Skip to main content

Semiclassical and Quantum Electronic Transport in Nanometer-Scale Structures: Empirical Pseudopotential Band Structure, Monte Carlo Simulations and Pauli Master Equation

  • Chapter
  • First Online:
Nano-Electronic Devices

Abstract

The study of electronic transport in nanometer-scale devices requires an accurate knowledge of the excitation spectrum (i.e., the band structure) of the systems and, for short devices, a formulation of transport which transcends the semiclassical Boltzmann formulation. Here we show that the use of ‘judiciously’ chosen empirical pseudopotentials, coupled to the supercell method, can provide a sufficiently accurate description of the band structure of thin semiconductor films, hetero-structures, nanowires, and carbon-based structures such as graphene, graphene nanoribbons, and nanotubes. We discuss semiclassical Monte Carlo simulations employing the supercell-pseudopotential band structure, considering transport in thin Si bodies. This example illustrates the importance of the full-band approach since in this case it yields the low value of the saturated high-field electron drift velocity, observed experimentally but never predicted when employing effective-mass band structures. Finally, we discuss a mixed envelope-supercell approach to deal with open systems within the full-band supercell scheme and review the Master-equation approach to quantum transport. Finally, we present some results of fully dissipative quantum transport using, for now, the effective mass approximation, emphasizing the role of impurity scattering in determining the ‘quantum access resistance’ in thin-body devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Ajiki and T. Ando, Jap. J. Appl. Phys. 62, 1255 (1993).

    Google Scholar 

  2. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  Google Scholar 

  3. V. Barone, O. Hod, and G. Scuseria, Nano Letters 6, 2748 (2006).

    Article  Google Scholar 

  4. L. Bellaiche, S.-H. Wei, and A. Zunger, Phys. Rev. B 54, 17568 (1996).

    Article  Google Scholar 

  5. L. Bellaiche, L.-W. Wang, S.-H. Wei, and A. Zunger, Appl. Phys. Lett. 74, 1842 (1999).

    Article  Google Scholar 

  6. X. Blase, L. X. Benedict, E. L. Sherly, and S. G. Louie, Phys. Rev. Lett. 72, 1878 (1994).

    Article  Google Scholar 

  7. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Strokbo, Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  8. L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).

    Article  Google Scholar 

  9. L. G. Bulusheva, A. V. Okotrub, D. A. Romanov, and D. Tomanek, J. Phys. Chem. A 102, 975 (1998).

    Article  Google Scholar 

  10. H. J. Choi and J. Ihm, Phys. Rev. B 59, 2267 (1999).

    Article  Google Scholar 

  11. P. Courrieu, Neural Inf. Processing - Letters and Reviews 8, 25 (2005).

    Google Scholar 

  12. G. Dresselhaus, M. Dresselhaus, and J. G. Madrovies, Carbon 4, 433 (1966).

    Article  Google Scholar 

  13. D. Esseni and P. Palestri, Phys. Rev. B 72, 165342 (2005).

    Article  Google Scholar 

  14. M. Ezawa, Phys. Rev. B 73, 045432 (2006).

    Article  Google Scholar 

  15. M. Ezawa, Phys. Stat. Sol. (c) 4, 489 (2007).

    Article  Google Scholar 

  16. M. V. Fischetti and S. E. Laux, Phys. Rev. B 38, 9721 (1988).

    Article  Google Scholar 

  17. M. V. Fischetti and S. E. Laux, Phys. Rev. B 48, 2244 (1993).

    Article  Google Scholar 

  18. M. V. Fischetti, J. Appl. Phys. 83, 270 (1998).

    Article  Google Scholar 

  19. M. V. Fischetti, Phys. Rev. B 59, 4901 (1999).

    Article  Google Scholar 

  20. W. R. Frensley, Rev. Mod. Phys. 63, 215 (1991).

    Article  Google Scholar 

  21. J. T. Frey and D. J. Doren, “TubGen 3.3 Web Interface”, http://turin.nss.udel.edu/research/tubegenonline.html

  22. Bo Fu and M. V. Fischetti, Dissipative Quantum Transport Using the Pauli Master Equation, in Proc. International Workshop on Computational Electronics (2009), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=\&arnumber=5091106\&isnumber=5091070.

    Google Scholar 

  23. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).

    Article  Google Scholar 

  24. P. Giannozzi et al., J. Phys.: Cond. Matter 21, 395502 (2009).

    Google Scholar 

  25. G. Gilat and L. J. Raubenheimer, Phys. Rev. 144, 390 (1966).

    Article  Google Scholar 

  26. M. J. Gilbert and D. K. Ferry, IEEE Trans. Nanotechnol. 4 355, (2005).

    Article  Google Scholar 

  27. O. Gulseren, T. Yildirim, and S. Caraci, Phys. Rev. B 65, 153405 (2002).

    Article  Google Scholar 

  28. D. Gunlycke, P. A. Areshkin, J. Li, J. M. Mintmire, and C. T. White, Nano Letters 7, 3608 (2007).

    Article  Google Scholar 

  29. L. H. Hemstreet Jr., C. Y. Fong, and M. L. Cohen, Phys. Rev. B 2, 2054 (1970).

    Article  Google Scholar 

  30. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962).

    MATH  Google Scholar 

  31. E. Kan, Z. Li, J. Yang, and J. G. Hou, J. Am. Chem. Soc. 130, 4224 (2008).

    Article  Google Scholar 

  32. L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JEPT 20, 1018 (1965)].

    Google Scholar 

  33. B. Khoshnevisan and Z. S. Tabatabaean, Appl. Phys. A 92, 371 (2008).

    Article  Google Scholar 

  34. M. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).

    Article  Google Scholar 

  35. W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Kurokawa, S. Nomura, T. Takemori, and Y. Aoyagi, Phys. Rev. B 61, 12616 (2000).

    Article  Google Scholar 

  37. S. E. Laux, A. Kumar and M. V. Fischetti, J. Appl. Phys. 95, 5545 (2004).

    Article  Google Scholar 

  38. Y. Lee, T. Nagata, K. Kakushima, K. Shiraishi, and H. Iwai, “A Study on Electronic Structure of Silicon Nanowires with Diverse Diameters and Orientations for High Performance FET”, Proc. International Workshop on Density Functional Theory, Tokyo, November, p. 83. 2008.

    Google Scholar 

  39. C. S. Lent and D. J. Kirkner, J. Appl. Phys. 67, 6353 (1990).

    Article  Google Scholar 

  40. K. Mäder and A. Zunger, Phys. Rev. B 50, 17393 (1994).

    Article  Google Scholar 

  41. A. Mayer, Carbon 42, 2057 (2004).

    Article  Google Scholar 

  42. T. Miyake and S. Saito, Phys. Rev. B 68, 155424 (2003).

    Article  Google Scholar 

  43. T. Miyake and S. Saito, Phys. Rev. B 72, 073404 (2005).

    Article  Google Scholar 

  44. K. Nehari, N. Cavassilas, J. L. Autran, M. Bescond, D. Munteanu, and M. Lannoo, Solid-State Electron. 50, 716 (2006).

    Article  Google Scholar 

  45. N. Neophytou, A. Paul, M. S. Lundstrom, and G. Klimeck, IEEE Trans. Electr. Dev. 55, 1286 (2008).

    Article  Google Scholar 

  46. T. W. Odom, J. Huang, P. Kim, and C. M. Lieber, Nature (London) 391, 62 (1998).

    Google Scholar 

  47. T. W. Odom, J. Huang, P. Kim, and C. M. Lieber, J. Phys. Chem. B 104, 2794 (2000).

    Article  Google Scholar 

  48. M. Ouyang, J. Huang, C. L. Cheung, and C. M. Lieber, Science 292, 702 (2001).

    Article  Google Scholar 

  49. A. Pecchia and A. Di Carlo, Rep. Prog. Phys. 67, 1497 (2004).

    Article  Google Scholar 

  50. R. Penrose, Proc. Cambridge Phil. Soc. 51, 406 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  51. L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison, Phys. Rev. B 75, 064418 (2007).

    Article  Google Scholar 

  52. E. Polizzi, Phys. Rev. B 79, 115112 (2009).

    Article  Google Scholar 

  53. S. Reich and C. Thomsen, Phys. Rev. B 65, 155411 (2002).

    Article  Google Scholar 

  54. F. Sacconi, M. P. Persson, M. Povolotsky, L. Latessa, A. Pecchia, A. Gagliardi, A. Balint, T. Fraunheim, and A. Di Carlo, J. Comp. Electron. 6, 329 (2007).

    Article  Google Scholar 

  55. K.-I. Sasaki, S. Murakami, and R. Saito, J. Phys. Soc. Jpn. 75, 074713 (2006).

    Article  Google Scholar 

  56. W. Saslow, T. K. Bergstresser, and M. L. Cohen, Phys. Rev. Lett. 16, 354 (1966).

    Article  Google Scholar 

  57. H. Scheel, S. Reich, and C. Thomsen, Phys. Stat. Sol. (b) 242, 2474 (2005).

    Article  Google Scholar 

  58. H. Sevincli, M. Topsakal, and S. Ciraci, Phys. Rev. B 78, 245402 (2008).

    Article  Google Scholar 

  59. M. Sharma, A. Tiwari, and U. S. Sharma, “Ab-initio study of electronic band structure of zigzag single wall carbon nanotubes”, in Proc. “International Workshop on New Trends in Science and Technology”, Ankara, Turkey, Nov. 3-4, 2008, http://ntst08.cankaya.edu/proceedings/proceedings/Manoj/SharmaPaper.doc.

    Google Scholar 

  60. Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  61. P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, Phys. Rev. Lett. 101, 226405 (2008).

    Article  Google Scholar 

  62. L. Van Hove, Physica 21, 517 (1955).

    MathSciNet  MATH  Google Scholar 

  63. L.-W. Wang and A. Zunger, J. Phys. Chem. 98, 2158 (1994).

    Article  Google Scholar 

  64. L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 99, 186801 (2007).

    Article  Google Scholar 

  65. S. B. Zhang, C.-Y. Yeh, and A. Zunger, Phys. Rev. B 48, 11204 (1993).

    Article  Google Scholar 

  66. D. Zhang and E. Polizzi, J. Comp. Electr. 7, 427 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (MVF) would like to thank Steve Laux, Seonghoon Jin, and Eric Polizzi for help and stimulating discussions. This work has been supported in part by SRC, MARCO/MSD FCRP, and Samsung Electronics Corporation, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo V. Fischetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fischetti, M.V., Fu, B., Narayanan, S., Kim, J. (2011). Semiclassical and Quantum Electronic Transport in Nanometer-Scale Structures: Empirical Pseudopotential Band Structure, Monte Carlo Simulations and Pauli Master Equation. In: Vasileska, D., Goodnick, S. (eds) Nano-Electronic Devices. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8840-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8840-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8839-3

  • Online ISBN: 978-1-4419-8840-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics