Skip to main content

Pancreas and Ampulla

  • Chapter
  • First Online:
Handbook of Practical Immunohistochemistry

Abstract

This chapter provides a practical overview of frequently used markers in the diagnosis and differential diagnosis of both common and rare pancreatic and ampullary neoplasms, with a specific focus on pancreatic ductal adenocarcinoma and its mimickers. The chapter contains 40 questions; each question is addressed with a table, concise note and representative pictures if applicable. In addition to the literature review, the authors have included their own experience and tested numerous antibodies reported in the literature. The most effective diagnostic panels of antibodies have been recommended for many entities, such as pVHL, maspin, S100P and IMP-3 being suggested as the best diagnostic panel for identifying pancreatic ductal adenocarcinoma. Furthermore, immunophenotypes of normal pancreatic and ampullary tissues have been described, which tends to be neglected in the literature. Prognostic markers for pancreatic ductal adenocarcinoma and pancreatic endocrine neoplasm have been briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hruban RH, Pitman MB, Klimstra DS. AFIP atlast of tumor ­pathology, Tumors of the pancreas, vol. 4. Fascicle 6 ed. Washington, DC: American Registry of Pathology; 2007.

    Google Scholar 

  2. Chu PG, Weiss LM. Modern immunohistochemistry. New York, NY: Cambridge University Press; 2009.

    Google Scholar 

  3. Dabbs DJ. Diagnostic immunohistochemistry. 3rd ed. Philadelphia, PA: Churchill Livingstone Elsevier; 2010.

    Google Scholar 

  4. Taylor C, Cote R. Immunomicroscopy: a diagnostic tool for the surgical pathologist, Major problems in pathology. 3rd ed. Philadelphia, PA: Saunders Elsevier; 2006.

    Google Scholar 

  5. Goldstein NS, Bassi D. Cytokeratins 7, 17, and 20 reactivity in pancreatic and ampulla of vater adenocarcinomas. Percentage of positivity and distribution is affected by the cut-point threshold. Am J Clin Pathol. 2001;115(5):695–702.

    Article  PubMed  CAS  Google Scholar 

  6. Hornick JL, Lauwers GY, Odze RD. Immunohistochemistry can help distinguish metastatic pancreatic adenocarcinomas from bile duct adenomas and hamartomas of the liver. Am J Surg Pathol. 2005;29(3):381–9.

    Article  PubMed  Google Scholar 

  7. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol. 2000;13(9):962–72.

    Article  PubMed  CAS  Google Scholar 

  8. Chu PG, Schwarz RE, Lau SK, Yen Y, Weiss LM. Immunohisto­chemical staining in the diagnosis of pancreatobiliary and ampulla of Vater adenocarcinoma: application of CDX2, CK17, MUC1, and MUC2. Am J Surg Pathol. 2005;29(3):359–67.

    Article  PubMed  Google Scholar 

  9. Lau SK, Prakash S, Geller SA, Alsabeh R. Comparative immunohistochemical profile of hepatocellular carcinoma, cholangiocarcinoma, and metastatic adenocarcinoma. Hum Pathol. 2002;33(12):1175–81.

    Article  PubMed  Google Scholar 

  10. Bhardwaj A, Marsh Jr WL, Nash JW, Barbacioru CC, Jones S, Frankel WL. Double immunohistochemical staining with MUC4/p53 is useful in the distinction of pancreatic adenocarcinoma from chronic pancreatitis: a tissue microarray-based study. Arch Pathol Lab Med. 2007;131(4):556–62.

    PubMed  Google Scholar 

  11. Coppola D, Lu L, Fruehauf JP, et al. Analysis of p53, p21WAF1, and TGF-beta1 in human ductal adenocarcinoma of the pancreas: TGF-beta1 protein expression predicts longer survival. Am J Clin Pathol. 1998;110(1):16–23.

    PubMed  CAS  Google Scholar 

  12. Apple SK, Hecht JR, Lewin DN, Jahromi SA, Grody WW, Nieberg RK. Immunohistochemical evaluation of K-ras, p53, and HER-2/neu ­expression in hyperplastic, dysplastic, and carcinomatous lesions of the pancreas: evidence for multistep carcinogenesis. Hum Pathol. 1999;30(2):123–9.

    Article  PubMed  CAS  Google Scholar 

  13. DiGiuseppe JA, Hruban RH, Goodman SN, et al. Overexpression of p53 protein in adenocarcinoma of the pancreas. Am J Clin Pathol. 1994;101(6):684–8.

    PubMed  CAS  Google Scholar 

  14. Werling RW, Yaziji H, Bacchi CE, Gown AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol. 2003;27(3):303–10.

    Article  PubMed  Google Scholar 

  15. Moskaluk CA, Zhang H, Powell SM, Cerilli LA, Hampton GM, Frierson Jr HF. Cdx2 protein expression in normal and malignant human tissues: an immunohistochemical survey using tissue microarrays. Mod Pathol. 2003;16(9):913–9.

    Article  PubMed  Google Scholar 

  16. De Lott LB, Morrison C, Suster S, Cohn DE, Frankel WL. CDX2 is a useful marker of intestinal-type differentiation: a tissue ­microarray-based study of 629 tumors from various sites. Arch Pathol Lab Med. 2005;129(9):1100–5.

    PubMed  Google Scholar 

  17. Yantiss RK, Woda BA, Fanger GR, et al. KOC (K homology domain containing protein overexpressed in cancer): a novel molecular marker that distinguishes between benign and malignant lesions of the pancreas. Am J Surg Pathol. 2005;29(2):188–95.

    Article  PubMed  Google Scholar 

  18. Zhao H, Mandich D, Cartun RW, Ligato S. Expression of K homology domain containing protein overexpressed in cancer in ­pancreatic FNA for diagnosing adenocarcinoma of pancreas. Diagn Cytopathol. 2007;35(11):700–4.

    Article  PubMed  Google Scholar 

  19. Kashima K, Ohike N, Mukai S, Sato M, Takahashi M, Morohoshi T. Expression of the tumor suppressor gene maspin and its significance in intraductal papillary mucinous neoplasms of the pancreas. Hepatobiliary Pancreat Dis Int. 2008;7(1):86–90.

    PubMed  Google Scholar 

  20. Agarwal B, Ludwig OJ, Collins BT, Cortese C. Immunostaining as an adjunct to cytology for diagnosis of pancreatic adenocarcinoma. Clin Gastroenterol Hepatol. 2008;6(12):1425–31.

    Article  PubMed  Google Scholar 

  21. Ohike N, Maass N, Mundhenke C, et al. Clinicopathological significance and molecular regulation of maspin expression in ductal adenocarcinoma of the pancreas. Cancer Lett. 2003;199(2):193–200.

    Article  PubMed  CAS  Google Scholar 

  22. Cao D, Zhang Q, Wu LS, et al. Prognostic significance of maspin in pancreatic ductal adenocarcinoma: tissue microarray analysis of 223 surgically resected cases. Mod Pathol. 2007;20(5):570–8.

    Article  PubMed  CAS  Google Scholar 

  23. Wente MN, Jain A, Kono E, et al. Prostate stem cell antigen is a putative target for immunotherapy in pancreatic cancer. Pancreas. 2005;31(2):119–25.

    Article  PubMed  CAS  Google Scholar 

  24. Argani P, Rosty C, Reiter RE, et al. Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res. 2001;61(11):4320–4.

    PubMed  CAS  Google Scholar 

  25. McCarthy DM, Maitra A, Argani P, et al. Novel markers of pancreatic adenocarcinoma in fine-needle aspiration: mesothelin and prostate stem cell antigen labeling increases accuracy in cytologically borderline cases. Appl Immunohistochem Mol Morphol. 2003;11(3):238–43.

