctional regulator of neuronal differentiation. Genes Dev 2009; 23(5):575–588.

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Wang J, Sun S et al. A novel DNMT3B subfamily, DeltaDNMT3B, is the predominant form of DNMT3B in nonsmall cell lung cancer. Int J Oncol 2006; 29(1):201–207.

    CAS  PubMed  Google Scholar 

  23. Ostler KR, Davis EM, Payne SL et al. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 2007; 26(38):5553–5563.

    Article  CAS  PubMed  Google Scholar 

  24. Gopalakrishnan S, Van Emburgh BO, Shan J et al. A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding. Mol Cancer Res 2009; 7(10):1622–1634.

    Article  CAS  PubMed  Google Scholar 

  25. Margot JB, Ehrenhofer-Murray AE, Leonhardt H. Interactions within the mammalian DNA methyltransferase family. BMC Mol Biol 2003; 4:7.

    Article  PubMed  Google Scholar 

  26. Brodie C, Blumberg PM. Regulation of cell apoptosis by protein kinase c delta. Apoptosis 2003; 8(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  27. Peluso JJ, Pappalardo A, Fernandez G. Basic fibroblast growth factor maintains calcium homeostasis and granulosa cell viability by stimulating calcium efflux via a PKC delta-dependent pathway. Endocrinology 2001; 142(10):4203–4211.

    Article  CAS  PubMed  Google Scholar 

  28. Zrachia A, Dobroslav M, Blass M et al. Infection of glioma cells with Sindbis virus induces selective activation and tyrosine phosphorylation of protein kinase C delta. Implications for Sindbis virus-induced apoptosis. J Biol Chem 2002; 277(26):23693–23701.

    Article  CAS  PubMed  Google Scholar 

  29. Kilpatrick LE, Lee JY, Haines KM et al. A role for PKC-delta and PI 3-kinase in TNF-alpha-mediated antiapoptotic signaling in the human neutrophil. Am J Physiol Cell Physiol 2002; 283(1):C48–57.

    CAS  PubMed  Google Scholar 

  30. Sitailo LA, Tibudan SS, Denning MF. Bax activation and induction of apoptosis in human keratinocytes by the protein kinase C delta catalytic domain. J Invest Dermatol 2004; 123(3):434–443.

    Article  CAS  PubMed  Google Scholar 

  31. Sakurai Y, Onishi Y, Tanimoto Y, Kizaki H. Novel protein kinase C delta isoform insensitive to caspase-3. Biol Pharm Bull. Sep 2001;24(9):973–977.

    Article  CAS  PubMed  Google Scholar 

  32. Patel NA, Song SS, Cooper DR. PKCdelta alternatively spliced isoforms modulate cellular apoptosis in retinoic acid-induced differentiation of human NT2 cells and mouse embryonic stem cells. Gene Expr 2006; 13(2):73–84.

    Article  CAS  PubMed  Google Scholar 

  33. Dvorak P, Dvorakova D, Koskova S et al. Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 2005; 23(8):1200–1211.

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Wang G, Wang C et al. MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 2007; 75(4):299–307.

    Article  CAS  PubMed  Google Scholar 

  35. Mayshar Y, Rom E, Chumakov I et al. Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells 2008; 26(3):767–774.

    Article  CAS  PubMed  Google Scholar 

  36. Hill M, Goldspink G. Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 2003; 549(Pt 2):409–418.

    Article  CAS  PubMed  Google Scholar 

  37. Ates K, Yang SY, Orrell RW et al. The IGF-I splice variant MGF increases progenitor cells in ALS, dystrophic and normal muscle. FEBS Lett 2007; 581(14):2727–2732.

    Article  CAS  PubMed  Google Scholar 

  38. Gnecchi M, He H, Liang OD et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 2005; 11(4):367–368.

    Article  CAS  PubMed  Google Scholar 

  39. Tang YL, Zhao Q, Qin X et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg 2005; 80(1):229–236; discussion 236–227.

    Article  PubMed  Google Scholar 

  40. Lin H, Shabbir A, Molnar M et al. Adenoviral expression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells. J Cell Physiol 2008; 216(2):458–468.

    Article  CAS  PubMed  Google Scholar 

  41. Yang Z, Sui Y, Xiong S et al. Switched alternative splicing of oncogene CoAA during embryonal carcinoma stem cell differentiation. Nucleic Acids Res 2007; 35(6):1919–1932.

    Article  CAS  PubMed  Google Scholar 

  42. Brooks YS, Wang G, Yang Z et al. Functional pre-mRNA trans-splicing of coactivator CoAA and corepressor RBM4 during stem/progenitor cell differentiation. J Biol Chem 2009; 284(27):18033–18046.

    Article  CAS  PubMed  Google Scholar 

  43. Yeakley JM, Fan JB, Doucet D et al. Profiling alternative splicing on fiber-optic arrays. Nat Biotechnol 2002; 20(4):353–358.

    Article  CAS  PubMed  Google Scholar 

  44. Johnson JM, Castle J, Garrett-Engele P et al. Genome-wide survey of human alternative premRNA splicing with exon junction microarrays. Science 2003; 302(5653):2141–2144.

    Article  CAS  PubMed  Google Scholar 

  45. Pan Q, Shai O, Misquitta C et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol Cell 2004; 16(6):929–941.

    Article  CAS  PubMed  Google Scholar 

  46. Yeo GW, Xu X, Liang TY et al. Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLoS Comput Biol 2007; 3(10):1951–1967.

    Article  CAS  PubMed  Google Scholar 

  47. Salomonis N, Nelson B, Vranizan K et al. Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors. PLoS Comput Biol 2009; 5(11):e1000553.

    Article  Google Scholar 

  48. Cloonan N, Forrest AR, Kolle G et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 2008; 5(7):613–619.

    Article  CAS  PubMed  Google Scholar 

  49. Ule J, Jensen KB, Ruggiu M et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 2003; 302(5648):1212–1215.

    Article  CAS  PubMed  Google Scholar 

  50. Yeo GW, Coufal NG, Liang TY et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 2009; 16(2):130–137.

    Article  CAS  PubMed  Google Scholar 

  51. Ashiya M, Grabowski PJ. A neuron-specific splicing switch mediated by an array of premRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart. RNA 1997; 3(9):996–1015.

    CAS  PubMed  Google Scholar 

  52. Boutz PL, Stoilov P, Li Q et al. A posttranscriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 2007; 21(13):1636–1652.

    Article  CAS  PubMed  Google Scholar 

  53. Makeyev EV, Zhang J, Carrasco MA et al. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative premRNA splicing. Mol Cell 2007; 27(3):435–448.

    Article  CAS  PubMed  Google Scholar 

  54. Spellman R, Llorian M, Smith CW. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell 2007; 27(3):420–434.

    Article  CAS  PubMed  Google Scholar 

  55. Shibayama M, Ohno S, Osaka T et al. Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J 2009; 276(22):6658–6668.

    Article  CAS  PubMed  Google Scholar 

  56. Matter N, Herrlich P, Konig H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 2002; 420(6916):691–695.

    Article  CAS  PubMed  Google Scholar 

  57. Moritz S, Lehmann S, Faissner A et al. An induction gene trap screen in neural stem cells reveals an instructive function of the niche and identifies the splicing regulator sam68 as a tenascin-C-regulated target gene. Stem Cells 2008; 26(9):2321–2331.

    Article  CAS  PubMed  Google Scholar 

  58. Chawla G, Lin CH, Han A et al. Sam68 regulates a set of alternatively spliced exons during neurogenesis. Mol Cell Biol 2009; 29(1):201–213.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene W. Yeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Nelles, D.A., Yeo, G.W. (2010). Alternative Splicing in Stem Cell Self-Renewal and Diferentiation. In: Meshorer, E., Plath, K. (eds) The Cell Biology of Stem Cells. Advances in Experimental Medicine and Biology, vol 695. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7037-4_7

Download citation

Publish with us

Policies and ethics