Skip to main content

Environmental Variables and the Fundamental Nature of Hearing

  • Chapter
Evolution of the Vertebrate Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 22))

Abstract

Comparative morphologists, physiologists, and neuroethologists (including the authors of this chapter) make observations at the level of phenotypes. It is natural for them to assume that observed phenotypic traits have been sculpted by evolution and therefore, somehow, have increased the fitnesses of the organisms in which they occur. Inferences about the pathways of evolution typically are drawn from formal or informal cladograms (Manley and Clack, Chapter 1, section 1, and Fig. 1.1; Ladich and Popper, Chapter 4, Fig. 4.1; Clack and Allin, Chapter 5, Fig. 5.1). In the past, such cladograms were based on morphological relationships. This is still the case for species long extinct, but for living species they now are based more and more on molecular relationships (e.g., see Gleich et al., Chapter 8, section 2). The inferences represented by cladograms surely will be strengthened greatly when investigators finally are able to relate them directly to underlying changes in genotype—to the genetic networks that through development give rise to the observed morphological, physiological, and behavioral traits (e.g., see Coffin et al., Chapter 3, section 5; Grothe et al., Chapter 10, section 2). No matter how strong one believes the inferences about evolutionary paths have become, however, one is left with uncertainty regarding the selective pressures and physical constraints that resulted in the taking of those paths, and the ways in which the phenotypic features associated with those pathways resolved those pressures and accommodated those constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agin D (1964) Hodgkin-Huxley equations: logarithmic relation between membrane current and frequency of repetitive activity. Nature 201:625–626.

    Article  PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R (1987) Variation of membrane properties in hair cells isolated from the turtle cochlea. J Physiol (Lond) 385:207–242.

    CAS  Google Scholar 

  • Aylor D (1971) Noise reduction by vegetation and ground. J Acoust Soc Am 51:197–205.

    Article  Google Scholar 

  • Benade AH (1978a) The physics of woodwinds. In: Hutchins CM (ed) The Physics of Music. San Francisco: Freeman, pp. 34–43.

    Google Scholar 

  • Benade AH (1978b) The physics of brasses. In: Hutchins CM (ed) The Physics of Music. San Francisco: Freeman, pp. 44–55.

    Google Scholar 

  • Beranek, LL (1954) Acoustics. New York: McGraw-Hill.

    Google Scholar 

  • Bialek W (1983) Thermal and quantum noise in the ear. In: De Boer E, Viergever MA (eds) Mechanics of Hearing. Delft: Delft University Press, pp. 185–192.

    Chapter  Google Scholar 

  • Bialek W, Schweitzer A (1985) Quantum noise and the threshold of hearing. Phys Rev Lett 54:725–728.

    Article  PubMed  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Carney LH, Yin TCT (1988) Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. J Neurophysiol 60:653–677.

    Google Scholar 

  • Clay JR (1976) A stochastic analysis of the graded excitatory responses of nerve membrane. J Theor Biol 59:141–158.

    Article  PubMed  CAS  Google Scholar 

  • Cole KS, Guttman R, Bezanilla F (1970) Nerve membrane excitation without threshold. Proc Natl Acad Sci USA 65:884–891.

    Article  PubMed  CAS  Google Scholar 

  • Cortopassi KA, Lewis ER (1998) A comparison of the linear tuning properties of two classes of axons in the bullfrog lagena. Brain Behav Evol 51:331–348.

    Article  PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J Physiol (Lond) 306:79–125.

    CAS  Google Scholar 

  • De Cheveigne A (2000) The auditory system as a “separation machine.” In: Breebart D, Houtsma A, Kohlrausch A, Prijs V, Schoonhoven R (eds) Physiological and Psychophysical Bases of Auditory Function. Maastricht: Shaker, 2001.

    Google Scholar 

  • De Felice LJ (1981) Introduction to Membrane Noise. New York: Plenum.

    Book  Google Scholar 

  • Elsner N (1983) Insect stridulation and its neurophysiological basis. In: Lewis B (ed) Bioacoustics. New York: Academic Press, pp. 69–92.

    Google Scholar 

  • Evans EF (1977). Frequency selectivity at high signal levels of single units in cochlear nerve and nucleus. In: Evans EF, Wilson JP (eds) Psychophysics and Psychology of Hearing. London: Academic Press, pp. 185–196.

    Google Scholar 

  • Ewing AW (1989) Arthropod Bioacoustics. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay RR (1992) Structure and function in sound discrimination among vertebrates. In: Webster D, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 229–263.

    Chapter  Google Scholar 

  • Fay RR (1997) Frequency selectivity of saccular afferents of the goldfish revealed by revcor analysis. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E (eds) Diversity in Auditory Mechanics. Singapore: World Scientific Publishers, pp. 69–75.

    Google Scholar 

  • Fay RR (1998) Auditory stream segregation in goldfish (Carassius auratus). Hear Res 120:69–76.

    Article  PubMed  CAS  Google Scholar 

  • Fay RR (2000) Frequency contrasts underlying auditory stream segregation in goldfish. J Assoc Res Otolaryngol 1:120–128.

    Article  PubMed  CAS  Google Scholar 

  • Fine ML, Lenhardt ML (1983) Shallow-water propagation of the toadfish mating call. Comp Biochem Physiol [A] 76:225–231.

    Article  CAS  Google Scholar 

  • FitzHugh R (1955) Mathematical models of threshold phenomena in the nerve membrane. Bull Math Biophys 17:257–278.

    Article  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466.

    Article  PubMed  CAS  Google Scholar 

  • French AS, Stein RB (1970) A flexible neural analog using integrated circuits. IEEE Trans Biomed Eng 17:248–253.

    Article  PubMed  CAS  Google Scholar 

  • Gleich O, Manley GA (2000) The hearing organ of birds and Crocodilia. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 70–138.

    Chapter  Google Scholar 

  • Goldberg JM, Fernandez C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular acceleration. J Neurophysiol 34:635–660.

    PubMed  CAS  Google Scholar 

  • Griffin DR (1971) The importance of atmospheric attenuation for the echolocation of bats (chiroptera). Anim Behav 19:55–61.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann WM (1988) Pitch perception and the segregation and integration of auditory entities. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurological Bases of Hearing. New York: Wiley, pp. 623–645.

    Google Scholar 

  • Hulse SH, MacDougall-Shackelton SA, Wisniewski B (1997) Auditory scene analysis by songbirds: stream segregation of birdsong by European starlings (Stumus vulgaris). J Comp Psychol 111:3–13.

    Article  PubMed  CAS  Google Scholar 

  • Hutchins CM (1978) The physics of violins. In: Hutchins CM (ed) The Physics of Music. San Francisco: Freeman, pp. 56–68.

    Google Scholar 

  • Ladefoged P (1982) A Course on Phonetics. New York: Harcourt Brace Janovich.

    Google Scholar 

  • Lewis ER (1987) Speculations about noise and the evolution of vertebrate hearing. Hear Res 25:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER (1988) Tuning in the bullfrog ear. Biophys J 53:441–447.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER (1990) Electrical tuning in the ear. Comm Theor Bioil 1:253–273.

    Google Scholar 

  • Lewis ER (1992) Convergence of design in vertebrate acoustic sensors. In Webster D, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 163–184.

    Chapter  Google Scholar 

  • Lewis ER, Henry KR (1994) Dynamic changes in tuning in the gerbil cochlea. Hear Res 79:183–189.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Lombard RE (1988) The amphibian inner ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The Evolution of the Amphibian Auditory System. New York: Wiley, pp. 93–123.

    Google Scholar 

  • Lewis ER, Baird RA, Leverenz EL, Koyama H (1982) Inner ear. Dye injection reveals peripheral origin s of specific sensitivities. Science 215:1641–1643.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Henry KR, Yamada WM (2000) Essential roles of noise in neural coding and in studies of neural coding. Biosystems 58:109–115.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein O (1956) Peripheral mechanisms of equilibrium. Br Med Bull 12:114–118.

    PubMed  CAS  Google Scholar 

  • MacDougall-Shackelton SA, Hulse SH, Gentner TQ, White W (1998) Auditory scene analysis by European starlings (Stumus vulgaris): perceptual segregation of tone sequences. J Acoust Soc Am 103:3581–3587.

    Article  Google Scholar 

  • MacGregor RJ, Lewis ER (1977) Neural Modeling. New York: Plenum.

    Book  Google Scholar 

  • Manley G (2000) The hearing organs of lizards. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 139–196.

    Chapter  Google Scholar 

  • Marten K, Marler P (1977) Sound transmission and its significance for animal vocalization. I. Temperate habitats. Behav Ecol Sociobiol 2:271–290.

    Article  Google Scholar 

  • Marten K, Quine D, Marler P (1977) Sound transmission and its significance for animal vocalization. II. Tropical forest habitats. Behav Ecol Sociobiol 2:291–302.

    Article  Google Scholar 

  • Mercado E 3rd, Frazer LN (1999) Environmental constraints on sound transmission by humpback whales. J Acoust Soc Am 106:3004–3016.

    Article  PubMed  Google Scholar 

  • Moller AR (1977) Frequency selectivity of single auditory-nerve fibers in response to broadband noise stimuli. J Acoust Soc Am 62:136–142.

    Article  Google Scholar 

  • Moller AR (1978) Frequency selectivity of the peripheral analyzer studied using broad band noise. Acta Physiol Scand 104:24–32.

    Article  PubMed  CAS  Google Scholar 

  • Moller AR (1986) Systems identification using pseudorandom noise applied to a sensorineural system. Comp Math Appl 12A:803–814.

    Article  Google Scholar 

  • Muller-Preuss P, Ploog D (1983) Central control of sound production in mammals. In: Lewis B (ed) Bioacoustics. New York: Academic Press, pp. 125–146.

    Google Scholar 

  • Olson HF (1967) Music, Physics and Engineering. New York: Dover.

    Google Scholar 

  • Patuzzi R (1996) Cochlear micromechanics and macromechanics. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 186–257.

    Chapter  Google Scholar 

  • Poole J, Payne K, Langbauer WR Jr, Moss C (1988) The social content of some very low frequency calls of African elephants. Behav Ecol Sociobiol 22:385–392.

    Article  Google Scholar 

  • Schellung JC (1978) The physics of the bowed string. In: Hutchins CM (ed) The Physics of Music. San Francisco: Freeman, pp. 69–75.

    Google Scholar 

  • Seller TJ (1983) Control of sound production in birds. In: Lewis B (ed) Bioacoustics. New York: Academic Press, pp. 93–124.

    Google Scholar 

  • Sneary M, Lewis ER (1989) Response properties of turtle afferent fibers: evidence for a high-order tuning mechanism. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms. New York: Plenum, pp. 235–240.

    Google Scholar 

  • Stafford KM, Fox CG, Clark DS (1998) Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. J Acoust Soc Am 104:3616–3625.

    Article  PubMed  CAS  Google Scholar 

  • Stein RB (1967) The frequency of nerve action potentials generated by applied currents. Proc R Soc Ser B 167:64–86.

    Article  CAS  Google Scholar 

  • Stein RB (1970) The role of spike trains in transmitting and distorting sensory signals. In: Schmidt FO (ed) The Neurosciences. New York: Rockefeller University Press, pp. 597–604.

    Google Scholar 

  • Stein RB, French AS, Holden AV (1972) The frequency response, coherence, and information capacity of two neuronal models. Biophys J 12:295–322.

    Article  PubMed  CAS  Google Scholar 

  • Sundberg J (1978) The acoustics of the singing voice. In: Hutchins CM (ed) The Physics of Music. San Francisco: Freeman, pp. 18–23.

    Google Scholar 

  • Vanderkoy J, Lipshitz P (1984). Resolution below the least significant bit in digital systems with dither. J Audiol Eng Soc 32:106–113.

    Google Scholar 

  • Webster DB (1992) Epilogue on the conference on the evolutionary biology of hearing. In: Webster D, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 787–794.

    Chapter  Google Scholar 

  • Wisniewski AB, Hulse SH (1997) Auditory scene analysis in European starlings (Stumus vulgaris): discrimination of starling song segments, their segregation from conspecific songs, and evidence for conspecific song categorization. J Comp Psychol 111:337–350.

    Article  Google Scholar 

  • Yost WA (1991) Auditory image perception and analysis: the basis for hearing. Hear Res 56:8–18.

    Article  PubMed  CAS  Google Scholar 

  • Yu XL (1991) Signal Processing Mechanics in Bullfrog Ear Inferred from Neural Spike Trains. Ph.D. dissertation, University of California, Berkeley.

    Google Scholar 

  • Yu XL, Lewis ER (1989) Studies with spike initiators: linearization by noise allows continuous signal modulation in neural networks. IEEE Trans Biomed Eng 36:36–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lewis, E.R., Fay, R.R. (2004). Environmental Variables and the Fundamental Nature of Hearing. In: Manley, G.A., Fay, R.R., Popper, A.N. (eds) Evolution of the Vertebrate Auditory System. Springer Handbook of Auditory Research, vol 22. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8957-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8957-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-21093-3

  • Online ISBN: 978-1-4419-8957-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics