Skip to main content

Portal Hypertension

  • Chapter
  • First Online:
Molecular Pathology of Liver Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 5))

  • 3644 Accesses

Abstract

Portal hypertension is a well-recognized and frequent clinical syndrome defined as a pathological increase in hepatic sinusoidal pressure. The sequelae of portal hypertension, including ascites, variceal hemorrhage, and hepatic encephalopathy, are responsible for much of the disease burden associated with cirrhosis [1]. In fact, these complications are the most frequent indication for liver transplant in cirrhotic patients [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosch J, Abraldes J, Groszmann R. Current management of portal hypertension. J Hepatol. 2003;38 suppl 1:S54–68.

    PubMed  Google Scholar 

  2. Vargas V, Rimola A, Casanovas T, et al. Applicability of liver transplantation in Catalonia at the end of the millennium. A prospective study of adult patient selection for liver transplantation. Transpl Int. 2003;16(4):270–5.

    PubMed  Google Scholar 

  3. Shah V, Kamath P, de Groen P. Physiology of the splanchnic circulation. In: Topol E, Lanzer F editor. Theory and practice of vascular diseases. Germany: Springer Verlag; 2002; p. 1688–1694.

    Google Scholar 

  4. McCuskey RS, Reilly FD. Hepatic microvasculature: dynamic structure and its regulation. Semin Liver Dis. 1993;13:1–11.

    PubMed  CAS  Google Scholar 

  5. Shah V, Haddad F, Garcia-Cardena G, et al. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of hepatic resistance. J Clin Invest. 1997;100:2923–30.

    PubMed  CAS  Google Scholar 

  6. Pinzani M, Milani S, De Franco R, et al. Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology. 1996;110(2):534–48.

    PubMed  CAS  Google Scholar 

  7. Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology. 1996;24:233–40.

    PubMed  CAS  Google Scholar 

  8. Valla DC. Thrombosis and anticoagulation in liver disease. Hepatology. 2008;47(4):1384–93.

    PubMed  CAS  Google Scholar 

  9. Okuda K, Kono K, Ohnishi K, et al. Clinical study of eighty-six cases of idiopathic portal hypertension and comparison with cirrhosis with splenomegaly. Gastroenterology. 1984;86(4):600–10.

    PubMed  CAS  Google Scholar 

  10. Ross AG, Bartley PB, Sleigh AC, et al. Schistosomiasis. N Engl J Med. 2002;346(16):1212–20.

    PubMed  Google Scholar 

  11. Kobayashi K, Hashimoto E, Ludwig J, Hisamitsu T, Obata H. Liver biopsy features of acute hepatitis C compared with hepatitis A, B, and non-A, non-B, non-C. Liver. 1993;13(2):69–72.

    PubMed  CAS  Google Scholar 

  12. Kamath PS, Carpenter HA, Lloyd RV, et al. Hepatic localization of endothelin-1 in patients with idiopathic portal hypertension and cirrhosis of the liver. Liver Transpl. 2000;6(5):596–602.

    PubMed  CAS  Google Scholar 

  13. Wanless IR. Micronodular transformation (nodular regenerative hyperplasia) of the liver: a report of 64 cases among 2, 500 autopsies and a new classification of benign hepatocellular nodules. Hepatology. 1990;11(5):787–97.

    PubMed  CAS  Google Scholar 

  14. Sherlock S, Feldman CA, Moran B, Scheuer PJ. Partial nodular transformation of the liver with portal hypertension. Am J Med. 1966;40(2):195–203.

    PubMed  CAS  Google Scholar 

  15. Pasha SF, Gloviczki P, Stanson AW, Kamath PS. Splanchnic artery aneurysms. Mayo Clin Proc. 2007;82(4):472–9.

    PubMed  Google Scholar 

  16. Friedman SL. Liver fibrosis – from bench to bedside. J Hepatol. 2003;38 suppl 1:S38–53.

    PubMed  Google Scholar 

  17. Bhathal P, Grossman H. Reduction of the increased portal vascular resistance of the isolated perfused cirrhotic rat liver by vasodilators. J Hepatol. 1985;1:325–7.

    PubMed  CAS  Google Scholar 

  18. Morales-Ruiz M, Cejudo-Martin P, Fernandez-Varo G, et al. Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology. 2003;125(2):522–31.

    PubMed  CAS  Google Scholar 

  19. Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology. 2006;43(2 suppl 1):S121–31.

    PubMed  CAS  Google Scholar 

  20. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35(2):478–91.

    PubMed  CAS  Google Scholar 

  21. Groszmann R, Loureiro-Silva M, Tsai M. The biology of portal hypertension. 4th ed. New York: Lippincott Williams & Wilkins; 2001.

    Google Scholar 

  22. Caballero AE. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res. 2003;11(11):1278–89.

    PubMed  CAS  Google Scholar 

  23. Frisbee JC, Stepp DW. Impaired NO-dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats. Am J Physiol Heart Circ Physiol. 2001;281(3):H1304–11.

    PubMed  CAS  Google Scholar 

  24. Karaa A, Kamoun WS, Xu H, Zhang J, Clemens MG. Differential effects of oxidative stress on hepatic endothelial and Kupffer cell eicosanoid release in response to endothelin-1. Microcirculation. 2006;13(6):457–66.

    PubMed  CAS  Google Scholar 

  25. Merkel SM, Kamoun W, Karaa A, Korneszczuk K, Schrum LW, Clemens MG. LPS inhibits endothelin-1-mediated eNOS translocation to the cell membrane in sinusoidal endothelial cells. Microcirculation. 2005;12(5):433–42.

    PubMed  CAS  Google Scholar 

  26. Kamoun WS, Karaa A, Kresge N, Merkel SM, Korneszczuk K, Clemens MG. LPS inhibits endothelin-1-induced endothelial NOS activation in hepatic sinusoidal cells through a negative feedback involving caveolin-1. Hepatology. 2006;43(1):182–90.

    PubMed  CAS  Google Scholar 

  27. Friedman S. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000;275(4):2247–50.

    PubMed  CAS  Google Scholar 

  28. Maher JJ, McGuire RF. Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. J Clin Invest. 1990;86(5):1641–8.

    PubMed  CAS  Google Scholar 

  29. Ballardini G, Degli Esposti S, Bianchi FB, et al. Correlation between Ito cells and fibrogenesis in an experimental model of hepatic fibrosis. A sequential stereological study. Liver. 1983;3(1):58–63.

    PubMed  CAS  Google Scholar 

  30. Enzan H, Himeno H, Iwamura S, et al. Immunohistochemical identification of Ito cells and their myofibroblastic transformation in adult human liver. Virchows Arch. 1994;424(3):249–56.

    PubMed  CAS  Google Scholar 

  31. Yokoi Y, Namihisa T, Matsuzaki K, Miyazaki A, Yamaguchi Y. Distribution of Ito cells in experimental hepatic fibrosis. Liver. 1988;8(1):48–52.

    PubMed  CAS  Google Scholar 

  32. Pinzani M, Gesualdo L, Sabbah GM, Abboud HE. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest. 1989;84(6):1786–93.

    PubMed  CAS  Google Scholar 

  33. Rockey D, Fouassier L, Chung J, et al. Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology. 1998;27(2):472–80.

    PubMed  CAS  Google Scholar 

  34. Matsuoka M, Pham NT, Tsukamoto H. Differential effects of interleukin-1 alpha, tumor necrosis factor alpha, and transforming growth factor beta 1 on cell proliferation and collagen formation by cultured fat-storing cells. Liver. 1989;9(2):71–8.

    PubMed  CAS  Google Scholar 

  35. Friedman SL, Arthur MJ. Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors. J Clin Invest. 1989;84(6):1780–5.

    PubMed  CAS  Google Scholar 

  36. Rockey DC, Boyles JK, Gabbiani G, Friedman SL. Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture. J Submicrosc Cytol Pathol. 1992;24(2):193–203.

    PubMed  CAS  Google Scholar 

  37. Rockey DC. Vascular mediators in the injured liver. Hepatology. 2003;37(1):4–12.

    PubMed  CAS  Google Scholar 

  38. Housset C, Rockey D, Bissell D. Endothelin receptors in rat liver: lipocytes as a contractile target for endothelin-1. Proc Natl Acad Sci USA. 1993;90:9266–70.

    PubMed  CAS  Google Scholar 

  39. Rockey D, Chung J. Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility. J Clin Invest. 1995;95:1199–206.

    PubMed  CAS  Google Scholar 

  40. Bissell DM, Wang SS, Jarnagin WR, Roll FJ. Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J Clin Invest. 1995;96(1):447–55.

    PubMed  CAS  Google Scholar 

  41. Marra F, Choudhury GG, Pinzani M, Abboud HE. Regulation of platelet-derived growth factor secretion and gene expression in human liver fat-storing cells. Gastroenterology. 1994;107(4):1110–7.

    PubMed  CAS  Google Scholar 

  42. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126(14):3047–55.

    PubMed  CAS  Google Scholar 

  43. Daniels C, Wilkes M, Edens M, et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest. 2004;114(9):1308–16.

    PubMed  CAS  Google Scholar 

  44. Papapetropoulos A, Rudic R, Sessa W. Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovasc Res. 1999;43(3):509–20.

    PubMed  CAS  Google Scholar 

  45. Ackah E, Yu J, Zoellner S, et al. Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Invest. 2005;115(8):2119–27.

    PubMed  CAS  Google Scholar 

  46. Yu J, Bergaya S, Murata T, et al. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest. 2006;116(5):1284–91.

    PubMed  CAS  Google Scholar 

  47. Ranjan V, Xiao Z, Diamond SL. Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am J Physiol. 1995;269:H550–5.

    PubMed  CAS  Google Scholar 

  48. Shah V, Toruner M, Haddad F, et al. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental liver cirrhosis. Gastroenterology. 1999;117:1222–8.

    PubMed  CAS  Google Scholar 

  49. Denninger J, Marletta M. Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta. 1999;1411:334–50.

    PubMed  CAS  Google Scholar 

  50. Gupta T, Toruner M, Chung M, Groszmann R. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology. 1998;28:926–31.

    PubMed  CAS  Google Scholar 

  51. Rockey DC, Chung JJ. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology. 1998;114:344–51.

    PubMed  CAS  Google Scholar 

  52. Shah V, Hendrickson H, Cao S, Yao J, Katusic Z. Regulation of hepatic endothelial nitric oxide synthase by caveolin and calmodulin after bile duct ligation in rats. Am J Physiol. 2001;280:G1209–16.

    CAS  Google Scholar 

  53. Yokomori H, Oka M, Yoshimura K, et al. Elevated expression of caveolin-1 at protein and mRNA level in human cirrhotic liver: relation with nitric oxide. J Gastroenterol. 2003;38:854–60.

    PubMed  CAS  Google Scholar 

  54. Rockey DC. Cell and molecular mechanisms of increased intrahepatic resistance and hemodynamic correlates. In: Sanyal A, Shah V, editors. Portal hypertension: pathobiology, evaluation, and treatment. Totowa: Humana; 2005. p. 37–50.

    Google Scholar 

  55. Dudenhoefer A, Loureiro-Silva M, Cadelina G, Gupta T, Groszmann R. Bioactivation of nitroglycerin and vasomotor response to nitric oxide are impaired in cirrhotic rat livers. Hepatology. 2002;36:381–5.

    PubMed  CAS  Google Scholar 

  56. Hendrickson H, Chatterjee S, Cao S, Morales Ruiz M, Sessa W, Shah V. Influence of caveolin on a constitutively activated form of recombinant eNOS: insights into eNOS dysfunction in the bile duct ligated rat liver. Am J Physiol. 2003;285(3):G652–60.

    CAS  Google Scholar 

  57. Perri RE, Langer DA, Chatterjee S, et al. Defects in cGMP-PKG pathway contribute to impaired NO dependent responses in hepatic stellate cells upon activation. Am J Physiol Gastrointest Liver Physiol. 2006;290(3):G535–542.

    PubMed  CAS  Google Scholar 

  58. Failli P, DeFranco R, Caligiuri A, et al. Nitrovasodilators inhibit platelet-derived growth factor-induced proliferation and migration of activated human hepatic stellate cells. Gastroenterology. 2000;119(2):479–92.

    PubMed  CAS  Google Scholar 

  59. Abraldes JG, Iwakiri Y, Loureiro-Silva M, Haq O, Sessa WC, Groszmann RJ. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am J Physiol Gastrointest Liver Physiol. 2006;290(5):G980–7.

    PubMed  CAS  Google Scholar 

  60. Yu Q, Shao R, Zian H, George S, Rockey D. Gene transfer of the neuronal NO synthase isoform to cirrhotic rat liver ameliorates portal hypertension. J Clin Invest. 2000;105:741–8.

    PubMed  CAS  Google Scholar 

  61. Zafra C, Abraldes J, Turnes J, et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology. 2004;126:749–55.

    PubMed  CAS  Google Scholar 

  62. Abraldes JG, Albillos A, Banares R, et al. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology. 2009;136(5):1651–8.

    PubMed  CAS  Google Scholar 

  63. Levin E. Mechanisms of disease: endothelins. N Engl J Med. 1995;333:356–63.

    PubMed  CAS  Google Scholar 

  64. Bauer I, Wanner G, Rensing H, et al. Expression pattern of heme oxygenase isoenzymes 1 and 2 in normal and stress-exposed rat liver. Hepatology. 1998;27:829–38.

    PubMed  CAS  Google Scholar 

  65. Caligiuri A, Glaser S, Rodgers R, et al. Endothelin-1 inhibits secretin-stimulated ductal secretion by interacting with ETA receptors on large cholangiocytes. Am J Physiol. 1998;275:G835–46.

    PubMed  CAS  Google Scholar 

  66. Bauer M, Bauer I, Sonin N, et al. Functional significance of endothelin B receptors in mediating sinusoidal and extrasinusoidal effects of endothelins in the intact rat liver. Hepatology. 2000;31:937–47.

    PubMed  CAS  Google Scholar 

  67. Rockey D. Characterization of endothelin receptors mediating rat hepatic stellate cell contraction. Biochem Biophysical Res Comm. 1995;207:725–31.

    CAS  Google Scholar 

  68. Alam I, Bassd N, Bacchetti P, Gee L, Rockey D. Hepatic tissue endothelin-1 levels in chronic liver disease correlate with disease severity and ascites. Am J Gastroenterol. 2000;95(1):199–203.

    PubMed  CAS  Google Scholar 

  69. Salo J, Francitorra A, Follo A, et al. Increased plasma endothelin in cirrhosis. Relationship with systemic endotoxemia and response to changes in effective blood volume. J Hepatol. 1995;22(4):389–98.

    PubMed  CAS  Google Scholar 

  70. Kamath P, Tyce G, Miller V, Edward B, Rorie D. Endothelin-1 modulates intrahepatic resistance in a rat model of noncirrhotic portal hypertension. Hepatology. 1999;30:401–7.

    PubMed  CAS  Google Scholar 

  71. Gandhi C, Sproat L, Subbotin V. Increased hepatic endothelin-1 levels and endothelin receptor density in cirrhotic rats. Life Sci. 1996;58:55–62.

    PubMed  CAS  Google Scholar 

  72. Atucha N, Shah V, Garcia-Cardena G, Sessa W, Groszmann R. Role of endothelium in the abnormal response of mesenteric vessels in rats with portal hypertension and liver cirrhosis. Gastroenterology. 1996;111(6):1627–32.

    PubMed  CAS  Google Scholar 

  73. Jurzik L, Froh M, Straub RH, Scholmerich J, Wiest R. Up-regulation of nNOS and associated increase in nitrergic vasodilation in superior mesenteric arteries in pre-hepatic portal hypertension. J Hepatol. 2005;43:258–65.

    PubMed  CAS  Google Scholar 

  74. Moreau R, Barrierre E, Tazi K, et al. Terlipressin inhibits in vivo aortic iNOS expression induced by lipopolysaccharide in rats with biliary cirrhosis. Hepatology. 2002;36(5):1070–8.

    PubMed  CAS  Google Scholar 

  75. Iwakiri Y, Cadeline G, Sessa W, Groszmann R. Mice with targeted deletion of eNOS develop hyperdynamic circulation associated with portal hypertension. Am J Physiol. 2002;283:G1074–81.

    CAS  Google Scholar 

  76. Theodorakis N, Wang Y, Skill N, et al. The role of nitric oxide synthase isoforms in extrahepatic portal hypertension: studies in gene knock-out mice. Gastroenterology. 2003;124(5):1500–8.

    PubMed  CAS  Google Scholar 

  77. Vallance P, Moncada S. Hyperdynamic circulation in cirrhosis: a role for nitric oxide? Lancet. 1991;337(8744):776–8.

    PubMed  CAS  Google Scholar 

  78. Lopez-Talavera J, Cadelina G, Olchowski J, Merrill W, Groszmann R. Thalidomide inhibits tumor necrosis factor alpha, decreases nitric oxide synthesis, and ameliorates the hyperdynamic circulatory syndrome in portal-hypertensive rats. Hepatology. 1996;23:1616–21.

    PubMed  CAS  Google Scholar 

  79. Lopez-Talavera JC, Merrill WW, Groszmann RJ. Tumor necrosis factor alpha: a major contributor to the hyperdynamic circulation in prehepatic portal-hypertensive rats. Gastroenterology. 1995;108:761–7.

    PubMed  CAS  Google Scholar 

  80. Martin P, Xu D, Niederberger M, et al. Upregulation of endothelial constitutive NOS: a major role in the increased NO production in cirrhotic rats. Am J Physiol. 1996;270:F494–9.

    PubMed  CAS  Google Scholar 

  81. Shah V, Wiest R, Garcia-Cardena G, Cadelina G, Groszmann R, Sessa W. Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. Am J Physiol. 1999;277:G463–8.

    PubMed  CAS  Google Scholar 

  82. Cahill P, Redmond E, Hodges R, Zhang S, Sitzmann J. Increased endothelial nitric oxide synthase activity in the hyperemic vessels of portal hypertensive rats. J Hepatol. 1996;25:370–8.

    PubMed  CAS  Google Scholar 

  83. Morales-Ruiz M, Jimenez W, Perez-Sala D, et al. Increased nitric oxide synthase expression in arterial vessels of cirrhotic rats with ascites. Hepatology. 1996;24(6):1481–6.

    PubMed  CAS  Google Scholar 

  84. Sessa W, Pritchard K, Seyedi N, Wang J, Hintze T. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res. 1994;74(2):349–53.

    PubMed  CAS  Google Scholar 

  85. Wiest R, Shah V, Sessa WC, Groszmann RJ. NO overproduction by eNOS precedes hyperdynamic splanchnic circulation in portal hypertensive rats. Am J Physiol. 1999;276(4):G1043–51.

    PubMed  CAS  Google Scholar 

  86. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol. 2003;284(1):R1–12.

    PubMed  CAS  Google Scholar 

  87. Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol. 2003;285(3):C499–508.

    PubMed  CAS  Google Scholar 

  88. Kawanaka H, Jones MK, Szabo IL, et al. Activation of eNOS in rat portal hypertensive gastric mucosa is mediated by TNF-alpha via the PI 3-kinase-Akt signaling pathway. Hepatology. 2002;35(2):393–402.

    PubMed  CAS  Google Scholar 

  89. Wiest R, Cadelina G, Milstien S, McCuskey RS, Garcia-Tsao G, Groszmann RJ. Bacterial translocation up-regulates GTP-cyclohydrolase I in mesenteric vasculature of cirrhotic rats. Hepatology. 2003;38(6):1508–15.

    PubMed  CAS  Google Scholar 

  90. Fernandez M, Vizzutti F, Garcia-Pagan J, Rodes J, Bosch J. Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology. 2004;126:886–94.

    PubMed  CAS  Google Scholar 

  91. Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43(1):98–103.

    PubMed  CAS  Google Scholar 

  92. Garcia-Cardena G, Oh P, Liu J, Schnitzer J, Sessa W. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA. 1996;93:6448–53.

    PubMed  CAS  Google Scholar 

  93. Liu J, Garcia-Cardena G, Sessa WC. Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: implications for caveolae localization. Biochemistry. 1996;35(41):13277–81.

    PubMed  CAS  Google Scholar 

  94. Sowa G, Liu J, Papapetropoulos A, Rex-Haffner M, Hughes T, Sessa W. Trafficking of endothelial nitric-oxide synthase in living cells. J Biol Chem. 1999;274(32):22524–31.

    PubMed  CAS  Google Scholar 

  95. Fulton D, Babbitt R, Zoellner S, et al. Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Akt- versus calcium-dependent mechanisms for nitric oxide release. J Biol Chem. 2004;279(29):30349–57.

    PubMed  CAS  Google Scholar 

  96. Heinemann A, Wachter C, Holzer P, Fickert P, Stauber R. Nitric oxide-dependent and -independent vascular hyporeactivity in mesenteric arteries of portal hypertensive rats. Br J Pharmacol. 1997;121(5):1031–7.

    PubMed  CAS  Google Scholar 

  97. Naik JS, Walker BR. Heme oxygenase-mediated vasodilation involves vascular smooth muscle cell hyperpolarization. Am J Physiol Heart Circ Physiol. 2003;285(1):H220–8.

    PubMed  CAS  Google Scholar 

  98. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–54.

    PubMed  CAS  Google Scholar 

  99. Cruse I, Maines MD. Evidence suggesting that the two forms of heme oxygenase are products of different genes. J Biol Chem. 1988;263(7):3348–53.

    PubMed  CAS  Google Scholar 

  100. Fernandez M, Bonkovsky HL. Vascular endothelial growth factor increases heme oxygenase-1 protein expression in the chick embryo chorioallantoic membrane. Br J Pharmacol. 2003;139(3):634–40.

    PubMed  CAS  Google Scholar 

  101. Chen YC, Gines P, Yang J, et al. Increased vascular heme oxygenase-1 expression contributes to arterial vasodilation in experimental cirrhosis in rats. Hepatology. 2004;39(4):1075–87.

    PubMed  CAS  Google Scholar 

  102. Hou M, Cahill P, Zhang S, et al. Enhanced cyclooxygenase-1 expression within the superior mesenteric artery of portal hypertensive rats: role in the hyperdynamic circulation. Hepatology. 1998;27(1):20–7.

    PubMed  CAS  Google Scholar 

  103. Garcia Jr N, Mirshahi F, Jarai Z, Kunos G, Sanyal A. The endogenous cannabinoid system: a novel and potent regulator of systemic and portal hemodynamics in normal and cirrhotic rats. Hepatology. 2000;32:220A.

    Google Scholar 

  104. Ros J, Jimenez W, Claria J, et al. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in cirrhosis. Hepatology. 2000;32:460A.

    Google Scholar 

  105. Lee F, Colombato L, Albillos A, Groszmann R. Administration of N omega-nitro-L-arginine ameliorates portal-systemic shunting in portal-hypertensive rats. Gastroenterology. 1993;105(5):1464–70.

    PubMed  CAS  Google Scholar 

  106. Mosca P, Lee F-Y, Kaumann A, Groszmann R. Pharmacology of portal-systemic collaterals in portal hypertensive rats: role of endothelium. Am J Physiol. 1992;263:G544–50.

    PubMed  CAS  Google Scholar 

  107. Chan C, Lee F, Wang S, et al. Effects of vasopressin on portal-systemic collaterals in portal hypertensive rats: role of nitric oxide and prostaglandin. Hepatology. 1999;30(3):630–5.

    PubMed  CAS  Google Scholar 

  108. Fernandez-Varo G, Ros J, Morales-Ruiz M, et al. Nitric oxide synthease 3-dependent vascular remodeling and circulatory dysfunction in cirrhosis. Am J Pathol. 2003;162(6):1985–93.

    PubMed  CAS  Google Scholar 

  109. Urbich C, Dimmeler S. Endothelial progenitor cells. Characterization and role in vascular biology. Circ Res. 2004;95:343–53.

    PubMed  CAS  Google Scholar 

  110. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.

    PubMed  CAS  Google Scholar 

  111. Morales Ruiz M, Jimenez W. Neovascularization, angiogenesis and vascular remodeling in portal hypertension. In: Sanyal A, Shah V, editors. Portal hypertension. Totowa: Humana; 2005.

    Google Scholar 

  112. Abid M, Tsai J, Spokes K, Deshpande S, Irani K, Aird W. Vascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism. FASEB J. 2001;15(13):2548–50.

    PubMed  CAS  Google Scholar 

  113. Semela D, Das A, Langer D, Kang N, Leof E, Shah V. Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology. 2008;135(2):671–9.

    PubMed  CAS  Google Scholar 

  114. Lee JS, Semela D, Iredale J, Shah VH. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology. 2007;45(3):817–25.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit K. Singla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Singla, S.K., Shah, V.H. (2011). Portal Hypertension. In: Monga, S. (eds) Molecular Pathology of Liver Diseases. Molecular Pathology Library, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7107-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7107-4_33

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7106-7

  • Online ISBN: 978-1-4419-7107-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics