Skip to main content

Scattering Off Potentials

  • Chapter
  • First Online:
Advanced Quantum Mechanics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3990 Accesses

Abstract

Most two-particle interaction potentials V (x 1x 2) assume a finite value V if | x 1x 2 | → . If the relative motion of the two-particle system has an energy E > V the particles can have arbitrary large distance. In particular, we can imagine a situation where the two particles approach each other from an initially large separation and after reaching some minimal distance move away from each other. The force between the two particles will influence the trajectories of the two particles, and this influence will be strongest when the particles are close together. The deflection of particle trajectories due to interaction forces is denoted as scattering. This is denoted as potential scattering if the interaction forces between the particles can be expressed through a potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    E. Schrödinger, Annalen Phys. 385, 437 (1926).

  2. 2.

    Please note that the definition used here differs by factors of 2 from the definition used by Schrödinger, \({\lambda }_{1} \equiv {\xi }_{S} = 2\xi \), \({\lambda }_{2} \equiv {\eta }_{S} = 2\eta \).

  3. 3.

    W. Gordon, Z. Phys. 48, 180 (1928).

References

  1. M. Abramowiz & I.A. Stegun (Editors), Handbook of Mathematical Functions, 10th printing, Wiley, New York 1972.

    Google Scholar 

  2. H.A. Bethe & E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer, Berlin 1957.

    Google Scholar 

  3. B. Bhushan (Editor), Springer Handbook of Nanotechnology, 2nd edition, Springer, New York 2007.

    Google Scholar 

  4. J. Callaway, Quantum Theory of the Solid State, Academic Press, Boston 1991.

    Google Scholar 

  5. J.F. Cornwell, Group Theory in Physics, Volumes I & II, Academic Press, London 1984.

    Google Scholar 

  6. R. Courant & D. Hilbert, Methods of Mathematical Physics, Volumes 1 & 2, Interscience Publ., New York 1953, 1962.

    Google Scholar 

  7. G.W.F. Drake (Editor), Springer Handbook of Atomic, Molecular, and Optical Physics, Springer, New York 2006.

    Google Scholar 

  8. A.R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, Princeton University Press, Princeton 1960.

    Google Scholar 

  9. R.P. Feynman & A.R. Hibbs, Quantum Mechanics and Path Integrals, Mc-Graw Hill, New York 1965.

    Google Scholar 

  10. P. Fulde, Electron Correlations in Molecules and Solids, 2nd edition, Springer, Berlin 1993.

    Google Scholar 

  11. M. Getzlaff, Fundamentals of Magnetism, Springer, Berlin 2008.

    Google Scholar 

  12. C. Grosche & F. Steiner, Handbook of Feynman Path Integrals, Springer, Berlin 1998.

    Google Scholar 

  13. H. Hellmann, Einführung in die Quantenchemie, Deuticke, Leipzig 1937.

    Google Scholar 

  14. N.J. Higham, Functions of Matrices – Theory and Computation, Society of Industrial and Applied Mathematics, Philadelphia 2008.

    Google Scholar 

  15. H. Ibach & H. Lüth, Solid State Physics – An Inroduction to Principles of Materials Science, 3rd edition, Springer, Berlin 2003.

    Google Scholar 

  16. C. Itzykson & J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York 1980.

    Google Scholar 

  17. J.D. Jackson, Classical Electrodynamics, 3rd edition, Wiley, New York 1999.

    Google Scholar 

  18. S. Kasap & P. Capper (Editors), Springer Handbook of Electronic and Photonic Materials, Springer, New York 2006.

    Google Scholar 

  19. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1966.

    Google Scholar 

  20. C. Kittel, Quantum Theory of Solids, 2nd edition, Wiley, New York 1987.

    Google Scholar 

  21. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edition, World Scientific, Singapore 2009.

    Google Scholar 

  22. L.D. Landau & E.M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, Pergamon Press, Oxford 1977.

    Google Scholar 

  23. O. Madelung, Introduction to Solid-State Theory, Springer, Berlin 1978.

    Google Scholar 

  24. L. Marchildon, Quantum Mechanics: From Basic Principles to Numerical Methods and Applications, Springer, New York 2002.

    Google Scholar 

  25. E. Merzbacher, Quantum Mechanics, 3rd edition, Wiley, New York 1998.

    Google Scholar 

  26. A. Messiah, Quantum Mechanics, Volumes 1 & 2, North-Holland, Amsterdam 1961, 1962.

    Google Scholar 

  27. P.M. Morse & H. Feshbach, Methods of Theoretical Physics, Vol. 2, McGraw-Hill, New York 1953.

    Google Scholar 

  28. J. Orear, A.H. Rosenfeld & R.A. Schluter, Nuclear Physics: A Course given by Enrico Fermi at the University of Chicago, University of Chicago Press, Chicago 1950.

    Google Scholar 

  29. M. Peskin & D.V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, Reading 1995.

    Google Scholar 

  30. A.P. Prudnikov, Yu.A. Brychkov & O.I. Marichev, Integrals and Series, Vol. 1, Gordon and Breach Science Publ., New York 1986.

    Google Scholar 

  31. A.P. Prudnikov, Yu.A. Brychkov & O.I. Marichev, Integrals and Series, Vol. 2, Gordon and Breach Science Publ., New York 1986.

    Google Scholar 

  32. M.E. Rose, Elementary Theory of Angular Momentum, Wiley, New York 1957.

    Google Scholar 

  33. F. Schwabl, Quantum Mechanics, 4th edition, Springer, Berlin 2007.

    Google Scholar 

  34. F. Schwabl, Advanced Quantum Mechanics, 4th edition, Springer, Berlin 2008.

    Google Scholar 

  35. R.U. Sexl & H.K. Urbantke, Relativity, Groups, Particles, Springer, New York 2001.

    Google Scholar 

  36. J.C. Slater, Quantum Theory of Molecules and Solids, Vol. 1, McGraw-Hill, New York 1963.

    Google Scholar 

  37. A. Sommerfeld, Atombau und Spektrallinien, 3rd edition, Vieweg, Braunschweig 1922. English translation Atomic Structure and Spectral Lines, Methuen, London 1923.

    Google Scholar 

  38. J. Stöhr & H.C. Siegmann, Magnetism – From Fundamentals to Nanoscale Dynamics, Springer, New York 2006.

    Google Scholar 

  39. S. Weinberg, The Quantum Theory of Fields, Vols. 1 & 2, Cambridge University Press, Cambridge 1995, 1996.

    Google Scholar 

  40. E.P. Wigner, Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren, Vieweg, Braunschweig 1931. English translation Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Dick .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dick, R. (2012). Scattering Off Potentials. In: Advanced Quantum Mechanics. Graduate Texts in Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8077-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8077-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8076-2

  • Online ISBN: 978-1-4419-8077-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics