Skip to main content

Transport Properties of High Temperature Planetary Atmospheres

  • Chapter
  • First Online:
Fundamental Aspects of Plasma Chemical Physics

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 74))

  • 1663 Accesses

Abstract

In this chapter we report in graphical and tabular form the transport properties of high-temperature planetary atmospheres (Earth, Mars and Jupiter) in a wide range of temperature and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The pressure is given in bar, though throughout the book, also atm units are used for results taken from literature, the conversion factor being 1 bar=0.987 atm.

References

  • Alagia M, Brunetti B, Candori P, Falcinelli S, Teixidor MM, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2004) Low-lying electronic states of HBr2 + . J Chem Phys 120(15):6985–6991

    Article  ADS  Google Scholar 

  • André P, Aubreton J, Clain S, Dudeck M, Duffour E, Elchinger MF, Izrar B, Rochette D, Touzani R, Vacher D (2010) Transport coefficients in thermal plasma. Applications to Mars and Titan atmospheres. Eur Phys J D 57:227–234

    Article  ADS  Google Scholar 

  • Aubreton J, Elchinger M, Fauchais P, Rat V, André P (2004a) Thermodynamic and transport properties of a ternary Ar-H2-He mixture out of equilibrium up to 30,000 K at atmospheric pressure. J Phys D: Appl Phys 37(16):2232–2246

    Article  ADS  Google Scholar 

  • Aubreton J, Elchinger M, Rat V, Fauchais P (2004b) Two-temperature transport coefficients in argon-helium thermal plasmas. J Phys D: Appl Phys 37(1):34–41

    Article  ADS  Google Scholar 

  • Biagi S (2012) http://consult.cern.ch/writeup/magboltz/ or http://rjd.web.cern.ch/rjd/cgi-bin/cross

  • Blaha M, Davis J (1975) Elastic scattering of electrons by oxygen and nitrogen at intermediate energies. Phys Rev A 12(6):2319–2324

    Article  ADS  Google Scholar 

  • Bray I, Konovalov D, McCarthy IE (1991) Coupled-channel optical calculation of electron-hydrogen scattering: Elastic scattering from 0.5 to 30 eV. Phys Rev A 43(11):5878–5885

    Article  ADS  Google Scholar 

  • Brunger MJ, Buckman SJ (2002) Electron-molecule scattering cross-sections. I. experimental techniques and data for diatomic molecules. Phys Rep 357(3–5):215–458

    Google Scholar 

  • Bruno D, Catalfamo C, Laricchiuta A, Giordano D, Capitelli M (2006) Convergence of Chapman-Enskog calculation of transport coefficients of magnetized argon plasma. Phys Plasmas 13(7):072307

    Article  ADS  Google Scholar 

  • Bruno D, Catalfamo C, Capitelli M, Colonna G, De Pascale O, Diomede P, Gorse C, Laricchiuta A, Longo S, Giordano D, Pirani F (2010) Transport properties of high-temperature Jupiter atmosphere components. Phys Plasmas 17(11):112315

    Article  ADS  Google Scholar 

  • Bruno D, Capitelli M, Catalfamo C, Giordano D (2011) Transport properties of high-temperature air in a magnetic field. Phys Plasmas 18(1):012308

    Article  ADS  Google Scholar 

  • Capitelli M (1977) Transport coefficients of partially ionized gases. Journal de Physique Supplemént Colloque C3 (Paris) 38(8):C3 227–C3 237

    Google Scholar 

  • Capitelli M, Gorse C, Fauchais P (1976) Transport coefficients of Ar-H2 high temperature mixtures. Journal de Chimie Physique et de Physico-Chimie Biologique 73:755–759

    Google Scholar 

  • Capitelli M, Colonna G, Gorse C, D’Angola A (2000a) Transport properties of high temperature air in local thermodynamic equilibrium. Eur Phys J D 11(2):279–289

    Article  ADS  Google Scholar 

  • Capitelli M, Gorse C, Longo S, Giordano D (2000b) Collision integrals of high-temperature air species. J Thermophys Heat Transf 14(2):259–268

    Article  Google Scholar 

  • Capitelli M, Colonna G, Giordano D, Marraffa L, Casavola A, Minelli P, Pagano D, Pietanza L, Taccogna F (2005) High-temperature thermodynamic properties of Mars-atmosphere components. J Spacecr Rockets 42(6):980–989

    Article  ADS  Google Scholar 

  • Capitelli M, Colonna G, D’Angola A (2011) Fundamental aspects of plasma chemical physics: Thermodynamics. Springer series on atomic, optical, and plasma physics, vol 66. Springer, New York

    Google Scholar 

  • Catalfamo C, Bruno D, Colonna G, Laricchiuta A, Capitelli M (2009) High temperature Mars atmosphere. Part II: Transport properties. Eur Phys J D 54(3):613–621

    Article  Google Scholar 

  • Chandra N (1977) Low-energy electron scattering from CO. II. ab initio study using the frame transformation theory. Phys Rev A 16(1):80–108

    Google Scholar 

  • Colonna G, D’Angola A, Laricchiuta A, Bruno D, Capitelli M (2013) Analytical expressions of thermodynamic and transport properties of the Martian atmosphere in a wide temperature and pressure range Plasma Chemistry and Plasma Processing 33(1):401–431

    Google Scholar 

  • Dalgarno A, McDowell M (1956) Charge transfer and the mobility of H −  ions in atomic hydrogen. Proc Phys Soc (London) A69(8):615

    ADS  Google Scholar 

  • D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur Phys J D 46(1):129–150

    Article  ADS  Google Scholar 

  • D’Angola A, Colonna G, Bonomo A, Bruno D, Laricchiuta A, Capitelli M (2012) A phenomenological approach for the transport properties of air plasmas. Eur Phys J D 66(8):205

    Article  ADS  Google Scholar 

  • Das AK, Ray D, Mukherjee PK (1992) Static dipole polarizabilities of open-shell negative ions. Theor Chim Acta 82(3–4):223–227

    Article  Google Scholar 

  • Davidović D, Janev R (1969) Resonant charge exchange of the negative ions in slow collisions with atoms. Phys Rev 186(1):89–95

    Article  ADS  Google Scholar 

  • Devoto RS (1967) Simplified expressions for the transport properties of ionized monatomic gases. Phys Fluids 10(10):2105–2112

    Article  ADS  Google Scholar 

  • Ewig CS, Waldman M, Maple JR (2002) Ab initio atomic polarizability tensors for organic molecules. J Phys Chem A 106(2):326–334

    Article  Google Scholar 

  • Flannery MR, Cosby PC, Moran TF (1973) Molecular charge transfer: Experimental and theoretical investigation of the role of incident-ion vibrational states in N2  + -N2 and CO + -CO collisions. J Chem Phys 59(10):5494–5510

    Article  ADS  Google Scholar 

  • Gavezzotti A (2003) Calculation of intermolecular interaction energies by direct numerical integration over electronic densities. An improved polarization model and the evaluation of dispersion and repulsion energies. J Phys Chem B 107(10):2344–2353

    Google Scholar 

  • Gorfinkiel JD, Tennyson J (2004) Electron-H3  +  collisions at intermediate energies. J Phys B At Mol Opt Phys 37(20):L343–L350

    Article  Google Scholar 

  • Gorse C, Capitelli M (2001) Collision integrals of high temperature hydrogen species. At Plasma Mater Interact Data Fusion (APID series) 9:75–82

    Google Scholar 

  • Gote M, Ehrhardt H (1995) Rotational excitation of diatomic molecules at intermediate energies: absolute differential state-to-state transition cross sections for electron scattering from N2, Cl2, CO and HCl. J Phys B At Mol Phys 28(17):3957–3986

    Article  ADS  Google Scholar 

  • Gupta GP, Mathur KC (1980) Corrigendum differential cross sections for the elastic scattering of electrons by hydrogen atoms at intermediate energies. J Phys B: At Mol Phys 13:1719

    Article  ADS  Google Scholar 

  • Hati S, Datta D (1995) Electronegativity and static electric dipole polarizability of atomic species. a semiempirical relation. J Phys Chem 99(27):10742–10746

    Article  Google Scholar 

  • Hati S, Datta D (1996) At most, one electron can be added to a free atom in gas phase. J Phys Chem 100(12):4828–4830

    Article  Google Scholar 

  • Hayashi M (1989) Electron collision cross sections determined from beam and swarm data by Boltzmann analysis. NATO ASI Series B 220:333–340

    Article  Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird RB (1966) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  • Huels M, Champion R, Doverspike L, Wang Y (1990) Charge transfer and electron detachment for collisions of H −  and D −  with H. Phys Rev A 41(9):4809–4815

    Article  ADS  Google Scholar 

  • Hurly JJ, Mehl JB (2007) 4He thermophysical properties: new ab initio calculations. J Res Natl Inst Stand Technol 112(2):75–94

    Article  Google Scholar 

  • Itikawa Y (2002) Cross sections for electron collisions with carbon dioxide. J Phys Chem Ref Data 31(3):749–767

    Article  ADS  Google Scholar 

  • Itikawa Y (2006) Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35(1):31–53

    Article  ADS  Google Scholar 

  • Itikawa Y, Ichimura A, Onda K, Sakimoto K, Takayanagi K, Hatano Y, Hayashi M, Nishimura M, Tsurubuchi S (1989) Cross sections for collisions of electrons and photons with oxygen molecules. J Phys Chem Ref Data 18(1):23–42

    Article  ADS  Google Scholar 

  • Janev RK, Langer WD, Evans Jr K, Post Jr D (1987) Elementary processes in hydrogen-helium plasmas. Springer, Berlin

    Book  Google Scholar 

  • Kosarim AV, Smirnov BM (2005) Electron terms and resonant charge exchange involving oxygen atoms and ions. J Exp Theor Phys 101(4):611–627

    Article  ADS  Google Scholar 

  • Kosarim AV, Smirnov BM, Capitelli M, Celiberto R, Laricchiuta A (2006) Resonant charge exchange involving electronically excited states of nitrogen atoms and ions. Phys Rev A 74(6):062707

    Article  ADS  Google Scholar 

  • KrsticÌ€ PS (2002) Inelastic processes from vibrationally excited states in slow H + -H2 and H-H2  +  collisions: excitations and charge transfer. Phys Rev A 66(4):042717

    Google Scholar 

  • KrsticÌ€ PS, Schultz DR (1999) Elastic scattering and charge transfer in slow collisions: isotopes of H and H +  colliding with isotopes of H and with He. J Phys B: At Mol Phys 32(14):3485–3509

    Google Scholar 

  • KrsticÌ€ PS, Schultz DR (2003) Elastic processes involving vibrationally excited molecules in cold hydrogen plasmas. J Phys B: At Mol Phys 36(2):385–398

    Google Scholar 

  • Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D, Pirani F (2009) High temperature Mars atmosphere. Part I: Transport cross sections. Eur Phys J D 54(3):607–612

    Google Scholar 

  • Li Y, Lin C (1999) Calculations of some weakly bound diatomic molecular negative ions. Phys Rev A 60(3):2009–2014

    Article  ADS  Google Scholar 

  • Magnasco V, Ottonelli M (1999) Dipole polarizability pseudospectra and C6 dispersion coefficients for H2  + -H2  + . J Mol Struct (Theochem) 469:31–40

    Article  Google Scholar 

  • Meyer W, Frommhold L (1994) Long-range interactions in H-He: ab initio potential, hyperfine pressure shift and collision-induced absorption in the infrared. Theor Chim Acta 88(3):201–216

    Article  Google Scholar 

  • Miller T, Bederson B (1977) In: Bates, DR, Bederson, B (eds) Advances in atomic and molecular physics, vol 13. Academic, New York

    Google Scholar 

  • Mojarrabi B, Gulley RJ, Middleton AG, Cartwright DC, Teubner PJO, Buckman SJ, Brunger MJ (1995) Electron collisions with NO: elastic scattering and rovibrational (0 to 1, 2, 3, 4) excitation cross sections. J Phys B: At Mol Phys 28(3):487–504

    Article  ADS  Google Scholar 

  • Moran TF, Flannery MR, Cosby PC (1974) Molecular charge transfer II. experimental and theoretical investigation of the role of incident-ion vibrational states in O2  + -O2 and NO + -NO collisions. J Chem Phys 61(4):1261–1273

    Article  ADS  Google Scholar 

  • Nikitin EE, Smirnov BM (1978) Quasiresonant processes in slow collisions. Sov Phys Usp 21(2):95–116

    Article  ADS  Google Scholar 

  • Olney TN, Cann NM, Cooper G, Brion CE (1997) Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. Chem Phys 223(1):59–98

    Article  Google Scholar 

  • Olson R, Liu B (1980) Interactions of H and H −  with He and Ne. Phys Rev A 22(4):1389–1394

    Article  ADS  Google Scholar 

  • Pagano D, Casavola A, Pietanza L, Colonna G, Giordano D, Capitelli M (2008) Thermodynamic properties of high-temperature Jupiter-atmosphere components. J Thermophys Heat Transf 22(3):434–441

    Article  Google Scholar 

  • Phelps AV (2007) Collision data compilation. JILA, University of Colorado http://jilawwwcoloradoedu/~avp/collision_data/electronneutral/electrontxt

  • Rundel R, Nitz D, Smith K, Geis M, Stebbings R (1979) Resonant charge transfer in He + -He collisions studied with the merging-beams technique. Phys Rev A 19(1):33–42

    Article  ADS  Google Scholar 

  • Sharp TE (1970) Potential-energy curves for molecular hydrogen and its ions. At Data Nucl Data Tables 2:119–169

    Article  ADS  Google Scholar 

  • Shyn TW, Sharp WE (1981) Angular distribution of electrons elastically scattered from H2. Phys Rev A 24(4):1734–1740

    Article  ADS  Google Scholar 

  • Shyn TW, Sharp WE (1982) Angular distribution of electrons elastically scattered from O2: 2.0–200 eV impact energy. Phys Rev A 26(3):1369–1372

    Article  ADS  Google Scholar 

  • Smirnov BM (2001) Atomic structure and the resonant charge exchange process. Phys Usp 44(3):221–253

    Article  ADS  Google Scholar 

  • Sourd B, Aubreton J, Elchinger MF, Labrot M, Michon U (2006) High temperature transport coefficients in e/C/H/N/O mixtures. J Phys D: Appl Phys 39(6):1105–1119

    Article  ADS  Google Scholar 

  • Stallcop JR, Levin E, Partridge H (1996) H-H2 collision integrals and transport coefficients. Chem Phys Lett 254(1–2):25–31

    Article  ADS  Google Scholar 

  • Stallcop JR, Levin E, Partridge H (1998) Transport properties of hydrogen. J Thermophys Heat Transf 12(4):514–519

    Article  Google Scholar 

  • Sullivan JP, Gibson J, Gulley RJ, Buckman SJ (1995) Low-energy electron scattering from O2. J Phys B: At Mol Phys 28(19):4319–4328

    Article  ADS  Google Scholar 

  • Sun W, Morrison MA, Isaacs WA, Trail WK, Alle DT, Gulley RJ, Brennan MJ, Buckman SJ (1995) Detailed theoretical and experimental analysis of low energy electron-N2 scattering. Phys Rev A 52(2):1229–1256

    Article  ADS  Google Scholar 

  • Thomas LD, Nesbet RK (1975a) Addendum: Low-energy electron scattering by atomic oxygen. Phys Rev A 12(4):1729–1730

    Article  ADS  Google Scholar 

  • Thomas LD, Nesbet RK (1975b) Low-energy electron scattering by atomic carbon. Phys Rev A 12(6):2378–2382

    Article  ADS  Google Scholar 

  • Thomas LD, Nesbet RK (1975c) Low-energy electron scattering by atomic nitrogen. Phys Rev A 12(6):2369–2377

    Article  ADS  Google Scholar 

  • van Duijnen PT, Swart M (1998) Molecular and atomic polarizabilities: Thole’s model revisited. J Phys Chem A 102(14):2399–2407

    Article  Google Scholar 

  • Williams JF (1975a) Electron scattering from atomic hydrogen. III. absolute differential cross sections for elastic scattering of electrons of energies from 20 to 680 eV. J Phys B: At Mol Phys 8:2191

    Google Scholar 

  • Williams JF (1975b) Electron scattering from hydrogen atoms. II. elastic scattering at low energies from 0.5 to 8.7 eV. J Phys B: At Mol Phys 8:1683

    Google Scholar 

  • Winstead C, McKoy V (1998) Electron collisions with nitrous oxide. Phys Rev A 57(5):3589–3597

    Article  ADS  Google Scholar 

  • Wright MJ, Bose D, Palmer GE, Levin E (2005) Recommended collision integrals for transport property computations part 1: air species. AIAA J 43(12):2558–2564

    Article  ADS  Google Scholar 

  • Yevseyev AV, Radtsig AA, Smirnov BM (1982) The asymptotic theory of resonance charge exchange between diatomics. J Phys B: At Mol Phys 15(23):4437–4452

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Capitelli, M., Bruno, D., Laricchiuta, A. (2013). Transport Properties of High Temperature Planetary Atmospheres. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 74. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8172-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8172-1_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8171-4

  • Online ISBN: 978-1-4419-8172-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics