Skip to main content

Genetic Engineering to Enhance Crop-Based Phytonutrients (Nutraceuticals) to Alleviate Diet-Related Diseases

  • Chapter
Bio-Farms for Nutraceuticals

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 698))

Abstract

Nutrition studies have provided unambiguous evidence that a number of human health maladies including chronic coronary artery, hypertension, diabetes, osteoporosis, cancer and age- and lifestyle-related diseases are associated with the diet. Several favorable and a few deleterious natural dietary ingredients have been identified that predispose human populations to various genetic and epigenetic based disorders. Media dissemination of this information has greatly raised public awareness of the beneficial effects due to increased consumption of fruit, vegetables and whole grain cereals—foods rich in phytonutrients, protein and fiber. However, the presence of intrinsically low levels of the beneficial phytonutrients in the available genotypes of crop plants is not always at par with the recommended daily allowance (RDA) for different phytonutrients (nutraceuticals). Molecular engineering of crop plants has offered a number of tools to markedly enhance intracellular concentrations of some of the beneficial nutrients, levels that, in some cases, are closer to the RDA threshold. This review brings together literature on various strategies utilized for bioengineering both major and minor crops to increase the levels of desirable phytonutrients while also decreasing the concentrations of deleterious metabolites. Some of these include increases in: protein level in potato; lysine in corn and rice; methionine in alfalfa; carotenoids (β-carotene, phytoene, lycopene, zeaxanthin and lutein) in rice, potato, canola, tomato; choline in tomato; folates in rice, corn, tomato and lettuce; vitamin C in corn and lettuce; polyphenolics such as flavonol, isoflavone, resveratrol, chlorogenic acid and other flavonoids in tomato; anthocyanin levels in tomato and potato; α-tocopherol in soybean, oil seed, lettuce and potato; iron and zinc in transgenic rice. Also, molecular engineering has succeeded in considerably reducing the levels of the offending protein glutelin in rice, offering proof of concept and a new beginning for the development of super-low glutelin cereals for celiac disease patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mutch DM, Wahli W, Williamson G. Nutrigenomics and nutrigenetics: the emerging faces of nutrition. The FASEB J 2005; 19:1602–1616.

    Article  CAS  Google Scholar 

  2. Mattoo AK, Yachha SK, Fatima T. Genetic manipulation of vegetable crops to alleviate diet-related diseases. In: F.T. Barberan, F. and M.I. Gil, eds. Improving the health-promoting properties of fruit and vegetable products, Woodhead Publ. Ltd., Cambridge, 2008; 327–345.

    Google Scholar 

  3. Simopoulos AP. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev Int 2004; 20:77–90.

    Article  CAS  Google Scholar 

  4. Jimenez-Sanchez G, Childs B, Valle D. Human disease genes. Nature 2001; 409:853–855.

    Article  PubMed  CAS  Google Scholar 

  5. Schrander JJ, van den Bogart JP, Forget PP et al. Cow’s milk protein intolerance in infants under 1 year of age: a prospective epidemiological study. Eur J Pediatr 1993; 152:640–644.

    Article  PubMed  CAS  Google Scholar 

  6. Catassi C. Celiac disease in Europe. In: Catassi C, Fasano A, Corazza GR, eds. The Global Village of Coeliac Disease, Italian Coeliac Society, AIC press, 2005; 71–85.

    Google Scholar 

  7. Yachha SK. Celiac disease: India on the global map. J Gastroenterol Hepato 2005; 221:1511–1513.

    Google Scholar 

  8. Fjeld CR, Lawson RH. Food, phytonutrients and health. Nutr Revs 1999; 57, ILSI, Washington, DC.

    Google Scholar 

  9. Basu A, Imrhan V. Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur J Clin Nutr 2007; 61:295–303.

    Article  PubMed  CAS  Google Scholar 

  10. Block G, Patterson B, Subar A. Fruit, vegetables and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 1992; 18:1–29.

    Article  PubMed  CAS  Google Scholar 

  11. Wang X, Tomso DJ, Chorley BN et al. Identification of polymorphic antioxidant response elements in the human genome. Human Mol Genet 2007; 16:1188–1200.

    Article  CAS  Google Scholar 

  12. Milner JA. Nutrition and cancer: essential elements for a roadmap. Cancer Lett 2008; 269:189–198.

    Article  PubMed  CAS  Google Scholar 

  13. Yachha SK, Poddar U. Celiac disease in Asia. In: Catassi C, Fasano A, Corazza GR, eds. The Global Village of Coeliac Disease, Italian Coeliac Society, AIC press, 2005; 101–108.

    Google Scholar 

  14. Bosch AM. Classical galactosemia revisited. J Inherit Metab Dis 2006; 29:516–525.

    Article  PubMed  CAS  Google Scholar 

  15. Kemp AS, Hill DJ, Allen KJ et al. Guidelines for the use of infant formulas to treat cows milk protein allergy: an Australian consensus panel opinion. Med J Aust 2008; 188:109–112.

    PubMed  Google Scholar 

  16. Yachha SK, Misra S, Malik A et al. Spectrum of malabsorption syndrome in north Indian children. Indian J Gastroenterol 1993; 12:120–125.

    PubMed  CAS  Google Scholar 

  17. Pedrosa M, Pascual CY, Larco JI et al. Palatability of hydrolysates and other substitution formulas for cow’s milk-allergic children: A comparative study of taste, smell and texture evaluated by healthy volunteers. J Investig Allergol Clin Immunol 2006; 16:351–356.

    PubMed  CAS  Google Scholar 

  18. Chen Y-T. Glycogen storage diseases and other inherited disorders of carbohydrate metabolism. In: Braunwald E, Fauci A, Kasper DL et al, eds. Harrison’s Principles of Internal Medicine, New Delhi: McGraw-Hill, 2001; 2:2281–2288.

    Google Scholar 

  19. Shin YS. Glycogen storage disease: clinical, biochemical and molecular heterogeneity. Semin Pediatr Neurol 2006; 13:115–120.

    Article  PubMed  Google Scholar 

  20. Levy HL. Phenylketonuria: Old disease, new approach to treatment. Proc Natl Acad Sci USA 1999; 96:1811–1813.

    Article  PubMed  CAS  Google Scholar 

  21. Gillies PJ. Nutrigenomics: the rubicon of molecular nutrition. J Am Diet Assoc 2003; 103:S50–S55.

    Article  PubMed  Google Scholar 

  22. Heldt H-W. Plant Biochemistry, Elsevier New York: Academic Press, 2005; 299–302.

    Google Scholar 

  23. Mattoo AK, Sobolev AP, Neelam A et al. NMR spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol 2006; 142:1759–1770.

    Article  PubMed  CAS  Google Scholar 

  24. Segal E, Friedman N, Koller D et al. A module map showing conditional activity of expression modules in cancer. Nat Genet 2004; 36:1090–1098.

    Article  PubMed  CAS  Google Scholar 

  25. Bhardwaj P, Garg PK, Maulik SK et al. A randomized controlled trial of antioxidant supplementation for pain relief in patients with chronic pancreatitis. Gastroenterol 2009; 136:149–159.

    Article  Google Scholar 

  26. Arab L. Individualized nutritional recommendations: do we have the measurements needed to assess risk and make dietary recommendations? Proc Nutr Soc 2004; 63:167–172.

    Article  PubMed  CAS  Google Scholar 

  27. Liu YS, Roof S, Ye ZB et al. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 2004; 101:9897–9902.

    Article  PubMed  CAS  Google Scholar 

  28. de Kok TM, Van Breda SG, Manson MM. Mechanism of combined action of different hemopreventive dietary compounds. Eur J Nutr 2008; (47):51–59.

    Google Scholar 

  29. Wang SY, Lin HS. Antioxidant activity in fruits and leaves of blackberry, raspberry and strawberry varies with cultivar and developmental stages. J Agric Food Chem 2000; 48:140–146.

    Article  PubMed  CAS  Google Scholar 

  30. Wolfe K, Wu X, Liu RH. Antioxidant activity of apple peels. J Agric Food Chem 2003; 51:609–614.

    Article  PubMed  CAS  Google Scholar 

  31. Scalzo J, Politi A, Pellegrini N et al. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005; 21:207–213.

    Article  PubMed  CAS  Google Scholar 

  32. Tsao R, Yang R, Xie S et al. Which polyphenolic compounds contribute to the total antioxidant activities of apple? J Agric Food Chem 2005; 53:4989–4995.

    Article  PubMed  CAS  Google Scholar 

  33. George B, Kaur C, Khurdiya DS et al. Antioxidants in tomato (Lycopersicum esculentum) as a function of genotype. Food Chem 2004; 84:45–51.

    Article  CAS  Google Scholar 

  34. Materska M, Perucka I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annum L.). J Agric Food Chem 2005; 53:1750–1756.

    Article  PubMed  CAS  Google Scholar 

  35. Rimando AM, Kalt, W, Magee JB, Dewey J et al. Resveratrol, pterostilbene and piceatannol in Vaccinium berries. J Agric Food Chem 2004; 52:4713–4719.

    Article  PubMed  CAS  Google Scholar 

  36. Seeram N, Adams L, Henning S et al. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutri Biochem 2005; 16:360–367.

    Article  CAS  Google Scholar 

  37. Surh YJ, Hurh YJ, Kang JY et al. Resveratrol, an antioxidant present in red wine, induces apoptosis in human promyelocytic leukemia (HL-60) cells. Cancer Lett 1999; 140:1–10.

    Article  PubMed  CAS  Google Scholar 

  38. Sun J, Chu YF, Wu X et al. Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 2002; 50:7449–7454.

    Article  PubMed  CAS  Google Scholar 

  39. Meyers KJ, Watkins CB, Pritts MP et al. Antioxidant and antiproliferative activities of strawberries. J Agric Food Chem 2003; 51:6887–6892.

    Article  PubMed  CAS  Google Scholar 

  40. Liu M, Li XQ, Weber C et al. Antioxidant and antiproliferative activities of raspberries. J Agric Food Chem 2002; 50:2926–2930.

    Article  PubMed  CAS  Google Scholar 

  41. Liu YS, Roof S, Ye ZB et al. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 2004; 101:9897–9902.

    Article  PubMed  CAS  Google Scholar 

  42. Campbell JK, Stroud CK, Nakamura MT et al. Serum testosterone is reduced following short-term phytofluene, lycopene or tomato powder consumption in F334 rats. J Nutr 2006; 136:2813–2819.

    PubMed  CAS  Google Scholar 

  43. Joseph JA, Fisher DR, Bielinski D. Blueberry extract alters oxidative stress-mediated signaling in COS-7 cells transfected with selectively vulnerable muscarinic receptor subtypes. J Alzheimer Dis 2006; 9:35–42.

    CAS  Google Scholar 

  44. Visioli F, Bellomo G, Montedoro GF et al. Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis 1995; 117:25–32.

    Article  PubMed  CAS  Google Scholar 

  45. Covas MI, Fitó M, Lamuela-Raventós RM et al. Virgin oil phenolic compounds: binding to human low density lipoprotein (LDL) and effect on LDL oxidation. Intl J Clin Pharmacol Res 2000; 20:49–54.

    CAS  Google Scholar 

  46. Lamuela-Raventós RM, Covas MI, Fitó M et al. Detection of dietary antioxidant phenolic compounds in human LDL. Clin Chem 1999; 45:1870–1872.

    PubMed  Google Scholar 

  47. Steinberg D, Parthasarathy S, Carew STE et al. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. New England J Med 1989; 320:915–924.

    Article  CAS  Google Scholar 

  48. Stein JH, Keevil JG, Wiebe DA et al. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 1999; 100:1050–1055.

    PubMed  CAS  Google Scholar 

  49. Vinson JA, Yang J, Proch J et al. Grape juice, but not orange juice has in vitro, ex vivo and in vivo antioxidant properties. J Med Food 2000; 3:167–171.

    Article  PubMed  CAS  Google Scholar 

  50. Fuhrman B, Lavy A, Aviram M. Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. Am J Clin Nutr 1995; 61:549–554.

    PubMed  CAS  Google Scholar 

  51. Jilal I, Fuller CJ, Huet BA. The effect of alpha tocopherol supplementation on LDL oxidation. A dose response study. Areteriosclerosis Thrombosis Vas Biol 1995; 15:190–198.

    Article  Google Scholar 

  52. Rao AV, Agarwal S. Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutr Cancer 1998; 31:199–203.

    Article  PubMed  CAS  Google Scholar 

  53. Ye X, Al-Babili S, Kloti A et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 2000; 287:303–305.

    Article  PubMed  CAS  Google Scholar 

  54. Paine JA, Shipton CA, Chaggar S et al. Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotech 2005; 23:482–487.

    Article  CAS  Google Scholar 

  55. Naqvi S, Zhu C, Farre G et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 2009; 106:7762–7767.

    Article  PubMed  CAS  Google Scholar 

  56. Iida S, Amano E, Nishio T. A rice (Oryza sativa L.) mutant having a low content of glutelin and a high content of prolamine. Theor Appl Genet 1993; 87:374–378.

    Article  CAS  Google Scholar 

  57. Kusaba M, Miyahara K, Iida S et al. Low glutelin content1: A dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 2003; 15:1455–1467.

    Article  PubMed  CAS  Google Scholar 

  58. Wu XR, Chen ZH, Folk WR. Enrichment of cereal protein lysine content by altered tRNAlys coding during protein synthesis. Plant Biotechnol J 2003; 1:187–194.

    Article  PubMed  CAS  Google Scholar 

  59. Houmard NM, Mainville JL, Bonin CB et al. High-lysine corn generated by endosperm specific suppression of lysine catabolism using RNAi. Plant Biotechnol J 2007; 5:605–614.

    Article  PubMed  CAS  Google Scholar 

  60. Frizzi A, Huang S, Gilbertson LA et al. Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotechnol J 2008; 6:13–21.

    PubMed  CAS  Google Scholar 

  61. Chakraborty S, Chakraborty N, Datta A. Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc Natl Acad Sci USA 2000; 97:3724–2729.

    Article  PubMed  CAS  Google Scholar 

  62. Avraham T, Badani H, Galili S et al. Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine γ-synthase gene. Plant Biotechnology J 2005; 3:71–79.

    Article  CAS  Google Scholar 

  63. Burkhardt PK, Beyer P, Wünn J et al. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 1997; 11:1071–1078.

    Article  PubMed  CAS  Google Scholar 

  64. Beyer P, Al-Babili S, Ye X, Lucca P et al. Golden rice: Introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 2002; 132:506S–510S.

    PubMed  Google Scholar 

  65. Dawe D, Robertson R, Unnevehr L. Golden rice: what role could it play in alleviation of vitamin A deficiency? Food Policy 2002; 27:541–560.

    Article  Google Scholar 

  66. Aluru M, Xu Y, Guo R et al. Generation of transgenic maize with enhanced provitamin A content. J Exp Bot 2008; 59:3551–3562.

    Article  PubMed  CAS  Google Scholar 

  67. Edwards RS, Reuter FH. Pigment changes during the maturation of tomato fruit. Food Technol Australia 1967; 19:352–357.

    CAS  Google Scholar 

  68. Johjima T, Matsuzoe N. Relationship between color value (a/b) and colored carotene content in fruit of various tomato cultivars and breeding line. Acta Hort 1995; 412:152–159.

    Google Scholar 

  69. Shewmaker CK, Sheehy JA, Daley M et al. Seed-specific-expression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 1999; 20:410–412.

    Article  Google Scholar 

  70. Ravanello MP, Ke D, Alvarez J et al. Coordinated expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metabolic Engg 2003; 5:255–263.

    Article  CAS  Google Scholar 

  71. Fujisawa M, Watanabe M, Choi SK et al. Enrichment of carotenoids in flaxseeds by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. J Biosci Bioeng 2008; 105:636–641.

    Article  PubMed  CAS  Google Scholar 

  72. Ducreux LJ, Morris WL, Hedley PE et al. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J Exp Bot 2005; 56:81–89.

    PubMed  CAS  Google Scholar 

  73. Rosati C, Aquilani R, Dharmapuri S et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J 2000; 24:413–419.

    Article  PubMed  CAS  Google Scholar 

  74. Dharamapuri S, Rosati C, Pallara P et al. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 2002; 519:30–34.

    Article  Google Scholar 

  75. D’Ambrosio C, Giorio G, Marino I et al. Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tcy-b) cDNA. Plant Sci 2004; 166:207–214.

    Article  CAS  Google Scholar 

  76. Römer S, Fraser PD, Kiano JW et al. Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 2000; 18:666–669.

    Article  PubMed  Google Scholar 

  77. Fraser PD, Romer S, Shipton CA et al. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 2002; 99:1092–1097.

    Article  PubMed  CAS  Google Scholar 

  78. Enfissi EMA, Fraser PD, Lois LM et al. Metabolic engineering of the mevalonate and nonmevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoid in tomato. Plant Biotechnol J 2005; 3:17–27.

    Article  PubMed  CAS  Google Scholar 

  79. Davuluri GR, Van Tuinen A, Fraser PD et al. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 2005; 23:890–895.

    Article  PubMed  CAS  Google Scholar 

  80. Bernhardt A, Lechner E, Hano P et al. CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J 2006; 47:591–603.

    Article  PubMed  CAS  Google Scholar 

  81. Chen H, Shen Y, Tan X et al. Arabidopsis CULLIN4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 2006; 18:1991–2004.

    Article  PubMed  CAS  Google Scholar 

  82. Wang S, Liu J, Feng Y et al. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDBl-interacting protein CUL4. Plant J 2008; 55:89–103.

    Article  PubMed  CAS  Google Scholar 

  83. Mehta RA, Cassol T, Li N et al. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. Nat Biotechnol 2002; 20:613–618.

    Article  PubMed  CAS  Google Scholar 

  84. Mattoo AK, Chung SH, Goyal RK et al. Overaccumulation of higher polyamines in ripening transgenic tomato revives metabolic memory, upregulates anabolism related genes and positively impacts nutritional quality. JOAC International 2008; 90:456–464.

    Google Scholar 

  85. Lu S, Van Eck J, Zhou X et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 2006; 18:3594–3605.

    Article  PubMed  CAS  Google Scholar 

  86. Lopez AB, Van Eck J, Conlin BJ et al. Effect of the cauliflower OR transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot 2008; 59:213–223.

    Article  PubMed  CAS  Google Scholar 

  87. Jayraj J, Devlin R, Punja Z. Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 2008; 17:489–501.

    Article  CAS  Google Scholar 

  88. Storozhenko S, Ravanel S, Zhang G-F et al. Folate enhancement in staple crops by metabolic engineering. TRENDS Food Sci Technol 2005; 16:271–281.

    Article  CAS  Google Scholar 

  89. Storozhenko S, De Brouwer V, Volckarrt M et al. Folate fortification of rice by metabolic engineering. Nat Biotechnol 2007; 25:1277–1279.

    Article  PubMed  CAS  Google Scholar 

  90. Díaz de la Garza R, Quinlivan EP, Klaus SM et al. Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci USA 2004; 101:13720–13725.

    Article  Google Scholar 

  91. Díaz de la Garza RI, Gregory JF III, Hanson AD. Folate biofortification of tomato fruit. Proc Natl Acad Sci USA 2007; 104:4218–4222.

    Article  CAS  Google Scholar 

  92. Nunes ACS, Kalkmann DC, Aragão FJL. Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Transgenic Res 2009; 18:661–667. DOI 10.1007/ s11248-009-9256-1.

    Article  PubMed  CAS  Google Scholar 

  93. Chen Z, Young TE, Ling J et al. Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 2003; 100:3525–3530.

    Article  PubMed  CAS  Google Scholar 

  94. Jain AK, Nessler CL. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breeding 2000; 6:73–78.

    Article  CAS  Google Scholar 

  95. Muir SR, Collins GJ, Robinson S et al. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 2001; 19:470–474.

    Article  PubMed  CAS  Google Scholar 

  96. Niggeweg R, Michael AJ, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 2004; 22:746–754.

    Article  PubMed  CAS  Google Scholar 

  97. Schijlen E, Ric de Vos CH, Jonker H et al. Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol J 2006; 4:433–444.

    Article  PubMed  CAS  Google Scholar 

  98. Shih CH, Chen Y, Wang M et al. Accumulation of isoflavone genistin in transgenic tomato plants overexpressing a soybean isoflavone synthase gene. J Agric Food Chem 2008; 56:5666–5661.

    Article  CAS  Google Scholar 

  99. Giovinazzo G, D’Amico L, Paradiso A et al. Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 2005; 3:57–69.

    Article  PubMed  CAS  Google Scholar 

  100. Nicoletti I, De Rossi A, Giovinazzo G et al. Identification and quantification of stilbenes in fruits of transgenic tomato plants (Lycopersicon esculentum Mill.) by reversed phase HPLC with photodiode array and mass spectrometry detection. J Agric Food Chem 2007; 55:3304–3311.

    Article  PubMed  CAS  Google Scholar 

  101. Rühman S, Treutter D, Fritsche S et al. Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. J Agric Food Chem 2006; 54:4633–4640.

    Article  CAS  Google Scholar 

  102. Lunkenbein S, Coiner H, Ric de Vos CH et al. Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria x ananassa). J Agric Food Chem 2006; 54:2145–2153.

    Article  PubMed  CAS  Google Scholar 

  103. Lukaszewicz M, Matysiak-Kata I, Skala J et al. Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic content. J Agric Food Chem 2004; 52:1526–1533.

    Article  PubMed  CAS  Google Scholar 

  104. Butelli E, Titta L, Giorgio M et al. Enrichment of tomato fruit with health promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 2008; 26:1301–1308.

    Article  PubMed  CAS  Google Scholar 

  105. Constantinou C, Papas A, Constantinou AI. Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs. Intl J Cancer 2008; 123:739–752.

    Article  CAS  Google Scholar 

  106. Van Eenennaam AL, Lincoln K, Durrett TP et al. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 2003; 15:3007–3019.

    Article  CAS  Google Scholar 

  107. Cho EA, Chong AL, Kim YS et al. Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Lactuca sativa L.). Mol Cells 2005; 19:16–22.

    PubMed  CAS  Google Scholar 

  108. Kim YJ, Seo HY, Park TI et al. Enhanced biosynthesis of α-tocopherol in transgenic soybean by introducing γ-TMT gene. J Plant Biotechnol 2005; 7:1–7.

    Google Scholar 

  109. Yusuf MA, Sarin N-B. Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res 2007; 16:109–113.

    Article  PubMed  CAS  Google Scholar 

  110. Tavva VS, Kim YH, Kagan IA et al. Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep 2007; 26:61–70.

    Article  PubMed  CAS  Google Scholar 

  111. Crowell EF, McGrath JM, Douches DS. Accumulation of vitamin E in potato (Solanum tuberosum) tubers. Transgenic Res 2008; 17:205–217.

    Article  PubMed  CAS  Google Scholar 

  112. Graham RD, Senandhira D, Beebe S et al. Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crop Res 1999; 60:57–80.

    Article  Google Scholar 

  113. Goto F, Yoshihara T, Shigemoto N et al. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 1999; 17:282–286.

    Article  PubMed  CAS  Google Scholar 

  114. Lucca P, Hurrel R, Potrykus I. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Gnet 2001; 102:392–397.

    Article  CAS  Google Scholar 

  115. Lucca P, Hurrel R, Potrykus I. Fighting iron deficiency anemia with iron-rich rice. J Am College Nutr 2002; 21:184S–190S.

    CAS  Google Scholar 

  116. Vasconcelos M, Datta K, Oliva N et al. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 2003; 164:371–378.

    Article  CAS  Google Scholar 

  117. Yu J, Peng P, Zhang X et al. Seed-specific expression of a lysine rich protein sb401 gene significantly increases both lysine and total protein content in maize seeds. Mol Breeding 2004; 14:1–7.

    Article  CAS  Google Scholar 

  118. Bicar EH, Woodman-Clikeman W, Sangtong V et al. Transgenic maize endosperm containing a milk protein has improved amino acid balance. Transgenic Res 2008; 17:59–71.

    Article  PubMed  CAS  Google Scholar 

  119. Yu B, Lydiate DJ, Young LW et al. Enhancing the carotenoid content of Brassica napus seeds by down-regulating lycopene epsilon cyclase. Transgenic Res 2008; 17:573–585.

    Article  PubMed  CAS  Google Scholar 

  120. Wei S, Li X, Gruber MY et al. RNAi mediated suppression of DET1 alters the levels of carotenoids and sinapate esters in seeds of Brassic napus. J Agric Food Chem 2009; 57:5326–5333doi:10.1021/jf803983w.

    Article  PubMed  CAS  Google Scholar 

  121. Giliberto L, Perrotta G, Pallara P et al. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time and fruit antioxidant content. Plant Physiol 2005; 137:199–208.

    Article  PubMed  CAS  Google Scholar 

  122. Wurbs D, Ruf S, Bock R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 2007; 49:276–288.

    Article  PubMed  CAS  Google Scholar 

  123. Diretto G, Al-Babili S, Tavazza R et al. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2007; 2:e350. doi:10.1371/journal. pone.0000350.

    Article  PubMed  CAS  Google Scholar 

  124. Diretto G, Tavazza R, Welsch R et al. Metabolic engineering of potato tuber carotenoids through tuber specific silencing of lycopene epsilon cyclase. BMC Plant Biol 2006; 6:13.doi: 10.1186/1471-229-6-13

    Article  PubMed  CAS  Google Scholar 

  125. Fraser PD, Enfissi EMA, Halket JM et al. Manipulation of phytoene levels in tomato fruits: effects on isoprenoids, plastids and intermediary metabolism. Plant Cell 2007; 19:3194–3211.

    Article  PubMed  CAS  Google Scholar 

  126. Morris WL, Ducreux LJM, Hedden P et al. Overexpression of a bacterial 1-deoxy-D-xylulose-5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle. J Exp Bot 2006; 57:3007–3018.

    Article  PubMed  CAS  Google Scholar 

  127. Gerjets T, Sandmann G. Ketocarotenoid formation in transgenic potato. J Exp Bot 2006; 57:3639–3645.

    Article  PubMed  CAS  Google Scholar 

  128. Goto F, Yoshihara T, Saiki H. Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor Appl Genet 2000; 100:658–664.

    Article  CAS  Google Scholar 

  129. Luo J, Butelli E, Hill L et al. AtMBY12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J 2008; 56:316–326.

    Article  PubMed  CAS  Google Scholar 

  130. Wakita Y, Otani M, Hamada T et al. A tobacco microsomal (ω-3 fatty acid desaturase gene increases the linolenic acid content in transgenic sweet potato (Ipomoea batatas). Plant Cell Rep 2001; 20:244–249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mattoo, A.K., Shukla, V., Fatima, T., Handa, A.K., Yachha, S.K. (2010). Genetic Engineering to Enhance Crop-Based Phytonutrients (Nutraceuticals) to Alleviate Diet-Related Diseases. In: Giardi, M.T., Rea, G., Berra, B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology, vol 698. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7347-4_10

Download citation

Publish with us

Policies and ethics