Skip to main content

Intraoperative Diagnosis and Guidance in an Operation

  • Chapter
  • First Online:
Intraoperative Neurophysiological Monitoring

Abstract

Intraoperative neurophysiologic recordings are beneficial for reducing the risk of postoperative deficits, and similar techniques can be used for the diagnosis of peripheral nerve disorders and for guiding the surgeon in certain operations. Intraoperative measurements of neural conduction and neural conduction velocity can help to determine the nature of a specific pathology and assist in identifying the anatomical location of the pathology in such nerves. Such recordings can guide the surgeon to the proper anatomical location for surgical intervention, and indeed, they may also help the surgeon choose the appropriate surgical intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The abnormal muscle response (79) is also known as the “lateral spread response” (10) or the “delayed muscle response.”

References

  1. Landi A, SA Copeland, CB Wynn et al (1980) The role of somatosensory evoked potentials and nerve conduction studies in the surgical management of brachial plexus injuries. J. Bone Joint Surg. (Br.) 62B:492–6.

    Google Scholar 

  2. Kline DG and DJ Judice (1983) Operative management of selected brachial plexus lesions. J. Neurosurg. 58:631–49.

    Article  CAS  PubMed  Google Scholar 

  3. Happel L and D Kline (2002) Intraoperative Neurophysiology of the Peripheral Nervous System, in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Academic Press: Amsterdam. 169–95.

    Chapter  Google Scholar 

  4. Happel L and D Kline (1991) Nerve lesions in continuity, in Operative Nerve Repair and Reconstruction 1st Ed., Vol 1, RH Gelberman, Editor. J.B. Lippincott: Philadelphia. 601–16.

    Google Scholar 

  5. Barker FG, PJ Jannetta, DJ Bissonette et al (1995) Microvascular decompression for hemifacial spasm. J. Neurosurg. 82:201–10.

    Article  PubMed  Google Scholar 

  6. Møller AR (1991) The cranial nerve vascular compression syndrome: I. A review of treatment. Acta Neurochir. (Wien) 113:18–23.

    Article  Google Scholar 

  7. Møller AR and PJ Jannetta (1987) Monitoring facial EMG during microvascular decompression operations for hemifacial spasm. J. Neurosurg. 66:681–5.

    Article  PubMed  Google Scholar 

  8. Møller AR and PJ Jannetta (1984) On the origin of synkinesis in hemifacial spasm: Results of intracranial recordings. J. Neurosurg. 61:569–76.

    Article  PubMed  Google Scholar 

  9. Nielsen V (1984) Pathophysiological aspects of hemifacial spasm. Part I. Evidence of ectopic excitation and ephaptic transmission. Neurology 34:418–26.

    CAS  PubMed  Google Scholar 

  10. Nielsen VK (1984) Pathophysiology of hemifacial spasm: II. Lateral spread of the supraorbital nerve reflex. Neurology 34:427–31.

    CAS  PubMed  Google Scholar 

  11. Esslen E (1957) Der Spasmus facialis – eine Parabiosserscheinung: Elektrophysiologische Untersuchnungen zum Enstehungsmechanismus des Facialisspasmus. Dtsch. Z. Nervenheilkd. 176:149–72.

    Article  CAS  PubMed  Google Scholar 

  12. Møller AR and PJ Jannetta (1985) Microvascular decompression in hemifacial spasm: Intraoperative electrophysiological observations. Neurosurgery 16:612–8.

    Article  PubMed  Google Scholar 

  13. Møller AR and PJ Jannetta (1986) Blink reflex in patients with hemifacial spasm: Observations during microvascular decompression operations. J. Neurol. Sci. 72:171–82.

    Article  PubMed  Google Scholar 

  14. Møller AR and PJ Jannetta (1986) Physiological abnormalities in hemifacial spasm studied during microvascular decompression operations. Exp. Neurol. 93:584–600.

    Google Scholar 

  15. Hatem J, M Sindou and C Vial (2001) Intraoperative monitoring of facial EMG responses during microvascular decompression for hemifacial spasm. Prognostic value for long-term outcome: A study in a 33-patient series. Br. J. Neurosurg. 15:496–9.

    Article  CAS  PubMed  Google Scholar 

  16. Møller AR (1993) Cranial nerve dysfunction syndromes: Pathophysiology of microvascular compression., in Neurosurgical Topics Book 13, “Surgery of Cranial Nerves of the Posterior Fossa,” Chapter 2, DL Barrow, Editor. American Association of Neurological Surgeons: Park Ridge, IL. 105–29.

    Google Scholar 

  17. Møller AR (2008) Neural plasticity: For good and bad. Prog. Theor. Phys. Suppl. 173:48–65.

    Article  Google Scholar 

  18. Møller AR (2006) Neural Plasticity and Disorders of the Nervous System. Cambridge University Press: Cambridge.

    Book  Google Scholar 

  19. Jannetta PJ (1984) Hemifacial spasm caused by a venule: Case report. Neurosurgery 14:89–92.

    Article  CAS  PubMed  Google Scholar 

  20. Haines SJ and F Torres (1991) Intraoperative monitoring of the facial nerve during decompressive surgery for hemifacial spasm. J. Neurosurg. 74:254–7.

    Article  CAS  PubMed  Google Scholar 

  21. Møller AR and PJ Jannetta (1985) Synkinesis in hemifacial spasm: Results of recording intracranially from the facial nerve. Experientia 41:415–7.

    Article  PubMed  Google Scholar 

  22. Prass RL and H Lueders (1986) Acoustic (loudspeaker) facial electromyographic monitoring. Part I. Neurosurgery 19:392–400.

    Article  CAS  PubMed  Google Scholar 

  23. Møller AR and PJ Jannetta (1984) Preservation of facial function during removal of acoustic neuromas: Use of monopolar constant voltage stimulation and EMG. J. Neurosurg. 61:757–60.

    Article  PubMed  Google Scholar 

  24. Yu H and J Neimat (2008) The treatment of movement disorders by deep brain stimulation. Neurotherapeutics 5:26–36.

    Article  CAS  PubMed  Google Scholar 

  25. Arle J, D Apetauerova, J Zani et al (2008) Motor cortex stimulation in patients with Parkinson disease: 12-month follow-up in 4 patients. J Neurosurg. 109:133–9.

    Article  PubMed  Google Scholar 

  26. Arle JE and J Shils (2008) Motor cortex stimulation for pain and movement disorders. Neurotherapeutics 5:37–49.

    Article  PubMed  Google Scholar 

  27. Tagliati M, J Shils, C Sun et al (2004) Deep brain stimulation for dystonia. Expert Rev. Med. Devices 1:33–41.

    Article  PubMed  Google Scholar 

  28. Brown JA, HL Lutsep, SC Cramer et al (2003) Motor cortex stimulation for enhancement of recovery after stroke: Case report. Neurol. Res. 25:815–8.

    Article  PubMed  Google Scholar 

  29. De Ridder D, G De Mulder, V Walsh et al (2005) Transcranial magnetic stimulation for tinnitus: A clinical and pathophysiological approach: Influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression. Otol. Neurotol. 147:495–501.

    Google Scholar 

  30. Meyerson BA, U Lindblom, B Linderoth et al (1993) Motor cortex stimulation as treatment of trigeminal neuropathic pain. Acta Neurochir. Suppl. 58:105–3.

    Google Scholar 

  31. Meyerson BA and B Linderoth (2000) Mechanism of spinal cord stimulation in neuropathic pain. Neurol. Res. 22:285–92.

    CAS  PubMed  Google Scholar 

  32. Yakhnitsa V, B Linderoth and BA Meyerson (1999) Spinal cord stimulation attenuates dorsal horn hyperexcitability in a rat model of mononeuropathy. Pain 79:223–33.

    Article  CAS  PubMed  Google Scholar 

  33. Kirchner A, F Birklein, H Stefan et al (2000) Left vagus nerve stimulation suppresses experimentally induced pain. Neurology 55:1167–71.

    CAS  PubMed  Google Scholar 

  34. Arle JE and JL Shils (2007) Neurosurgical decision-making with IOM: DBS surgery. Neurophysiol. Clin. 37:449–55.

    Article  PubMed  Google Scholar 

  35. Waring MD (1995) Intraoperative electrophysiologic monitoring to assist placement of auditory brain stem implant. Ann. Otol. Rhinol. Laryngol. Suppl. 66:33–6.

    CAS  PubMed  Google Scholar 

  36. Shils JL, M Tagliati and RL Alterman (2002) Neurophysiological monitoring during neurosurgery for movement disorders, in Neurophysiology in Neurosurgery, V Deletis and JL Shils, Editors. Academic Press: Amsterdam. 405–48.

    Chapter  Google Scholar 

  37. Vitek JL, RAE Bakay, T Hashimoto et al (1998) Microelectrode-guided pallidotomy: Technical approach and application for treatment of medically intractable Parkinson’s disease. J. Neurosurg. 88:1027–43.

    Article  CAS  PubMed  Google Scholar 

  38. Albe-Fessard D, G Sarfel, G Guiot et al (1966) Electrophysiological studies of some deep cerebral structures in man. J. Neurol. Sci. 3:37–51.

    Article  CAS  PubMed  Google Scholar 

  39. Hubel D, H. (1957) Tungsten microelectrode for recording from single units. Science. 125: 549–50.

    Article  CAS  PubMed  Google Scholar 

  40. Ojemann GA, O Creutzfeldt, E Lettich et al (1988) Neuronal activity in human lateral ­temporal cortex related to short-term verbal memory, naming and reading. Brain 111: 1383–403.

    Article  PubMed  Google Scholar 

  41. Lenz FA, JO Dostrovsky, HC Kwan et al (1988) Methods for microstimulation and recording of single neurons and evoked potentials in the human central nervous system. J. Neurosurg. 68:630–4.

    Article  CAS  PubMed  Google Scholar 

  42. Lenz FA, JO Dostrovsky, RR Tasker et al (1988) Single-unit analysis of the human ventral thalamic nuclear group: Somatosensory responses. J. Neurophysiol. 59:299–316.

    CAS  PubMed  Google Scholar 

  43. Starr PA, RS Turner, G Rau et al (2004) Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: Techniques, electrode locations, and outcomes. Neurosurg. Focus 17:20–31.

    Article  Google Scholar 

  44. Vitek JL, V Chockkan, JY Zhang et al (1999) Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann. Neurol. 46:22–35.

    Article  CAS  PubMed  Google Scholar 

  45. Lenz FA, RR Tasker, HC Kwan et al (1988) Single unit analysis of the human ventral thalamic nuclear group: Correlation of thalamic “tremor cells” with the 3–6 Hz component of parkinsonian tremor. J. Neurosci. 8:754–64.

    CAS  PubMed  Google Scholar 

  46. Lenz FA, HC Kwan, JO Dostrovsky et al (1989) Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res. 496:357–60.

    Article  CAS  PubMed  Google Scholar 

  47. Lenz FA, R Martin, HC Kwan et al (1990) Thalamic single-unit activity occurring in patients with hemidystonia. Stereotact. Funct. Neurosurg. 54–55:159–62.

    Article  PubMed  Google Scholar 

  48. Lenz FA, HC Kwan, JO Dostrovsky et al (1990) Single unit analysis of the human ventral thalamic nuclear group. Activity correlated with movement. Brain 113:1795–821.

    Article  PubMed  Google Scholar 

  49. Lenz FA, CJ Jaeger, MS Seike et al (1999) Thalamic single neuron activity in patients with dystonia: Dystonia-related activity and somatic sensory reorganization. J. Neurophysiol. 82:2372–92.

    CAS  PubMed  Google Scholar 

  50. Copeland BJ and HC Pillsbury (2004) Cochlear implantation for the treatment of deafness. Annu. Rev. Med. 55:157–67.

    Article  CAS  PubMed  Google Scholar 

  51. Toh EH and WM Luxford (2002) Cochlear and brainstem implantation. Otolaryngol. Clin. North Am. 35:325–42.

    Article  PubMed  Google Scholar 

  52. House WH (1976) Cochlear implants. Ann. Otol. Rhinol. Laryngol. 85 (Suppl. 27):3–91.

    Google Scholar 

  53. Zeng FG (2004) Trends in cochlear implants. Trends Amplif. 8:1–34.

    Article  PubMed  Google Scholar 

  54. Brackmann DE, WE Hitselberger, RA Nelson et al (1993) Auditory brainstem implant: 1. Issues in surgical implantation. Otolaryngol. Head Neck Surg. 108:624–33.

    CAS  PubMed  Google Scholar 

  55. Portillo F, RA Nelson, DE Brackmann et al (1993) Auditory brain stem implant: electrical stimulation of the human cochlear nucleus. Adv. Otol. Rhinol. Laryngol. 48:248–52.

    CAS  Google Scholar 

  56. Colletti V, FG Fiorino, L Sacchetto et al (2001) Hearing habilitation with auditory brainstem implantation in two children with cochlear nerve aplasia. Int. J. Paediatric Otorhinolaryngol. 60:99–111.

    Article  CAS  Google Scholar 

  57. Waring MD (1995) Auditory brain-stem responses evoked by electrical stimulation of the cochlear nucleus in human subjects. Electroenceph. Clin. Neurophysiol. 96:338–47.

    Article  CAS  PubMed  Google Scholar 

  58. Kuroki A and AR Møller (1995) Microsurgical anatomy around the foramen of Luschka with reference to intraoperative recording of auditory evoked potentials from the cochlear nuclei. J. Neurosurg. 82:933–9.

    Article  CAS  PubMed  Google Scholar 

  59. De Ridder D, G De Mulder, T Menovsky et al (2007) Electrical stimulation of auditory and somatosensory cortices for treatment of tinnitus and pain, in Tinnitus: Pathophysiology and Treatment, Progress in Brain Research, B Langguth et al, Editors. Elsevier: Amsterdam. 377–88.

    Chapter  Google Scholar 

  60. De Ridder D, G De Mulder, V Walsh et al (2004) Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus. J. Neurosurg. 100:560–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aage R. Møller PhD (DMedSci) .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Møller, A.R. (2011). Intraoperative Diagnosis and Guidance in an Operation. In: Intraoperative Neurophysiological Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7436-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7436-5_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7435-8

  • Online ISBN: 978-1-4419-7436-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics