Skip to main content

All Carbon Nanotubes Are Not Created Equal

  • Chapter
  • First Online:
Nanotechnology for Electronics, Photonics, and Renewable Energy

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter presents the various factors that enter into consideration when choosing the source of carbon nanotubes for a specific application. Carbon nanotubes are giant molecules made of pure carbon. They have captured the imagination of the scientific community by the unique structure that provides superior physical, chemical, and electrical properties. However, a surprisingly wide disparity exists between the intrinsic properties determined under ideal conditions and the properties that carbon nanotubes exhibit in real-world situations. The lack of uniformity in carbon nanotube properties is likely to be the main obstacle holding back the development of carbon nanotube applications. This tutorial addresses the nonuniformity of carbon nanotube properties from the synthesis standpoint. This synthesis-related nonuniformity is on top of the intrinsic chirality distribution that gives the ~1:2 ratio of metallic to semiconducting nanotubes. From the standpoint of carbon bonding chemistry the variation in the quality and reproducibility of carbon nanotube materials is not unexpected. It is an intrinsic feature that is related to the metastability of carbon structures. The extent to which this effect is manifested in carbon nanotube formation is governed by the type and kinetics of the carbon nanotube synthesis reaction. Addressing this variation is critical if nanotubes are to live up to the potential already demonstrated by their phenomenal physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monthioux, M., Kuznetsov, V.: Who should be given the credit for the discovery of carbon nanotubes? Carbon 44, 1621 (2006)

    Article  CAS  Google Scholar 

  2. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  3. Dresselhaus, M.S. Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications. Academic, San Diego (1996)

    Google Scholar 

  4. Ebbesen, T.W.: Carbon nanotubes: preparation and properties. CRC Press, Boca Raton (1997)

    Google Scholar 

  5. Endo, M., Iijima, S., Dresselhaus, S.M.: Carbon Nanotubes. Carbon, vol 33, Pergamon, Elsevier, Oxford (1996)

    Google Scholar 

  6. Saito, R.: Physical Properties of Carbon Nanotubes. World Scientific, London. Imperial college press (1998)

    Google Scholar 

  7. Tománek, D., Enbody, J.R.: Science and application of nanotubes. Springer, Newyork (2002)

    Google Scholar 

  8. Dresselhaus, S.M., Dresselhaus, G., Avouris, Ph.: Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin Heidelberg (2001)

    Google Scholar 

  9. Biró, P.L., Bernardo, C.A. Tibbetts, G.G., Lambin, Ph.: Carbon filaments and nanotubes: common origins, differing applications? Kluwer, Dordrecht (2001)

    Google Scholar 

  10. Meyyappan, M.: Carbon nanotubes: science and applications. CRC Press, Boca Raton (2005)

    Google Scholar 

  11. Reich, S., Thomsen, C., Maultzsch, J.: Carbon nanotubes: basic concepts and physical properties. Wiley-VCH, Weinhein (2004)

    Google Scholar 

  12. Rotkin, S.V., Subramoney, S.: Applied physics of carbon nanotubes: fundamentals of theory, optics and transport devices. Springer, Berlin Heidelberg (2005)

    Google Scholar 

  13. O'Connell, M.J.: Carbon Nanotubes: Properties and Applications. CRC Press, Boca Raton (2006)

    Google Scholar 

  14. Loiseau, A., Launois, P., Petit, P., Roche, S., Salvetat, J.-P.: Understanding Carbon Nanotubes: From Basics to Applications. Lecture Notes in Physics. Springer, Berlin Heidelberg (2006)

    Google Scholar 

  15. Léonard, F.: The physics of carbon nanotube devices. William Andrew, Norwich (2009)

    Google Scholar 

  16. Harris, J.P.F.: Carbon Nanotube Science: Synthesis, Properties and Applications. Cambridge, (2009)

    Google Scholar 

  17. Palmer, D.J.: Where nano is going. Nanotoday 3, 46 (2008).

    Google Scholar 

  18. Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon Nanotubes—the Route Toward Applications. Science 297, 787 (2002).

    Article  CAS  Google Scholar 

  19. Avouris, Ph.: Carbon Nanotube Electronics and Photonics. Phys Today, 34 (January 2009)

    Google Scholar 

  20. Pauling, L., The nature of the chemical bond, Cornell University Press, Ithaca (1960)

    Google Scholar 

  21. Heimann, B.R., Evsyukov, E.S., Koga, Y.: Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon 35, 1654 (1997).

    Article  CAS  Google Scholar 

  22. Crespi, H.V.: The geometry of nanoscale carbon. In: Di Ventra, M., Evoy, S., Heflin, R.J. (eds.) Introduction to Nanoscale Science and Technology. Springer, Newyork (2004)

    Google Scholar 

  23. Ebbesen, T.W., Takada, T.: Topological and sp3 defect structures in nanotubes. Carbon 33, 973 (1995).

    Article  CAS  Google Scholar 

  24. Cassel, M.A., Raymakers, A.J., Kong, J., Dai, J.H.: Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103, 6484 (1999).

    Article  CAS  Google Scholar 

  25. Baker, R.T.K., Harris, S.P.: Formation of Filamentous Carbon. Chemistry and Physics of Carbon, vol. 14, p. 83. Marcel Dekker, (1978).

    Google Scholar 

  26. Eres, G., Kinkhabwala, A.A., Cui, T.H., Geohegan, B.D., Puretzky, A.A., Lowndes, H.D.: Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays. J. Phys. Chem. B 109, 16684 (2005).

    Article  CAS  Google Scholar 

  27. Puretzky, A.A., Schittenhelm, H., Fan, X., Lance, J.M., Allard, F.L., Jr., Geohegan, B.D.: Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Phys. Rev. B 65, 245425 (2002).

    Article  CAS  Google Scholar 

  28. Puretzky, A.A., Geohegan, B.D., Jesse, S., Ivanov, N.I., Eres, G.: In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl. Phys. A—Materials Sci. Process. 81, 223 (2005).

    Article  CAS  Google Scholar 

  29. Hata, K., Futaba, N.D., Mizuno, K., Namai, T., Yumura, M., Iijima, S.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362 (2004).

    Article  CAS  Google Scholar 

  30. Puretzky, A.A., Eres, G., Rouleau, M.C., Ivanov, N.I., Geohegan, B.D.: Real-time imaging of vertically aligned carbon nanotube array growth kinetics. Nanotechnology 19, 055605 (2008).

    Article  Google Scholar 

  31. Bedewy, M., Meshot, R.E., Guo, C.H., Verploegen, A.E., Lu, W., Hart, A.J.: Collective mechanism for the evolution and self-termination of vertically aligned carbon nanotube growth. J. Phys. Chem. C 113, 20576 (2009).

    Article  CAS  Google Scholar 

  32. Eres, G., Rouleau, M.C., Yoon, M., Puretzky, A.A., Jackson, J.J., Geohegan, B.D.: Model for self-assembly of carbon nanotubes from acetylene based on real-time studies of vertically aligned growth kinetics. J. Phys. Chem. C 113, 15484 (2009).

    Article  CAS  Google Scholar 

  33. Homma, Y., Liu, H., Takagi, D., Kobayashi, Y.: Single-walled carbon nanotube growth with non-iron-group “catalysts” by chemical vapor deposition. Nano Res. 2, 793 (2009).

    Article  CAS  Google Scholar 

  34. Wang, H., Xu, Z., Eres, G.: Order in vertically aligned carbon nanotube arrays. Appl. Phys. Lett. 88, 213111 (2006).

    Article  CAS  Google Scholar 

  35. Hass, C.K., Schneider, W.F., Curioni, A., Andreoni, W.: The chemistry of water on alumina surfaces: reaction dynamics from first principles. Science 282, 265 (1998).

    Article  CAS  Google Scholar 

  36. Noda, S., Hasegawa, K., Sugime, H., Kakehi, K., Zhang, Y.Z., Maruyama, S., Yamaguchi, Y.: Millimeter-thick single-walled carbon nanotube forests: Hidden role of catalyst support. Jap. J. Appl. Phys. Part 2 46, L399 (2007).

    Article  CAS  Google Scholar 

  37. Amama, B.P., Pint, L.C., McJilton, L., Kim, M.S., Stach, A.E., Murray, T.P., Hauge, H.R., Maruyama, B.: Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 9, 44 (2009).

    Article  CAS  Google Scholar 

  38. LeMieux, C.M., Roberts, M., Barman, S., Jin, W.Y., Kim, M.J., Bao, Z.: Self-sorted, aligned nanotube networks for thin-film transistors. Science 321, 101 (2008).

    Article  CAS  Google Scholar 

  39. Topinka, A.M., Rowell, W.M., Goldhaber-Gordon, D., McGehee, D.M., Hecht, S.D., Gruner, G.: Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett. 9, 1866 (2009).

    Article  CAS  Google Scholar 

  40. Yuan, D., Ding, L., Chu, H., Feng, Y., McNicholas, T.P., Liu, J.: Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett. 8, 2576 (2008).

    Article  CAS  Google Scholar 

  41. Hersam, C.M.: Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotechnol. 3, 387 (2008).

    Article  CAS  Google Scholar 

  42. Ding, F., Harutyunyan, R.A., Yakobson, I.B.: Dislocation theory of chirality-controlled nanotube growth. PNAS 106, 2506 (2009).

    Article  Google Scholar 

  43. Harutyunyan, R.A., Chen, G., Paronyan, M.T., Pigos, M.E., Kuznetsov, A.O., Hewaparakrama, K., Kim, M.S., Zakharov, D., Stach, A.E., Sumanasekera, U.G.: Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326, 116 (2009).

    Article  CAS  Google Scholar 

  44. Bachilo, M.S., Balzano, L., Herrera, E.J., Pompeo, F., Resasco, E.D., Weisman, R.B.: Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186 (2003).

    Article  CAS  Google Scholar 

  45. Smalley, E.R., Li, Y., Moore, C.V., Price, B.K., Colorado, R., Jr., Schmidt, K.H., Hauge, H.R., Barron, R.A., Tour, M.J.: Single wall carbon nanotube amplification: en route to a type-specific growth mechanism. J. Am. Chem. Soc. 128, 15824 (2006).

    Article  CAS  Google Scholar 

  46. Wang, Y., Kim, J.M., Shan, H., Kittrell, C., Fan, H., Ericson, M.L., W.-F. Hwang, Arepalli, S., Hauge, H.R., Smalley, E.R.: Continued growth of single-walled carbon nanotubes. Nano Lett. 5, 997 (2005).

    Article  CAS  Google Scholar 

  47. Yao, Y., Feng, C., Zhang, J., Liu, Z.: Cloning of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett. 9, 1673 (2008).

    Article  CAS  Google Scholar 

  48. Diederich, F., Rubin, Y.: Synthetic Approaches toward Molecular and Polymeric Carbon Allotropes. Angew. Chem. Int. Ed. 31, 1101 (1992).

    Article  Google Scholar 

Download references

Acknowledgment

Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyula Eres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eres, G., Geohegan, D., Puretzky, A., Rouleau, C. (2010). All Carbon Nanotubes Are Not Created Equal. In: Korkin, A., Krstić, P., Wells, J. (eds) Nanotechnology for Electronics, Photonics, and Renewable Energy. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7454-9_4

Download citation

Publish with us

Policies and ethics