    Article  PubMed  CAS  Google Scholar 

  26. Ordonez NG. Application of mesothelin immunostaining in tumor diagnosis. Am J Surg Pathol. 2003;27(11):1418–28.

    Article  PubMed  Google Scholar 

  27. Hassan R, Laszik ZG, Lerner M, Raffeld M, Postier R, Brackett D. Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis. Am J Clin Pathol. 2005;124(6):838–45.

    Article  PubMed  CAS  Google Scholar 

  28. Frierson Jr HF, Moskaluk CA, Powell SM, et al. Large-scale molecular and tissue microarray analysis of mesothelin expression in common human carcinomas. Hum Pathol. 2003;34(6):605–9.

    Article  PubMed  CAS  Google Scholar 

  29. Swierczynski SL, Maitra A, Abraham SC, et al. Analysis of novel tumor markers in pancreatic and biliary carcinomas using tissue microarrays. Hum Pathol. 2004;35(3):357–66.

    Article  PubMed  CAS  Google Scholar 

  30. Baruch AC, Wang H, Staerkel GA, Evans DB, Hwang RF, Krishnamurthy S. Immunocytochemical study of the expression of mesothelin in fine-needle aspiration biopsy specimens of pancreatic adenocarcinoma. Diagn Cytopathol. 2007;35(3):143–7.

    Article  PubMed  Google Scholar 

  31. Jhala N, Jhala D, Vickers SM, et al. Biomarkers in diagnosis of pancreatic carcinoma in fine-needle aspirates. Am J Clin Pathol. 2006;126(4):572–9.

    Article  PubMed  CAS  Google Scholar 

  32. Cao D, Maitra A, Saavedra JA, Klimstra DS, Adsay NV, Hruban RH. Expression of novel markers of pancreatic ductal adenocarcinoma in pancreatic nonductal neoplasms: additional evidence of different genetic pathways. Mod Pathol. 2005;18(6):752–61.

    Article  PubMed  CAS  Google Scholar 

  33. Lin F, Shi J, Liu H, et al. Diagnostic utility of S100P and von Hippel-Lindau gene product (pVHL) in pancreatic adenocarcinoma-with implication of their roles in early tumorigenesis. Am J Surg Pathol. 2008;32(1):78–91.

    Article  PubMed  Google Scholar 

  34. Karanjawala ZE, Illei PB, Ashfaq R, et al. New markers of pancreatic cancer identified through differential gene expression analyses: claudin 18 and annexin A8. Am J Surg Pathol. 2008;32(2):188–96.

    Article  PubMed  Google Scholar 

  35. Sato N, Fukushima N, Maitra A, et al. Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol. 2004;164(3):903–14.

    Article  PubMed  CAS  Google Scholar 

  36. Tsukahara M, Nagai H, Kamiakito T, et al. Distinct expression ­patterns of claudin-1 and claudin-4 in intraductal papillary-­mucinous tumors of the pancreas. Pathol Int. 2005;55(2):63–9.

    Article  PubMed  CAS  Google Scholar 

  37. Hewitt KJ, Agarwal R, Morin PJ. The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer. 2006;6:186.

    Article  PubMed  Google Scholar 

  38. Chhieng DC, Benson E, Eltoum I, et al. MUC1 and MUC2 expression in pancreatic ductal carcinoma obtained by fine-needle aspiration. Cancer. 2003;99(6):365–71.

    Article  PubMed  CAS  Google Scholar 

  39. Giorgadze TA, Peterman H, Baloch ZW, et al. Diagnostic utility of mucin profile in fine-needle aspiration specimens of the pancreas: an immunohistochemical study with surgical pathology correlation. Cancer. 2006;108(3):186–97.

    Article  PubMed  Google Scholar 

  40. Luttges J, Zamboni G, Longnecker D, Kloppel G. The immunohistochemical mucin expression pattern distinguishes different types of intraductal papillary mucinous neoplasms of the pancreas and determines their relationship to mucinous noncystic carcinoma and ductal adenocarcinoma. Am J Surg Pathol. 2001;25(7):942–8.

    Article  PubMed  CAS  Google Scholar 

  41. Deng H, Shi J, Wilkerson M, Meschter S, Dupree W, Lin F. Usefulness of S100P in diagnosis of adenocarcinoma of pancreas on fine-needle aspiration biopsy specimens. Am J Clin Pathol. 2008;129(1):81–8.

    Article  PubMed  Google Scholar 

  42. Dowen SE, Crnogorac-Jurcevic T, Gangeswaran R, et al. Expression of S100P and its novel binding partner S100PBPR in early pancreatic cancer. Am J Pathol. 2005;166(1):81–92.

    Article  PubMed  CAS  Google Scholar 

  43. Sato N, Fukushima N, Matsubayashi H, Goggins M. Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene. 2004;23(8):1531–8.

    Article  PubMed  CAS  Google Scholar 

  44. Yamaguchi H, Inoue T, Eguchi T, et al. Fascin overexpression in intraductal papillary mucinous neoplasms (adenomas, borderline neoplasms, and carcinomas) of the pancreas, correlated with increased histological grade. Mod Pathol. 2007;20(5):552–61.

    Article  PubMed  CAS  Google Scholar 

  45. Notohara K, Hamazaki S, Tsukayama C, et al. Solid-pseudopapillary tumor of the pancreas: immunohistochemical localization of ­neuroendocrine markers and CD10. Am J Surg Pathol. 2000;24(10): 1361–71.

    Article  PubMed  CAS  Google Scholar 

  46. Abraham SC, Klimstra DS, Wilentz RE, et al. Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutations. Am J Pathol. 2002;160(4):1361–9.

    Article  PubMed  CAS  Google Scholar 

  47. Tanaka Y, Kato K, Notohara K, et al. Frequent beta-catenin mutation and cytoplasmic/nuclear accumulation in pancreatic solid-pseudopapillary neoplasm. Cancer Res. 2001;61(23):8401–4.

    PubMed  CAS  Google Scholar 

  48. Audard V, Cavard C, Richa H, et al. Impaired E-cadherin expression and glutamine synthetase overexpression in solid pseudopapillary neoplasm of the pancreas. Pancreas. 2008;36(1):80–3.

    Article  PubMed  CAS  Google Scholar 

  49. Chetty R, Serra S. Membrane loss and aberrant nuclear localization of E-cadherin are consistent features of solid pseudopapillary tumour of the pancreas. An immunohistochemical study using two antibodies recognizing different domains of the E-cadherin molecule. Histopathology. 2008;52(3):325–30.

    Article  PubMed  CAS  Google Scholar 

  50. El-Bahrawy MA, Rowan A, Horncastle D, et al. E-cadherin/catenin complex status in solid pseudopapillary tumor of the pancreas. Am J Surg Pathol. 2008;32(1):1–7.

    Article  PubMed  Google Scholar 

  51. Comper F, Antonello D, Beghelli S, et al. Expression pattern of claudins 5 and 7 distinguishes solid-pseudopapillary from pancreatoblastoma, acinar cell and endocrine tumors of the pancreas. Am J Surg Pathol. 2009;33(5):768–74.

    Article  PubMed  Google Scholar 

  52. Pettinato G, Manivel JC, Ravetto C, et al. Papillary cystic tumor of the pancreas. A clinicopathologic study of 20 cases with cytologic, immunohistochemical, ultrastructural, and flow cytometric observations, and a review of the literature. Am J Clin Pathol. 1992;98(5):478–88 [see comment] [erratum appears in Am J Clin Pathol 1993;99(6):764].

    PubMed  CAS  Google Scholar 

  53. Klimstra DS, Wenig BM, Adair CF, Heffess CS. Pancreatoblastoma. A clinicopathologic study and review of the literature. Am J Surg Pathol. 1995;19(12):1371–89.

    Article  PubMed  CAS  Google Scholar 

  54. Abraham SC, Wu TT, Klimstra DS, et al. Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas: frequent alterations in the APC/beta-catenin pathway and chromosome 11p. Am J Pathol. 2001;159(5):1619–27.

    Article  PubMed  CAS  Google Scholar 

  55. Abraham SC, Wu TT, Hruban RH, et al. Genetic and immunohistochemical analysis of pancreatic acinar cell carcinoma: frequent allelic loss on chromosome 11p and alterations in the APC/beta-catenin pathway. Am J Pathol. 2002;160(3):953–62.

    Article  PubMed  CAS  Google Scholar 

  56. Kerr NJ, Chun YH, Yun K, Heathcott RW, Reeve AE, Sullivan MJ. Pancreatoblastoma is associated with chromosome 11p loss of heterozygosity and IGF2 overexpression. Med Pediatr Oncol. 2002;39(1):52–4.

    Article  PubMed  Google Scholar 

  57. Tanaka Y, Kato K, Notohara K, et al. Significance of aberrant (cytoplasmic/nuclear) expression of beta-catenin in pancreatoblastoma. J Pathol. 2003;199(2):185–90.

    Article  PubMed  CAS  Google Scholar 

  58. van Heek T, Rader AE, Offerhaus GJ, et al. K-ras, p53, and DPC4 (MAD4) alterations in fine-needle aspirates of the pancreas: a molecular panel correlates with and supplements cytologic diagnosis. Am J Clin Pathol. 2002;117(5):755–65.

    Article  PubMed  Google Scholar 

  59. Adsay NV, Pierson C, Sarkar F, et al. Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol. 2001;25(1):26–42.

    Article  PubMed  CAS  Google Scholar 

  60. Wilentz RE, Goggins M, Redston M, et al. Genetic, immunohistochemical, and clinical features of medullary carcinoma of the pancreas: a newly described and characterized entity. Am J Pathol. 2000;156(5):1641–51.

    Article  PubMed  CAS  Google Scholar 

  61. Banville N, Geraghty R, Fox E, et al. Medullary carcinoma of the pancreas in a man with hereditary nonpolyposis colorectal cancer due to a mutation of the MSH2 mismatch repair gene. Hum Pathol. 2006;37(11):1498–502.

    Article  PubMed  CAS  Google Scholar 

  62. Nakata B, Wang YQ, Yashiro M, et al. Negative hMSH2 protein expression in pancreatic carcinoma may predict a better prognosis of patients. Oncol Rep. 2003;10(4):997–1000.

    PubMed  CAS  Google Scholar 

  63. Winter JM, Ting AH, Vilardell F, et al. Absence of E-cadherin expression distinguishes noncohesive from cohesive pancreatic cancer. Clin Cancer Res. 2008;14(2):412–8.

    Article  PubMed  CAS  Google Scholar 

  64. Hameed O, Xu H, Saddeghi S, Maluf H. Hepatoid carcinoma of the pancreas: a case report and literature review of a heterogeneous group of tumors. Am J Surg Pathol. 2007;31(1):146–52.

    Article  PubMed  Google Scholar 

  65. Kosmahl M, Wagner J, Peters K, Sipos B, Kloppel G. Serous cystic neoplasms of the pancreas: an immunohistochemical analysis revealing alpha-inhibin, neuron-specific enolase, and MUC6 as new markers. Am J Surg Pathol. 2004;28(3):339–46.

    Article  PubMed  Google Scholar 

  66. Handra-Luca A, Flejou JF, Rufat P, et al. Human pancreatic mucinous cystadenoma is characterized by distinct mucin, cytokeratin and CD10 expression compared with intraductal papillary-­mucinous adenoma. Histopathology. 2006;48(7):813–21.

    Article  PubMed  CAS  Google Scholar 

  67. Ueda M, Miura Y, Kunihiro O, et al. MUC1 overexpression is the most reliable marker of invasive carcinoma in intraductal papillary-mucinous tumor (IPMT). Hepatogastroenterology. 2005;52(62):398–403.

    PubMed  CAS  Google Scholar 

  68. Swerdlow H, Campo E, Harris N, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon, France: International Agency for Research on Cancer; 2008. p. 439. Accessed 10/1/2009.

    Google Scholar 

  69. Chu P, Arber DA. Paraffin-section detection of CD10 in 505 nonhematopoietic neoplasms. Frequent expression in renal cell carcinoma and endometrial stromal sarcoma. Am J Clin Pathol. 2000;113(3):374–82.

