Skip to main content

Self-Consistent Kinetics of Molecular Plasmas: The Nitrogen Case

  • Chapter
Fundamental Aspects of Plasma Chemical Physics

Abstract

In this Chapter we show the influence of internal states on the electron energy distribution function and that of electrons on vibrational kinetics by using a self-consistent approach. This model solves simultaneously, in a time dependent approach, the level and free electron kinetics, that exchange information at each time step. The synergy between the two systems influences both distributions, resulting in features that cannot be explained considering the uncoupled models. Nitrogen plasmas, in discharge and afterglow conditions, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The vibrational excitation processes, known as eV processes in the plasma modeling community, correspond to RVE discussed in Chap. 1

References

  • Adamovich IV (2014) Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows. Phys Fluids 26(4):046102

    Article  ADS  Google Scholar 

  • Adamovich IV, Macheret SO, Rich JW, Treanor CE (1998) Vibrational energy transfer rates using a forced harmonic oscillator model. J Thermophys Heat Transf 12(1):57–65

    Article  Google Scholar 

  • ALADDIN (2013) Numerical database maintained by the IAEA nuclear data section A+M data unit. https://www-amdis.iaea.org/ALADDIN/

  • Armenise I, Esposito F (2015) N2, O2, NO state-to-state vibrational kinetics in hypersonic boundary layers: the problem of rescaling rate coefficients to uniform vibrational ladders. Chem Phys 446:30–46

    Article  ADS  Google Scholar 

  • Bazhenov VY, Ryabtsev AV, Soloshenko IA, Terent’eva AG, Khomich VA, Tsiolko VV, Shchedrin AI (2001) Investigation of the electron energy distribution function in hollow-cathode glow discharges in nitrogen and oxygen. Plasma Phys Rep 27(9):813–818

    Article  ADS  Google Scholar 

  • Billing GD (1982) Semiclassical calculation of rate costants for energy transfer between the asymmetric stretch mode of CO2 and N2. Chem Phys Lett 89(4):337–340

    Article  ADS  Google Scholar 

  • Billing GD (1986) VV and VT energy transfer including multiquantum transitions in atom-diatom and diatom-diatom collisions. In: Capitelli M (ed) Nonequilibrium vibrational kinetics. Springer series topics in current physics, vol 39. Springer-Verlag, Berlin Heidelberg, pp 85–111

    Chapter  Google Scholar 

  • Billing GD, Fisher ER (1979) VV and VT rate coefficients in N2 by a quantum-classical model. Chem Phys 43(3):395–401

    Article  ADS  Google Scholar 

  • Bourdon A, Panesi M, Brandis A, Magin TE, Chaban G, Huo W, Jaffe R, Schwenke DW (2008) Simulation of flows in shock-tube facilities by means of a detailed chemical mechanism for nitrogen excitation and dissociation. In: Proceedings of the summer program, Center for Turbulence Research, Stanford

    Google Scholar 

  • Cacciatore M, Capitelli M, Gorse C (1982) Non-equilibrium dissociation and ionization of nitrogen in electrical discharges: the role of electronic collisions from vibrationally excited molecules. Chem Phys 66(1–2):141–151

    Article  ADS  Google Scholar 

  • Cacciatore M, Kurnosov A, Napartovich A (2005) Vibrational energy transfer in N2-N2 collisions: a new semiclassical study. J Chem Phys 123(17):174315

    Article  ADS  Google Scholar 

  • Capitelli M (ed) (1986) Nonequilibrium vibrational kinetics. Springer series topics in current physics, vol 39. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Capitelli M, Celiberto R (1998) Electron-molecule cross sections for plasma applications: the role of internal energy of the target. In: Becker KH (ed) Novel aspects of electron-molecule collisions. World Scientific, Singapore/River Edge, pp 283–323

    Chapter  Google Scholar 

  • Capitelli M, Dilonardo M (1977) Nonequilibrium vibrational populations of diatomic species in electrical discharges: effects on the dissociation rates. Chem Phys 24(3):417–427

    Article  ADS  Google Scholar 

  • Capitelli M, Dilonardo M (1978) Non-equilibrium dissociation of nitrogen. Rev Phys Appl (Paris) 13(3):115–123

    Article  Google Scholar 

  • Capitelli M, Gorse C (1990) Non equilibrium plasma kinetics. In: Capitelli M, Bardsley J (eds) Nonequilibrium processes in partially ionized gases. NATO ASI series, vol 220. Springer, US pp 45–61

    Google Scholar 

  • Capitelli M, Dilonardo M, Molinari E (1977) A theoretical calculation of dissociation rates of molecular hydrogen in electrical discharges. Chem Phys 20(3):417–429

    Article  ADS  Google Scholar 

  • Capitelli M, Gorse C, Billing G (1980) V-V pumping up in non-equilibrium nitrogen: effects on the dissociation rate. Chem Phys 52(3):299–304

    Article  ADS  Google Scholar 

  • Capitelli M, Gorse C, Ricard A (1981) Relaxation of the vibrational distribution function in N2 time varying discharges. J Phys Lett 42(9):185–188

    Article  Google Scholar 

  • Capitelli M, Gorse C, Ricard A (1982) Non equilibrium dissociation and ionization of N2 in decaying plasmas. J Phys Lett 43(12):417–423

    Article  Google Scholar 

  • Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2000) Plasma kinetics in atmospheric gases. Springer series on atomic, optical, and plasma physics, vol 31. Springer, Berlin/Heidelberg

    Google Scholar 

  • Capitelli M, Celiberto R, Eletskii A, Laricchiuta A (2001). Electron-molecule dissociation cross sections of H2, N2 and O2 in different vibrational levels. Atomic and plasma-material interaction data for fusion, vol 9. IAEA, Vienna, p 47

    Google Scholar 

  • Capitelli M, Armenise I, Bisceglie E, Bruno D, Celiberto R, Colonna G, D’Ammando G, De Pascale O, Esposito F, Gorse C, Laporta V, Laricchiuta A (2012) Thermodynamics, transport and kinetics of equilibrium and non-equilibrium plasmas: a state-to-state approach. Plasma Chem Plasma Process 32(3):427–450

    Article  Google Scholar 

  • Capitelli M, Colonna G, D’Ammando G, Laporta V, Laricchiuta A (2013) The role of electron scattering with vibrationally excited nitrogen molecules on non-equilibrium plasma kinetics. Phys Plasmas 20(10):101609

    Article  ADS  Google Scholar 

  • Capitelli M, Colonna G, D’Ammando G, Laporta V, Laricchiuta A (2014) Nonequilibrium dissociation mechanisms in low temperature nitrogen and carbon monoxide plasmas. Chem Phys 438:31–36

    Article  ADS  Google Scholar 

  • Caridade PJSB, Galvão BRL, Varandas AJC (2010a) Quasiclassical trajectory study of atom-exchange and vibrational relaxation processes in collisions of atomic and molecular nitrogen. J Phys Chem A 114(19):6063–6070

    Article  Google Scholar 

  • Caridade PJSB, Galvão BRL, Varandas AJC (2010b) Quasiclassical trajectory study of atom-exchange and vibrational relaxation processes in collisions of atomic and molecular nitrogen. J Phys Chem A 114(19):6063–6070

    Article  Google Scholar 

  • Colonna G, Capitelli M (2001) The influence of atomic and molecular metastable states in high enthalpy nozzle expansion nitrogen flows. J Phys D: Appl Phys 34:1812–1818

    Article  ADS  Google Scholar 

  • Colonna G, Pietanza LD, Capitelli M (2008) Recombination-assisted nitrogen dissociation rates under nonequilibrium conditions. J Thermophys Heat Transf 22(3):399–406

    Article  Google Scholar 

  • Colonna G, Laporta V, Celiberto R, Capitelli M, Tennyson J (2015) Non equilibrium vibrational and electron energy distribution functions in atmospheric nitrogen ns discharges: the role of electron-molecule vibrational excitation scaling laws. Plasma Sources Sci Technol 24:035004

    Article  ADS  Google Scholar 

  • Cosby PC (1993) Electron-impact dissociation of nitrogen. J Chem Phys 98(12):9544–9553

    Article  ADS  Google Scholar 

  • De Benedictis S, Dilecce G (1995) Relaxation of excited species in He/N2 pulsed RF discharges: kinetics of metastable species. Plasma Sources Sci Technol 4(2):212

    Article  ADS  Google Scholar 

  • Dilecce G, Ambrico PF, De Benedictis S (2007a) N\(_{2}(A^{3}\varSigma _{u}^{+})\) density measurement in a dielectric barrier discharge in N2 and N2 with small O2 admixtures. Plasma Sources Sci Technol 16(3):511

    Article  ADS  Google Scholar 

  • Dilecce G, Ambrico PF, De Benedictis S (2007b) New N2(C 3 Π u , v) collision quenching and vibrational relaxation rate constants: 2. PG emission diagnostics of high-pressure discharges. Plasma Sources Sci Technol 16(1):S45

    Google Scholar 

  • Dyatko N, Napartovich A (2010) Ionization mechanisms in Ar: N2 glow discharge at elevated pressures. AIAA paper 2010–4884

    Google Scholar 

  • Dyatko NA, Kochetov IV, Napartovich AP (1993) Electron energy distribution function in decaying nitrogen plasmas. J Phys D: Appl Phys 26(3):418

    Article  ADS  Google Scholar 

  • Dyatko N, Kochetov I, Napartovich A (2002) Electron temperature in nitrogen afterglow: dependence of theoretical results on the adopted set of cross sections and on the type of molecular distribution over vibrational levels. Plasma Phys Rep 28(11):965–971

    Article  ADS  Google Scholar 

  • Dyatko NA, Ionikh YZ, Kolokolov NB, Meshchanov AV, Napartovich AP (2003) Experimental and theoretical studies of the electron temperature in nitrogen afterglow. IEEE Trans Plasma Sci 31(4):553–563

    Article  ADS  Google Scholar 

  • Dyatko N, Ionikh Y, Meshchanov A, Napartovich A, Barzilovich K (2010) Specific features of the current-voltage characteristics of diffuse glow discharges in Ar:N2 mixtures. Plasma Phys Rep 36(12):1040–1064

    Article  ADS  Google Scholar 

  • Eslami E, Foissac C, Campargue A, Supiot P, Sadeghi N (2002) Vibrational and rotational distributions in N\(_{2}(A^{3}\varSigma _{u}^{+}\)) metastable state in the short-lived afterglow of a flowing nitrogen microwave plasma. In: Proceedings of the XVIth Europhysics conference on atomic and molecular physics of ionized gases (ESCAMPIG)-5th international conference on reactive plasmas (ICRP) joint meeting, Grenoble, pp 57–58

    Google Scholar 

  • Eslami E, Foissac C, Supiot P, Sadeghi N (2004) Determination of the absolute density of N(2 P) metastable atoms and N2(a 1 Π g ) molecules in a flowing nitrogen microwave discharge. In: Proceedings of the XVIIth Europhysics conference on atomic and molecular physics of ionized gases (ESCAMPIG) Constanta, p 197

    Google Scholar 

  • Esposito F, Capitelli M (1999) Quasiclassical molecular dynamic calculations of vibrationally and rotationally state selected dissociation cross-sections: N+ N2(\(\upsilon\),j) → 3N. Chem Phys Lett 302(1):49–54

    Google Scholar 

  • Esposito F, Capitelli M (2006) QCT calculations for the process N2(\(\upsilon\))+N → N2(\(\upsilon ^{{\prime}}\))+N in the whole vibrational range. Chem Phys Lett 418(4):581–585

    Google Scholar 

  • Esposito F, Armenise I, Capitelli M (2006a) N-N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations. Chem Phys 331(1):1–8

    Article  ADS  Google Scholar 

  • Esposito F, Armenise I, Capitelli M (2006b) N-N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations. Chem Phys 331(1):1–8

    Article  ADS  Google Scholar 

  • Galvão BRL, Varandas AJC (2011) Ab initio based double-sheeted DMBE potential energy surface for N3(\(^{2}A^{{\prime\prime}}\)) and exploratory dynamics calculations. J Phys Chem A 115(44):12390–12398

    Article  Google Scholar 

  • Galvão B, Varandas A, Braga J, Belchior J (2013) Vibrational energy transfer in collisions: a quasiclassical trajectory study. Chem Phys Lett 577:27–31

    Article  ADS  Google Scholar 

  • Galvão B, Braga J, Belchior J, Varandas A (2014) Electronic quenching in N(2D)+N2 collisions: a state-specific analysis via surface hopping dynamics. J Chem Theory Comput 10(5):1872–1877

    Article  Google Scholar 

  • Garcia E, Laganà A (1997) Effect of varying the transition state geometry on N+N2 vibrational deexcitation rate coefficients. J Phys Chem A 101(26):4734–4740

    Article  Google Scholar 

  • GASPAR (2013) GAS and PlasmA radiation database. http://esther.ist.utl.pt/gaspar/

  • Gordiets B, Osipov A, Shelepin L (1988) Kinetic processes in gases and molecular lasers. Gordon and Breach Science Publishers, US

    Google Scholar 

  • Gorse C, Capitelli M (1987) Coupled electron and excited-state kinetics in a nitrogen afterglow. J Appl Phys 62(10):4072–4076

    Article  ADS  Google Scholar 

  • Gorse C, Cacciatore M, Capitelli M, De Benedictis S, Dilecce G (1988) Electron energy distribution functions under N2 discharge and post-discharge conditions: a self-consistent approach. Chem Phys 119(1):63–70

    Article  ADS  Google Scholar 

  • Guerra V, Galiaskarov E, Loureiro J (2003) Dissociation mechanisms in nitrogen discharges. Chem Phys Lett 371:576–581

    Article  ADS  Google Scholar 

  • Guerra V, Sá PA, Loureiro J (2004) Kinetic modeling of low-pressure nitrogen discharges and post-discharges. Eur Phys J Appl Phys 28:125–152

    Article  ADS  Google Scholar 

  • Guerra V, Sá PA, Loureiro J (2007) Nitrogen pink afterglow: the mystery continues. J Phys: Conf Ser 63:012007

    ADS  Google Scholar 

  • Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Sci Technol 1(3):207

    Article  ADS  Google Scholar 

  • Laganà A, Garcia E, Ciccarelli L (1987) Deactivation of vibrationally excited nitrogen molecules by collision with nitrogen atoms. J Phys Chem 91(2):312–314

    Article  Google Scholar 

  • Laganà A, Ochoa De Aspuru G, Garcia E (1996) Temperature dependence of quasiclassical and quantum rate coefficients for N + N2. Dipartimento di Chimica, Università di Perugia Perugia, Italy

    Google Scholar 

  • Laporta V, Celiberto R, Wadehra JM (2012) Theoretical vibrational-excitation cross sections and rate coefficients for electron-impact resonant collisions involving rovibrationally excited N2 and NO molecules. Plasma Sources Sci Technol 21(5):055018

    Google Scholar 

  • Laporta V, Little DA, Celiberto R, Tennyson J (2014) Electron-impact resonant vibrational excitation and dissociation processes involving vibrationally excited N2 molecules. Plasma Sources Sci Technol 23(6):065002

    Article  ADS  Google Scholar 

  • Lempert WR, Adamovich IV (2014) Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows. (Topical Review) J Phys D: Appl Phys 47(43):433001

    Google Scholar 

  • Lino da Silva M, Guerra V, Loureiro J (2009) A review of non-equilibrium dissociation rates and models for atmospheric entry studies. Plasma Sources Sci Technol 18(3):034023

    Article  ADS  Google Scholar 

  • Loureiro J (1991) Dissociation rate and N(4 S) atom concentrations in a N2 glow-discharge. Chem Phys 157(1–2):157–168

    Article  ADS  Google Scholar 

  • Loureiro J, Ferreira CM (1986) Coupled electron energy and vibrational distribution functions in stationary N2 discharges. J Phys D: Appl Phys 19(1):17

    Article  ADS  Google Scholar 

  • Loureiro J, Ferreira CM, Capitelli M, Gorse C, Cacciatore M (1990) Non-equilibrium kinetics in nitrogen discharges: a comparative analysis of two theoretical approaches. J Phys D: Appl Phys 23(11):1371

    Article  ADS  Google Scholar 

  • Loureiro J, Guerra V, Sá PA, Pintassilgo CD, Lino da Silva M (2011) Non-equilibrium kinetics in N2 discharges and post-discharges: a full picture by modelling and impact on the applications. Plasma Sources Sci Technol 20(2):024007

    Article  ADS  Google Scholar 

  • LXcat (2015) Plasma data exchange project Database. http://fr.lxcat.net/home/

  • Macheret SO, Adamovich IV (2000) Semiclassical modeling of state-specific dissociation rates in diatomic gases. J Chem Phys 113(17):7351

    Article  ADS  Google Scholar 

  • Macko P, Cunge G, Sadeghi N (2001) Density of N\(_{2}(X^{1}\varSigma _{g}^{+},\upsilon\)=18) molecules in a DC glow discharge measured by cavity ringdown spectroscopy at 227 nm; validity domain of the technique. J Phys D: Appl Phys 34(12):1807

    Article  ADS  Google Scholar 

  • Massabieaux B, Gousset G, Lefebvre M, Pealat M (1987) Determination of N2(X) vibrational level populations and rotational temperatures using CARS in a D.C. low pressure discharge. J Phys Fr 48(11):1939–1949

    Article  Google Scholar 

  • Nagpal R, Ghosh PK (1990) Electron energy distribution functions and vibrational population densities of excited electronic states in DC discharges through nitrogen. J Phys D: Appl Phys 23(12):1663

    Article  ADS  Google Scholar 

  • Nagpal R, Ghosh PK (1991) Role of excited electronic states in the kinetics of electrons in nitrogen post-discharges. J Phys B: At Mol Opt Phys 24(14):3295

    Article  ADS  Google Scholar 

  • NIFS (2013) National Institute for fusion science database. http://dbshino.nifs.ac.jp/

  • Nighan WL (1970) Electron energy distributions and collision rates in electrically excited N2, CO, and CO2. Phys Rev A 2(5):1989

    Article  ADS  Google Scholar 

  • Panesi M, Jaffe RL, Schwenke DW, Magin TE (2013) Rovibrational internal energy transfer and dissociation of N2(\(^{1}\varSigma _{g}^{+}\))-N(4 S u ) system in hypersonic flows. J Chem Phys 138(4):044312

    Article  ADS  Google Scholar 

  • Phys4Entry database (2013) http://phys4entrydb.ba.imip.cnr.it/Phys4EntryDB/

  • Polak LS, Sergeev PA, Slovetskii DI, Todesaite RD (1975) Proceedings 12th international conference on phenomena in ionized gases, Part 1, Eindhoven (1975)

    Google Scholar 

  • Simek M, Babický V, Clupek M, DeBenedictis S, Dilecce G, Sunka P (1998) Excitation of N2(C 3 Π u ) and NO \((A^{2}\varSigma ^{+})\) states in a pulsed positive corona discharge in N2, N2-O2 and N2-NO mixtures. J Phys D: Appl Phys 31(19):2591

    Article  ADS  Google Scholar 

  • Son E (1990) Electrons in low-temperature plasmas. All-Union Correspondence Polytechnic Institute, Moscow (in Russian)

    Google Scholar 

  • STELLAR database (2013) http://esther.ist.utl.pt/pages/stellar.html

  • Supiot P, Blois D, De Benedictis S, Dilecce G, Barj M, Chapput A, Dessaux O, Goudmand P (1999) Excitation of N2(B 3 Π g ) in the nitrogen short-lived afterglow. J Phys D: Appl Phys 32(15):1887

    Article  ADS  Google Scholar 

  • Wang D, Huo WM, Dateo CE, Schwenke DW, Stallcop JR (2003a) Reactive resonances in the N-N2 exchange reaction. Chem Phys Lett 379(1–2):132–138

    Article  ADS  Google Scholar 

  • Wang D, Stallcop JR, Huo WM, Dateo CE, Schwenke DW, Partridge H (2003b) Quantal study of the exchange reaction for N+N2 using an ab initio potential energy surface. J Chem Phys 118(5):2186

    Article  ADS  Google Scholar 

  • Wang D, Huo WM, Dateo CE, Schwenke DW, Stallcop JR (2004) Quantum study of the N+N2 exchange reaction: state-to-state reaction probabilities, initial state selected probabilities, Feshbach resonances, and product distributions. J Chem Phys 120(13):6041–6050

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer New York

About this chapter

Cite this chapter

Capitelli, M. et al. (2016). Self-Consistent Kinetics of Molecular Plasmas: The Nitrogen Case. In: Fundamental Aspects of Plasma Chemical Physics. Springer Series on Atomic, Optical, and Plasma Physics, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8185-1_9

Download citation

Publish with us

Policies and ethics