    Article  PubMed  CAS  Google Scholar 

  70. Lin F, Zhang PL, Yang XJ, et al. Human kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg Pathol. 2007;31(3):371–81.

    Article  PubMed  Google Scholar 

  71. Wang W, Gao J, Man XH, Li ZS, Gong YF. Significance of DNA methyltransferase-1 and histone deacetylase-1 in pancreatic cancer. Oncol Rep. 2009;21(6):1439–47.

    PubMed  CAS  Google Scholar 

  72. Hildenbrand R, Niedergethmann M, Marx A, et al. Amplification of the urokinase-type plasminogen activator receptor (uPAR) gene in ductal pancreatic carcinomas identifies a clinically high-risk group. Am J Pathol. 2009;174(6):2246–53.

    Article  PubMed  CAS  Google Scholar 

  73. Fong D, Hermann M, Untergasser G, et al. Dkk-3 expression in the tumor endothelium: a novel prognostic marker of pancreatic adenocarcinomas. Cancer Sci. 2009;100(8):1414–20.

    Article  PubMed  CAS  Google Scholar 

  74. Kahlert C, Weber H, Mogler C, et al. Increased expression of ALCAM/CD166 in pancreatic cancer is an independent prognostic marker for poor survival and early tumour relapse. Br J Cancer. 2009;101(3):457–64.

    Article  PubMed  CAS  Google Scholar 

  75. Ali A, Serra S, Asa SL, Chetty R. The predictive value of CK19 and CD99 in pancreatic endocrine tumors. Am J Surg Pathol. 2006;30(12):1588–94.

    Article  PubMed  Google Scholar 

  76. Pelosi G, Pasini F, Bresaola E, et al. High-affinity monomeric 67-kD laminin receptors and prognosis in pancreatic endocrine tumours. J Pathol. 1997;183(1):62–9.

    Article  PubMed  CAS  Google Scholar 

  77. Imam H, Eriksson B, Oberg K. Expression of CD44 variant isoforms and association to the benign form of endocrine pancreatic tumours. Ann Oncol. 2000;11(3):295–300.

    Article  PubMed  CAS  Google Scholar 

  78. Ohike N, Morohoshi T. Pathological assessment of pancreatic endocrine tumors for metastatic potential and clinical prognosis. Endocr Pathol. 2005;16(1):33–40.

    Article  PubMed  Google Scholar 

  79. Diaz-Rubio JL, Duarte-Rojo A, Saqui-Salces M, Gamboa-Dominguez A, Robles-Diaz G. Cellular proliferative fraction measured with topoisomerase IIalpha predicts malignancy in endocrine pancreatic tumors. Arch Pathol Lab Med. 2004;128(4):426–9.

    PubMed  Google Scholar 

  80. Goto A, Niki T, Terado Y, Fukushima J, Fukayama M. Prevalence of CD99 protein expression in pancreatic endocrine tumours (PETs). Histopathology. 2004;45(4):384–92.

    Article  PubMed  CAS  Google Scholar 

  81. Grabowski P, Griss S, Arnold CN, et al. Nuclear survivin is a powerful novel prognostic marker in gastroenteropancreatic neuroendocrine tumor disease. Neuroendocrinology. 2005;81(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  82. Zhou H, Schaefer N, Wolff M, Fischer HP. Carcinoma of the ampulla of Vater: comparative histologic/immunohistochemical classification and follow-up. Am J Surg Pathol. 2004;28(7):875–82.

    Article  PubMed  Google Scholar 

  83. Schirmacher P, Buchler MW. Ampullary adenocarcinoma – ­differentiation matters. BMC Cancer. 2008;8:251.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lin, F., Wang, H.L. (2011). Pancreas and Ampulla. In: Lin, F., Prichard, J. (eds) Handbook of Practical Immunohistochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8062-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8062-5_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8061-8

  • Online ISBN: 978-1-4419-8062-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics