Skip to main content

Part of the book series: Physics of Atoms and Molecules ((PAMO))

  • 515 Accesses

Abstract

In this chapter the current state of our knowledge on the cross sections and the rate coefficients for collisional interactions of the plasma processing gases CF4[1], C2F6[2], and C3F8[3] with electrons is re-viewed, assessed, and discussed. As we have indicated previously, such knowledge is necessary to assess the behavior of these gases in the atmosphere and in their many applications, especially in the semiconductor industry. For instance, the testing of theoretical models for plasma re-actors requires knowledge of collision cross sections over a wide energy range below approximately 100 eV. These are crucial for investigating, understanding, and characterizing the gas-phase reactions in the plasma, and estimating the fluxes of species that are ultimately responsible for the multitude of surface interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. G. Christophorou, J. K. Olthoff, and M. V. V. S. Rao, J. Phys. Chem. Ref. Data 25, 1341 (1996).

    ADS  Google Scholar 

  2. L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 27, 1 (1998).

    ADS  Google Scholar 

  3. L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 27, 889 (1998).

    ADS  Google Scholar 

  4. M. Hayashi, in Swarm Studies and Inelastic Electron-Molecule Collisions, L. C. Pitchford, B. V. McKoy, A. Chutjian, and S. TVajmar (Eds.) (Spinger, New York, 1987) p. 167.

    Google Scholar 

  5. Y. Nakamura, in Gaseous Electronics and Their Applications, R. W. Crompton, M. Hayashi, D. E. Boyd, and T. Makabe (Eds.)KTK ScientificTokyo, Japan, 1991, p. 178.

    Google Scholar 

  6. M.-C. Bordage, P. Segur, and A. Chouki, J. Appl. Phys. 80, 1325 (1996).

    ADS  Google Scholar 

  7. M. J. Kushner, J. Appl. Phys. 53, 2923 (1982).

    ADS  Google Scholar 

  8. G. S. Oehrlein, Phys. Today 39, 26 (1986).

    Google Scholar 

  9. D. M. Manos and D. L. Flamm, Plasma Etching, Academic, Boston, 1989.

    Google Scholar 

  10. L. E. Kline and M. J. Kushner, Crit. Rev. Solid State Mater. Sci. 16, 1 (1989).

    ADS  Google Scholar 

  11. D. Bose, D. Hash, T. R. Govindan, and M. Meyyappan, J. Phys. D 34, 2742 (2001).

    ADS  Google Scholar 

  12. L. G. Christophorou, S. R. Hunter, J. G. Carter, and R. A. Mathis, Appl. Phys. Lett. 41, 147 (1982).

    ADS  Google Scholar 

  13. S. R. Hunter, J. G. Carter, and L. G. Christophorou, J. Appl. Phys. 58, 3001 (1985).

    ADS  Google Scholar 

  14. P. Bletzinger, in Proceedings of the 4th IEEE Pulsed Power Conference, Al-buquerque, New Mexico, June 1983, p. 37.

    Google Scholar 

  15. R. E. Wootton, S. J. Dale and N. J. Zimmerman, inGaseous Dielectrics IIL. G. Christophorou (Ed.), Pergamon, New York, 1980, p. 137.

    Google Scholar 

  16. D. R. James, L. G. Christophorou, and R. A. Mathis, inGaseous Dielectrics IIL. G. Christophorou (Ed.), Pergamom, New York, 1980, p. 115.

    Google Scholar 

  17. J. Berg and E. Kuffel, inProceedings of the 9th International Symposium on High Voltage EngineeringAugust 1995, Graz, Austria, p. 2252.

    Google Scholar 

  18. L. G. Christophorou, D. L. McCorkle, D. V. Maxey, and J. G. Carter, Nucl. Instrum. Meth. 163, 141 (1979)

    ADS  Google Scholar 

  19. L. G. Christophorou, D. V. Maxey, D. L. McCorkle, and J. G. Carter, Nucl. Instrum. Meth. 171, 491 (1980)

    ADS  Google Scholar 

  20. M. K. Kopp, K. H. Valentine, L. G. Christophorou, and J. G. Carter, Nucl. Instrum. Meth. 201, 395 (1982).

    Google Scholar 

  21. Y. Yamashita, H. Kurashige, M. M. Morii, T. T. Nakamura, N. Nomura, N. Sasao, K. Shibata, Y. Fukushima, Y. Ikegami, H. Kobayashi, and T. Taniguchi, Nucl. Istrum. Meth. in Phys. Res. A 317, 213 (1992).

    Google Scholar 

  22. J. B. Gerardo and J. T. VerdeyenLow-Temperature Plasma Physics: Its Im-portance and Potential in Technology and CommerceSandia National Lab-oratory Report No. SAND 87–1875 (1987).

    Google Scholar 

  23. G. Ecker and K. U. Riemann, Exp. Tech. Phys. 35, 119 (1987).

    Google Scholar 

  24. K. H. Becker, inElectron Collisions with Molecules, Clusters, and SurfacesH. Ehrhardt and L. A. Morgan (Eds.), Plenum, New York, 1994, p.127.

    Google Scholar 

  25. H. Tanaka and M. Inokuti, Adv. At. Mol. Opt. Phys. 43, 1 (2000).

    Google Scholar 

  26. Intergovernmental Panel on Climate Change (IPCC)The 1994 Report of the Scientific Assessment Working Group of IPCC

    Google Scholar 

  27. V. Ramanathan, L. Callis, R. Cess, J. Hansen, I. Isaksen, W. Kuhn, A. Lacis, F. Luther, J. Mahlman, R. Reck, and M. Schlesinger,Rev. Geophys. 25, 1441 (1987).

    ADS  Google Scholar 

  28. R. S. Stolarski and R. D. Rundel, Geophys. Res. Lett. 2, 443 (1975).

    ADS  Google Scholar 

  29. R. A. Morris, T. M. Miller, A. A. Viggiano, J. F. Paulson, S. Solomon, and G. Reid, J. Geophys. Res. 100, 1287 (1995).

    ADS  Google Scholar 

  30. J. G. Owens, inGaseous Dielectrics IXL. G. Christophorou and J. K. Olthoff (Eds.), Kluwer Academic/Plenum Publishers, New York, 2001, p. 91.

    Google Scholar 

  31. C. R. Brundle, M. B. Robin, and H. Basch, J. Chem. Phys. 53, 2196 (1970).

    ADS  Google Scholar 

  32. J. A. Beran and L. Kevan, J. Phys. Chem. 73, 3860 (1969).

    Google Scholar 

  33. J. W. Au, G. R. Burton, and C. E. Brion, Chem. Phys. 221, 151 (1997).

    Google Scholar 

  34. K. Kuroki, D. Spence, and M. A. Dillon, J. Chem. Phys. 96, 6318 (1992).

    ADS  Google Scholar 

  35. J. A. Stephens, D. Dill, and J. L. Dehmer, J. Chem. Phys. 84, 3638 (1986).

    ADS  Google Scholar 

  36. M. B. Robin, Higher Excited States of Polyatomic Molecules, Academic, New York, 1974, Vol. I, pp. 178–191.

    Google Scholar 

  37. L. Boesten, H. Tanaka, A. Kobayashi, M. A. Dillon, and M. Kimura, J. Phys. B 25, 1607 (1992).

    ADS  Google Scholar 

  38. G. C. King and J. W. McConkey, J. Phys. B 11, 1861 (1978).

    ADS  Google Scholar 

  39. W. R. Harshbarger, M. B. Robin, and E. N. Lassettre, J. Electron Spec-troscopy and Related Phenomena 1, 319 (1972/73).

    Google Scholar 

  40. T. A. Carlson, A. Fahlman, W. A. Svensson, M. O. Krause, T. A. Whitley, F. A. Grimm, M. N. Piancastelli, and J. W. Taylor, J. Chem. Phys. 81, 3828 (1984).

    ADS  Google Scholar 

  41. G. R. Cook and B. K. Ching, J. Chem. Phys. 43, 1794 (1965).

    ADS  Google Scholar 

  42. L. C. Lee, X. Wang, and M. Suto, J. Chem. Phys. 85, 6294 (1986).

    ADS  Google Scholar 

  43. G. J. Verhaart, W. J. van der Hart, and H. H. Brongersma, Chem. Phys. 34, 161 (1978).

    Google Scholar 

  44. I. Iga, M. C. A. Lopes, and J. U. Galdino, in19th International Conference on the Physics of Electronic and Atomic Collisions Abstracts of Scientific PapersJ. B. A. Mitchell, J. W. McCorkey, and C. E. Brion (Eds.), Whistler, British Columbia, Canada, July 1995, p. 435.

    Google Scholar 

  45. L. C. Lee, E. Phillips, and D. L. Judge, J. Chem. Phys. 67, 1237 (1977).

    ADS  Google Scholar 

  46. R. E. Rebbert and P. Ausloos, J. Res. Natl. Bur. Stand. Sect. A 75, 481(1971).

    Google Scholar 

  47. W. Zhang, G. Cooper, T. Ibuki, and C. E. Brion, Chem. Phys. 137, 391 (1989).

    Google Scholar 

  48. L. G. Christophorou, and J. K. Olthoff, J. Phys. Chem. Ref. Data 28, 967 (1999).

    ADS  Google Scholar 

  49. H. F. Winters, inSwarm Studies and Inelastic Electron-Molecule CollisionsL. C. Pitchford, B. V. McKoy, A. Chutjian, and S. Trajmar (Eds.), Springer, New York, 1987, p. 347.

    Google Scholar 

  50. H. F. Winters and M. Inokuti, Phys. Rev. A 25, 1420 (1982).

    ADS  Google Scholar 

  51. K. Stephan, H. Deutsch, and T. D. Mark, J. Chem. Phys. 83, 5712 (1985).

    ADS  Google Scholar 

  52. B. Brehm, R. Frey, A. Kiistler, and J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. 13, 251 (1974).

    Google Scholar 

  53. T. Fiegele, G. Hanel, I. Torres, M. Lezius, and T. D. Mark, J. Phys. B 33, 4263 (2000).

    ADS  Google Scholar 

  54. Y. J. Kime, D. C. Driscoll, and P. A. Dowben, J. Chem. Soc, Faraday Trans. II 83, 403(1987).

    Google Scholar 

  55. M. Schmidt, R. Seefeldt, and H. Deutsch, Int. J. Mass Spectrom. Ion Pro-cesses 93, 141 (1989).

    Google Scholar 

  56. Y. J. Kime and P. A. Dowben, J. Phys. Chem. 93, 6881 (1989).

    Google Scholar 

  57. G. Hagenow, W. Denzer, B. Brutschy, and H. Baumgartel, J. Phys. Chem. 92, 6487 (1988).

    Google Scholar 

  58. L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules, Wiley, New York, 1974.

    Google Scholar 

  59. N. V. Mantzaris, A. Boudouris, and E. Gogolides, J. Appl. Phys. 77, 6169 (1995).

    ADS  Google Scholar 

  60. D. Field, J. P. Ziesel, P. M. Guyon, and T. R. Govers, J. Phys. B 17, 4565 (1984).

    ADS  Google Scholar 

  61. M. G. Curtis, and I. C. Walker, J. Chem. Soc. Faraday Trans. II 85, 659 (1989).

    Google Scholar 

  62. E. Illenberger, Chem. Phys. Lett. 80, 153 (1981).

    ADS  Google Scholar 

  63. T. Oster, A. Kuhn, and E. Illenberger, Int. J. Mass Spectrom. Ion Processes 89, 1 (1989).

    Google Scholar 

  64. E. Illenberger, inLinking the Gaseous and Condensed Phases of MatterL. G. Christophorou, E. Illenberger, and W. F. Schmidt (Eds.), Plenum, New York, 1994, p. 49.

    Google Scholar 

  65. Y. Le Coat, J.-P. Ziesel, and J.-P. Guillotin, J. Phys. B 27, 965 (1994).

    ADS  Google Scholar 

  66. A. Mann and F. Linder, J. Phys. B 25, 545 (1992).

    ADS  Google Scholar 

  67. A. Mann and F. Linder, J. Phys. B 25, 533 (1992).

    ADS  Google Scholar 

  68. R. K. Jones, J. Chem. Phys. 84, 813 (1986).

    ADS  Google Scholar 

  69. C. Szmytkowski, A. M. Krzysztofowicz, P. Janicki, and L. Rosenthal, Chem. Phys. Lett. 199, 191 (1992).

    ADS  Google Scholar 

  70. S. M. Spyrou, I. Sauers, and L. G. Christophorou, J. Chem. Phys. 78, 7200 (1983).

    ADS  Google Scholar 

  71. H. P. W. Harland and J. L. Franklin, J. Chem. Phys. 61, 1621 (1974).

    ADS  Google Scholar 

  72. S. R. Hunter and L. G. Christophorou, J. Chem. Phys. 80, 6150 (1984).

    ADS  Google Scholar 

  73. R. Hashemi, A. Kuhn, and E. Illenberger, Int. J. Mass Spectrom. Ion Pro-cesses 100, 753 (1990).

    Google Scholar 

  74. W. M. Huo, Phys. Rev. A 38, 3303 (1988)

    ADS  Google Scholar 

  75. J. A. Tossell and J. W. Davenport, J. Chem. Phys. 80, 813 (1984); Erratum, J. Chem. Phys. 83, 4824 (1985).

    Google Scholar 

  76. M. T. N. Varella, C. Winstead, V. McKoy, M. Kitajima, and H. Tanaka, Phys. Rev. A 65, 022702 (2002).

    Google Scholar 

  77. H. J. T. Preston and J. J. Kaufman, Chem. Phys. Lett. 50, 157 (1977).

    ADS  Google Scholar 

  78. M. J. S. Dewar and H. S. Pzepa, J. Am. Chem. Soc. 100, 784 (1978).

    Google Scholar 

  79. A. A. Christodoulides, D. L. McCorkle, and L. G. Christophorou, in Electron- Molecule Interactions and Their Applications, L. G. Christophorou (Ed.), Academic, New York, 1984, Vol. 2, Chap. 6.

    Google Scholar 

  80. J. Lotter, A. Kuhn, and E. Illenberger, Chem. Phys. Lett. 157, 171 (1989)

    ADS  Google Scholar 

  81. J. Lotter and E. Illenberger, J. Phys. Chem.948951 (1990).

    Google Scholar 

  82. R. A. Bonham and M. R. Bruce, in Proceedings of the Joint Symposium on Electron and Ion Swarms and Low-Energy Electron Scattering, Gold Coast, Australia, July 1991, p. 5.

    Google Scholar 

  83. T. Nakano and H. Sugai, Jpn. J. Appl. Phys.312919 (1992).

    ADS  Google Scholar 

  84. R. L. Asher and B. Ruscic, J. Chem. Phys. 106, 210 (1997).

    ADS  Google Scholar 

  85. A. Hansel, Ch. Scheiring, M. Glantschning, W. Lindinger, and E. E. Ferguson, J. Chem. Phys. 109, 1748 (1998).

    ADS  Google Scholar 

  86. M. Tichy, G. Javahery, N. D. Twiddy, and E. E. Ferguson, Int. J. Mass Spectrom. Ion Processes 79, 231 (1987).

    Google Scholar 

  87. E. R. Fisher and P. B. Armentrout, Int. J. Mass Spectrom. and Ion Processes 101, R1 (1990).

    ADS  Google Scholar 

  88. I. Powis, Mol. Phys.39311 (1980).

    ADS  Google Scholar 

  89. G. K. Jarvis and R. P. Tuckett, Chem. Phys. Lett. 295, 145 (1998).

    ADS  Google Scholar 

  90. W. L. Morgan, JILA Data Center Report No. 34, June 1, 1991.

    Google Scholar 

  91. W. L. Morgan, Plasma Chemistry and Plasma Processing 12, 477 (1992).

    Google Scholar 

  92. R. A. Bonham, Jpn. J, Appl. Phys.334157 (1994).

    ADS  Google Scholar 

  93. G. P. Karwasz, R. S. Brusa, and A. Zecca, Rivista Del Nuovo Cimento24(No. 4), 1 (2001).

    Google Scholar 

  94. A. Zecca, G. P. Karwasz, and R. S. Brusa, Phys. Rev. A 46, 3877 (1992).

    ADS  Google Scholar 

  95. O. Sueoka, inAtomic Physics with PositronsJ. W. Humberston and E. A. G. Armour (Eds.), Plenum, New York, 1987, pp. 41–54.

    Google Scholar 

  96. H.-X. Wan, Ph.D. dissertation, University of Maryland, 1990.

    Google Scholar 

  97. O. Sueoka, S. Mori, and A. Hamada, J. Phys. B271453 (1994).

    ADS  Google Scholar 

  98. H. Nishimura, K. Okuda, and Y. Nakamura, in Proceedings of the Interna-tional Symposium on Electron-Molecule Collisions and Swarms, I. Fabrikant, G. Gallup, and P. Burrow (Eds.), July 2001, Lincoln, NE, p. 105.

    Google Scholar 

  99. K. L. Baluja, A. Jain, V. Di Martino, and F. A. Gianturco, Europhys. Lett.17139(1992).

    ADS  Google Scholar 

  100. Y. Jiang, J. Sun, and L. Wan, Phys. Rev. A 52, 398 (1995).

    ADS  Google Scholar 

  101. S. Mori, Y. Katayama, and O. Sueoka, At. Coll. Res. Japan Progr. Rept. 11, 19 (1985).

    Google Scholar 

  102. O. Sueoka and S. Mori, J. Phys. Soc. Jpn.532491 (1984).

    ADS  Google Scholar 

  103. O. Sueoka and S. Mori, J. Phys. B 19, 4035 (1986).

    ADS  Google Scholar 

  104. O. Sueoka, H. Takaki, A. Hamada, H. Sato, and M. Kimura, Chem. Phys. Lett. 288, 124 (1998).

    ADS  Google Scholar 

  105. S. L. Lunt, J. Randell, J.-P. Ziesel, G. Mrotzek, and D. Field, J. Phys. B314225 (1998).

    ADS  Google Scholar 

  106. M. G. Curtis, I. C. Walker, and K. J. Mathieson, J. Phys. D 21, 1271 (1988).

    ADS  Google Scholar 

  107. B. Stefanov, N. Popkirova, and L. Zarkova, J. Phys. B 21, 3989 (1988).

    ADS  Google Scholar 

  108. S. R. Hunter, J. G. Carter, and L. G. Christophorou, Phys. Rev. A3858 (1988).

    ADS  Google Scholar 

  109. K. Masek, L. Laska, R. D’Agostino, and F. Cramarossa, Contrib. Plasma Phys.2715 (1987).

    Google Scholar 

  110. M.-C. Bordage, P. Segur, L. G. Christophorou, and J. K. Olthoff, J. Appl. Phys. 86, 3558 (1999).

    ADS  Google Scholar 

  111. R. Tice and D. Kivelson, J. Chem. Phys. 46, 4743 (1967).

    ADS  Google Scholar 

  112. T. Sakae, S. Sumiyoshi, E. Murakami, Y. Matsumoto, K. Ishibashi, and A. Katase, J. Phys. B 22, 1385 (1989).

    ADS  Google Scholar 

  113. W. A. Isaacs, C. W. McCurdy, and T. N. Rescigno, Phys. Rev. A58309 (1998).

    ADS  Google Scholar 

  114. A. P. P. Natalense, M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima, Phys. Rev. A52R1(1995).

    ADS  Google Scholar 

  115. C. Winstead, Q. Sun, and V. McKoy, J. Chem. Phys.981105 (1993).

    ADS  Google Scholar 

  116. F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 104, 6482 (1996).

    ADS  Google Scholar 

  117. F. A. Gianturco, R. R. Lucchese, and N. Sanna, J. Chem. Phys. 100, 6464 (1994).

    ADS  Google Scholar 

  118. D. Raj, J. Phys. B 24, L431 (1991).

    ADS  Google Scholar 

  119. R. Curik, F. A. Gianturco, and N. Sanna, J. Phys. B33615 (2000).

    ADS  Google Scholar 

  120. M. S. Naidu and A. N. Prasad, J. Phys. D5983 (1972).

    ADS  Google Scholar 

  121. C. S. Lakshminarasimha, J. Lucas, and D. A. Price, Proc. IEE 120, 1044 (1973).

    Google Scholar 

  122. L. G. Christophorou, P. G. Datskos, and J. G. Carter, Chem. Phys. Lett. 186, 11 (1991).

    ADS  Google Scholar 

  123. W. G. Golden, C. Marcott, and J. Overend, J. Chem. Phys. 68, 2081 (1978).

    ADS  Google Scholar 

  124. Y. Itikawa, J. Phys. Soc. Japan361127 (1974).

    Google Scholar 

  125. C. Ma, M. R. Bruce, and R. A. Bonham, Phys. Rev. A442921 (1991); Erratum:Phys. Rev. A456932 (1992).

    Google Scholar 

  126. T. Masuoka and A. Kobayashi, J. Chem. Phys. 113, 1559 (2000).

    ADS  Google Scholar 

  127. M. R. Bruce, C. Ma, and R. A. Bonham, Chem. Phys. Lett. 190, 285 (1992).

    ADS  Google Scholar 

  128. M. R. Bruce, L. Mi, C. R. Sporleder, and R. A. Bonham, J. Phys. B 27, 5773 (1994).

    ADS  Google Scholar 

  129. K. Codling, L. J. Frasinski, P. A. Heatherly, M. Stankiewicz, and F. P. Larkins, J. Phys. B24951 (1991).

    ADS  Google Scholar 

  130. H. U. Poll, C. Winkler, D. Margreiter, V. Grill, and T. D. Mark, Int. J. Mass Spectrom. Ion Processes, 112, 1 (1992).

    ADS  Google Scholar 

  131. T. D. Mark, in Electron-Molecule Interactions and Their Applications, L. G. Christophorou (Ed.), Academic, Orlando, Florida, 1984, Vol. 1, Ch. 3.

    Google Scholar 

  132. M. R. Bruce and R. A. Bonham, Int. J. Mass Spectrom. Ion Processes 123, 97 (1993).

    ADS  Google Scholar 

  133. M. R. Bruce and R. A. Bonham, J. Molecular Structure 352/353, 235 (1995).

    Google Scholar 

  134. H. Nishimura, inProceedings of the 8th Symposium on Plasma ProcessingK. Tachibana (Ed.), Nagoya, Japan, 1991, pp. 333–336.

    Google Scholar 

  135. M. V. V. S. Rao and S. K. Srivastava, Private communication, 1996.

    Google Scholar 

  136. M. V. V. S. Rao and S. K. Srivastava, inProceedings of the Twentieth International Conference on the Physics of Electronic and Atomic CollisionsVienna, Austria, July 1997, Vol. II, p. MO150.

    Google Scholar 

  137. H. Nishimura, W. M. Huo, M. A. Ali, and Y.-K. Kim, J. Chem Phys. 110, 3811 (1999).

    ADS  Google Scholar 

  138. D. R. Sieglaff, R. Rejoub, B. G. Lindsay, and R. F. Stebbings, J. Phys. B34799 (2001).

    ADS  Google Scholar 

  139. I. Torres, R. Martinez, and F. Castano, J. Phys. B 35, 2423 (2002).

    ADS  Google Scholar 

  140. D. Margreiter, H. Deutsch, M. Schmidt, and T. D. Mark, Int. J. Mass Spec-trom. Ion Processes 100, 157 (1990).

    Google Scholar 

  141. M. Gryzinski, Phys. Rev A 138, 305 (1965).

    MathSciNet  ADS  Google Scholar 

  142. H. Deutsch, K. Becker, and T. D. Mark, Int. J. Mass Spectrom. Ion Processes 167/168, 503 (1997).

    Google Scholar 

  143. H. Deutsch, K. Becker, S. Matt, and T. D. Mark, Int. J. Mass Spectrom. Ion Processes 197, 37 (2000).

    Google Scholar 

  144. Y.-K. Kim, W. Hwang, M. A. Ali, and M. E. Rudd, inProceedings Twentieth International Conference on the Physics of Electronic and Atomic CollisionsVienna, Austria, July 1997, Vol. II, P. WE103.

    Google Scholar 

  145. W. M. Huo, Phys. Rev. A64042719 (2001).

    ADS  Google Scholar 

  146. K. Leiter, K. Stephan, H. Deutsch, and T. D. Mark, inProceedings of the Symposium on Atomic and Surface Physics(1984).

    Google Scholar 

  147. W. M. Huo, C. E. Dateo, and G. D. Fletcher, in22nd International Con-ference on Photonic, Electronic, and Atomic Collisions, Abstracts of Con-tributed PapersS. Datz, M. E. Bannister, H. F. Krause, L. H. Saddiq, D. R. Schultz, and C. R. Vane (Eds.), Santa Fe, NM, July 2001.

    Google Scholar 

  148. S. E. Bozin and C. C. Goodyear, J. Phys. D1327 (1968).

    ADS  Google Scholar 

  149. I. M. Bortnik and A. A. Panov, Sov. Phys. Tech. Phys.16571 (1971).

    ADS  Google Scholar 

  150. C. S. Lakshminarasimha, J. Lucas, and R. A. Snelson, Proc. Inst. Electr. Eng. 122, 1162 (1975).

    Google Scholar 

  151. M. Shimozuma, H. Tagashira, and H. Hasegawa, J. Phys. D16971 (1983).

    ADS  Google Scholar 

  152. S. R. Hunter, J. G. Carter, and L. G. Christophorou, J. Chem. Phys.86693 (1987).

    ADS  Google Scholar 

  153. J. W. Gallagher, E. C. Beaty, J. Dutton, and L. C. Pitchford, J. Phys. Chem. Ref. Data 12, 109 (1983).

    ADS  Google Scholar 

  154. P. G. Datskos, J. G. Carter, and L. G. Christophorou, J. Appl. Phys.7115 (1992).

    ADS  Google Scholar 

  155. L. G. Christophorou, P. G. Datskos, and J. G. Carter, Nucl. Instrum. Meth-ods in Phys. Research A 309, 160 (1991).

    Google Scholar 

  156. G. F. Reinking, L. G. Christophorou, and S. R. Hunter, J. Appl. Phys.60499 (1986).

    ADS  Google Scholar 

  157. H. Sugai, H. Toyoda, T. Nakano, and M. Goto, Contrib. Plasma Phys. 35, 415 (1995).

    ADS  Google Scholar 

  158. V. Tarnovsky, P. Kurunczi, D. Rogozhnikov, and K. Becker, Int. J. Mass Spectrom. Ion Processes 128, 181 (1993).

    ADS  Google Scholar 

  159. V. Tarnovsky and K. Becker, J. Chem. Phys. 98, 7868 (1993).

    ADS  Google Scholar 

  160. W. M. Huo, V. Tarnovsky, K. H. Becker, Chem. Phys. Lett. 358, 328 (2002).

    ADS  Google Scholar 

  161. L. Mi and R. A. Bonham, J. Chem. Phys. 108, 1910 (1998).

    ADS  Google Scholar 

  162. S. Motlagh and J. H. Moore, J. Chem. Phys. 109, 432 (1998).

    ADS  Google Scholar 

  163. P. J. Van der Burgt and J. W. McConkey, J. Phys. B 24, 4821 (1991).

    ADS  Google Scholar 

  164. H. A. Van Sprang, H. H. Brongersma, and F. J. de Heer, Chem. Phys. 35, 51 (1978).

    Google Scholar 

  165. U. Miiller, T. Bubel, G. Schulz, A. Sevilla, J. Dike, and K. Becker, Z. Phys. D 24, 131 (1992).

    ADS  Google Scholar 

  166. K. A. Blanks and K. Becker, J. Phys. B 20, 6157 (1987).

    ADS  Google Scholar 

  167. K. A. Blanks, A. E. Tabor, and K. Becker, J. Chem. Phys. 86, 4871 (1987).

    ADS  Google Scholar 

  168. I. Torres, R. Martinez, M. N. Sanchez Rayo, J. A. Fernandez, and F. Castano, J. Phys. B 32, 5437 (1999).

    ADS  Google Scholar 

  169. M. B. Roque, R. B. Siegel, K. E. Martus, V. Tarnovsky, and K. Becker, J. Chem. Phys. 94, 341 (1991).

    ADS  Google Scholar 

  170. S. Wang, J. L. Forand, and J. W. McConkey, Can. J. Phys. 67, 699 (1989).

    ADS  Google Scholar 

  171. I. R. Lambert, S. M. Mason, and R. P. Tuckett, J. Chem. Phys. 89 2683 (1988).

    ADS  Google Scholar 

  172. M. Suto, N. Washida, H. Akimoto, and M. Nakamura, J. Chem. Phys. 78, 1019 (1983).

    ADS  Google Scholar 

  173. L. C. Lee, J. L. Han, C. Ye, and M. Suto, J. Chem. Phys. 92, 133 (1990).

    ADS  Google Scholar 

  174. K. H. Becker, Comments At. Mol. Phys. 30, 261 (1994).

    Google Scholar 

  175. C. Suzuki and K. Kadota, Appl. Phys. Lett. 67, 2569 (1995).

    ADS  Google Scholar 

  176. C. Suzuki, K. Sasaki, and K. Kadota, J. Appl. Phys. 82, 5321 (1997).

    ADS  Google Scholar 

  177. J. P. Booth, G. Hancock, N. D. Perry, and M. J. Toogood, J. Appl. Phys. 66, 5251 (1989).

    ADS  Google Scholar 

  178. J. P. Booth, G. Cunge, P. Chabert, and N. Sadeghi, J. Appl. Phys. 85, 3097 (1999).

    ADS  Google Scholar 

  179. L. D. B. Kiss, J.-P. Nicolai, W. T. Conner, and H. H. Sawin, J. Appl. Phys. 71, 3186 (1992).

    ADS  Google Scholar 

  180. I. Iga, M. V. V. S. Rao, S. K. Srivastava, and J. C. Nogueira, Z. Phys. D 24, 111 (1992).

    ADS  Google Scholar 

  181. C. Lifshitz and R. Grajower, Int. J. Mass Spectrom. Ion Processes 10, 25 (1972/1973).

    Google Scholar 

  182. J. Dutton, A. Goodings, A. K. Lucas, and A. W. Williams, J. Phys. D 20, 1322 (1987).

    ADS  Google Scholar 

  183. K. A. G. MacNeil and J. C. J. Thynne, Int. J. Mass Spectrom. Ion Phys. 3, 455 (1975).

    Google Scholar 

  184. J. W. Hastie and J. L. Margrave, J. Phys. Chem. 73, 1105 (1969).

    Google Scholar 

  185. Y. Le Coat, N. M. Hedhili, R. Azria, M. Tronc, F. Weik, and E. Illenberger, Int. J. Mass Spectrom. and Ion Processes 164, 231(1997).

    ADS  Google Scholar 

  186. K. Nagesha and L. Sanche, J. Appl. Phys. 88, 5211 (2000).

    ADS  Google Scholar 

  187. A. D. Bass, J. Gamache, L. Parenteau, and L. Sanche, J. Phys. Chem. 99, 6123 (1995).

    Google Scholar 

  188. L. Mi, C. R. Sporleder, and R. A. Bonham, Chem. Phys. Lett. 251, 252 (1996).

    ADS  Google Scholar 

  189. K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano, J. Chem. Phys. 95, 2398 (1991).

    ADS  Google Scholar 

  190. F. J. Davis, R. N. Compton, and D. R. Nelson, J. Chem. Phys. 59, 2324 (1973).

    ADS  Google Scholar 

  191. R. W. Fesssenden and K.M. Bansal, J. Chem. Phys. 53, 3468 (1970).

    ADS  Google Scholar 

  192. R. Schumacher, H. -R. Spriinken, A. A. Christodoulides, and R. N. Schindler, J. Phys. Chem. 82, 2248 (1978).

    Google Scholar 

  193. J. L. Jauberteau, G. J. Meeusen, M. Haverlag, G. M. W. Kroesen, and F. J. de Hoog, J. Phys. D 24, 261 (1991).

    ADS  Google Scholar 

  194. A. Kono, M. Haverlag, G. M. W. Kroesen, and F. J. de Hoog, J. Appl. Phys. 70, 2939 (1991).

    ADS  Google Scholar 

  195. E. Gogolides, M. Stathakopoulos, and A. Boudouris, J. Phys. D 27, 1878 (1994).

    ADS  Google Scholar 

  196. N. Gee and G. R. Freeman, J. Chem. Phys. 95, 102 (1991).

    ADS  Google Scholar 

  197. J. Va’vra, P. Coyle, J. Kadyk, and J. Wise, Nucl. Instrum. Methods in Phys. Research A 324, 113 (1993).

    ADS  Google Scholar 

  198. O. Kiselev, O. Prokofiev, and A. Vorobyov, GEM Report No. TN-93–417, 1993

    Google Scholar 

  199. B. Schmidt and Polenz, Nucl. Instr. Methods in Phys. Research A 273, 488 (1988).

    ADS  Google Scholar 

  200. R. A. Snelson, Ph. D. thesis, University of Liverpool, 1974.

    Google Scholar 

  201. V. A. Lisovskiy and V. D. Yegorenkov, in Proceedings of the International Symposium on Electron-Molecule Collisions and Swarms, Y. Hatano, H. Tanaka, and N. Kouchi (Eds.), Tokyo, Japan, July 1999, p.156.

    Google Scholar 

  202. S. R. Hunter and L. G. Christophorou, inElectron-Molecule Interactions and Their ApplicationsL. G. Christophorou (Ed.), Academic, Orlando, Florida,1984, Vol. 2, Ch. 3.

    Google Scholar 

  203. A. V. Vasenkov, J. Appl. Phys. 88, 626 (2000).

    ADS  Google Scholar 

  204. Y. Hayashi and Y. Nakamura, inProceedings of the International Confer-ence on Atomic and Molecular Data and Their ApplicationsNIST Special Publication 926, W. L. Wiese and P. J. Mohr (Eds.), U. S. Department of Commerce, Gaithersburg, MD, 1998, p. 248.

    Google Scholar 

  205. L. G. ChristophorouAtomic and Molecular Radiation PhysicsWiley- Interscience, New York, 1971, Ch. 4.

    Google Scholar 

  206. L. G. Christophorou and J. K. Olthoff, Adv. Atom. Molec. Opt. Phys. 44, 59 (2000).

    Google Scholar 

  207. H. Deutsch, T. D. Mark, V. Tarnovsky, K. Becker, C. Cornelissen, L. Cespiva, and V. Bonacic-Koutecky, Int. J. Mass Spectrom. Ion Processes 137, 77 (1994).

    ADS  Google Scholar 

  208. V. McKoy, W. L. Morgan, P. D. Haaland, C. Winstead, W. K. Trail, and C. Jiao, Sematech Technology Transfer Report # 00023909A-TR, March 31, 2000.

    Google Scholar 

  209. V. McKoy, W. L. Morgan, P. D. Haaland, C. Winstead, W. K. Trail, and C. Jiao, Sematech Technology Transfer Report # 00124057A-TR, January 15, 2001.

    Google Scholar 

  210. Y.-K. Kim and K. K. IrikuraAtomic and Molecular Data and Their ApplicationsK. A. Berrington and K. L. Bell (Eds.), American Institute of Physics 1–56396–971–8, Conference Proceedings CP543, 2000, p. 220.

    Google Scholar 

  211. W. M. Huo, V. Tarnovsky, and K. Becker, inXXII International Conference on Photonic, Electronic, and Atomic Collisions, Abstracts of Contributed Pa-persS. Datz, M. E. Bannister, H. F. Krause, L. H. Saddiq, D. R. Schultz, and C. R. Vane (Eds.), Santa Fe, NM, July 2001, p. 263.

    Google Scholar 

  212. R. C. Wetzel, F. A. Biaocchi, and R. S. Freund, Bull. Amer. Phys. Soc. 30, 147 (1985).

    Google Scholar 

  213. A. V. Vasenkov, inProceedings of the International Conference on Phenom-ena in Ionized GasesP. Pisarczyk, T. Pisarczyk, and J. Wolowski (Eds.), Contributed papers, Vol. IV, Warsaw, Poland, July 1999, p. 159.

    Google Scholar 

  214. J. W. Coburn and E. Kay, J. Vac. Sci. Technol. 16, 407 (1979).

    ADS  Google Scholar 

  215. D. L. Flamm, inGaseous Dielectrics VL. G. Christophorou and D. W. Bouldin (Eds.), Pergamon, New York, 1987, p. 317.

    Google Scholar 

  216. M. O. de Beeck, M. Goethals, and L. Van den hove, J. Electrochem. Soc. 139, 2644 (1992).

    Google Scholar 

  217. M. Haverlag, A. Kono, G. M. W. Kroesen, and F. J. de Hoog, Mater. Sci. Forum 140–142, 235 (1993).

    Google Scholar 

  218. H.-H. Park, K.-H. Kwon, J.-L. Lee, K.-S. Suh, O.-J. Kwon, K.-I. Cho, and S.-C. Park, J. Appl. Phys. 76, 4596 (1994).

    ADS  Google Scholar 

  219. P. Ho, J. E. Johannes, R. J. Buss, and E. Meeks, J. Vac. Sci. Technol. A 19, 2344 (2001).

    ADS  Google Scholar 

  220. S. R. Hunter, J. G. Carter, L. G. Christophorou, and V. K. Lakdawala, inGaseous Dielectrics IVL. G. Christophorou and M. O. Pace (Eds.), Perga-mon, New York, 1984, p. 224.

    Google Scholar 

  221. V. E. Scherrer, R. J. Commisso, R. F. Fernsler, and I. M. Vitkovitsky, inGaseous Dielectrics IVL. G. Christophorou and M. O. Pace (Eds.), Perga-mon, New York, 1984, p. 238.

    Google Scholar 

  222. R. J. Commisso, R. F. Fernsler, V. E. Scherrer, and I. M. Vitkovitsky, Appl. Phys. Lett. 47, 1056 (1985).

    ADS  Google Scholar 

  223. G. Schaefer, K. H. Schoenbach, M. Kristiansen, B. E. Strickland, R. A. Ko-rzekwa, and G. Z. Hutcheson, Appl. Phys. Lett. 48, 1776 (1986).

    ADS  Google Scholar 

  224. G. Schaefer and K. H. Schoenbach, IEEE Trans. Plasma Science PS-14, 561(1986).

    ADS  Google Scholar 

  225. G. Schaefer, K. H. Schoenbach, R. A. Korzekwa, and M. Kristiansen, inGaseous Dielectrics VL. G. Christophorou and D. W. Bouldin (Eds.), Pergamon, New York, 1987, p. 374.

    Google Scholar 

  226. S. R. Hunter, inGaseous Dielectrics VL. G. Christophorou and D. W. Bouldin (Eds.), Pergamon, New York, 1987, p. 363.

    Google Scholar 

  227. L. G. Christophorou, D. L. McCorkle, and S. R. Hunter, inGaseous Dielectrics VL. G. Christophorou and D. W. Bouldin (Eds.), Pergamon, New York, 1987, p. 381.

    Google Scholar 

  228. S. Arai, T. Watanabe, Y. Ishikawa, T. Oyama, O. Hayashi, and T. Ishii, Chem. Phys. Lett. 112, 224 (1984).

    ADS  Google Scholar 

  229. E. Cook, World Resources Institute, Washington, D.C., February (1995).

    Google Scholar 

  230. A. R. Ravishankara, S. Solomon, A. A. Turnipseed, and R. F. Warren, Science 259, 194 (1993).

    ADS  Google Scholar 

  231. P. Maroulis, J. Langan, A. Johnson, R. Ridgeway, and H. Withers, Semicon-ductor International, November 1994, Pub. No. 325–9502.

    Google Scholar 

  232. A. L. McClellanTables of Experimental Dipole MomentsW. H. Freeman and Company, San Francisco, CA, 1963, p. 51.

    Google Scholar 

  233. V. McKoy, C. Winstead, W. L. Morgan, and P. D. Haaland, Sematech Tech-nology Transfer Report # 98063515A-TR, June 30, 1998.

    Google Scholar 

  234. P. Sauvageau, J. Doucet, R. Gilbert, and C. Sandorfy, J. Chem. Phys. 61, 391 (1974).

    ADS  Google Scholar 

  235. C. J. Noutary, J. Res. Nat. Bur. Stands., 72A, 479 (1968).

    Google Scholar 

  236. I. G. Simm, C. J. Danby, and J. H. D. Eland, J. Chem. Soc. Chem. Commun., 832 (1973).

    Google Scholar 

  237. I. G. Simm, C. J. Danby, and J. H. D. Eland, Int. J. Mass Spectrom. Ion Phys. 14, 285 (1974).

    Google Scholar 

  238. I. Ishii, R. McLaren, A. P. Hitchcock, K. D. Jordan, Y. Choi, and M. B. Robin, Can. J. Chem. 66, 2104 (1988).

    Google Scholar 

  239. F. Weik, quoted in [240].

    Google Scholar 

  240. F. Weik and E. Illenberger, J. Chem. Phys. 103, 1406 (1995).

    ADS  Google Scholar 

  241. T. Takagi, L. Boesten, H. Tanaka, and M. A. Dillon, J. Phys. B. 27, 5389 (1994).

    ADS  Google Scholar 

  242. J. Sanabia, G. D. Cooper, J. A. Tossell, and J. H. Moore, J. Chem. Phys. 108, 389 (1998).

    ADS  Google Scholar 

  243. C. Szmytkowski, P. Mozejko, G. Kasperski, and E. Ptasiriska-Denga, J. Phys. B 33, 15 (2000).

    ADS  Google Scholar 

  244. E. Lindholm and J. Li, J. Phys. Chem. 92, 1731 (1988).

    Google Scholar 

  245. L. Lehmann, S. Matejcik, and E. Illenberger, Ber. Bunsenges. Phys. Chem. 101, 287 (1997).

    Google Scholar 

  246. T. ShimanouchiTables of Molecular Vibrational Frequencies Consolidated VolumeJ, NSRDS-NBS 39, June 1972, p. 95.

    Google Scholar 

  247. M. Hayashi and A. Niwa, inGaseous Dielectrics VL. G. Christophorou and D. W. Bouldin (Eds.), Pergamon, New York, 1987, p. 27.

    Google Scholar 

  248. H. Okumo and Y. Nakamura, inProceedings of the International Conference on Atomic and Molecular Data and Their ApplicationsNIST Special Publication 926, W. L. Wiese and P. J. Mohr (Eds.), U. S. Department of Commerce, Gaithersburg, MD, 1998, p. 265.

    Google Scholar 

  249. O. Sueoka, H. Takaki, A. Hamada, and M. Kimura, inTwentieth International Conference on the Physics of Electronic and Atomic CollisionsVienna, Austria, July 1997; Abstracts of Contributed Papers, Vol. 1, F. Aumayr, G. Betz, and H. P. Winter (Eds.), Paper WE057.

    Google Scholar 

  250. V. McKoy, C. Winstead, and W. L. Morgan, Sematech Technology Transfer Report # 97043274A-TR, August 22, 1997.

    Google Scholar 

  251. R. Merz and F. Linder, quoted in Ref. [2].

    Google Scholar 

  252. P. Pirgov and B. Stefanov, J. Phys. B 23, 2879 (1990).

    ADS  Google Scholar 

  253. H. B. Milloy, R. W. Crompton, J. A. Rees, and A. J. Robertson, Aust. J. Phys. 30, 61 (1977).

    ADS  Google Scholar 

  254. R. A. Morris, C. J. Patrissi, D. J. Sardella, P. Davidovits, and D. L. McFad-den, Chem. Phys. Lett. 102, 41 (1983).

    ADS  Google Scholar 

  255. H. T. Davis and L. D. Schmidt, Chem. Phys. Lett. 16, 260 (1972).

    ADS  Google Scholar 

  256. H. U. Poll and J. Meichsner, Contrib. Plasma Phys. 27, 359 (1987).

    Google Scholar 

  257. C. Q. Jiao, A. Garscadden, and P. D. Haaiand, Chem. Phys. Lett. 310, 52 (1999).

    ADS  Google Scholar 

  258. R. Basner, M. Schmidt, E. Denisov, H. Deutsch, P. Lopata, V. Tarnovsky, and K. Becker, inProceedings of the XXIVth International Conference on Phenomena in Ionized GasesWarsaw, Poland, July 1999; Contributed Papers, P. Pisarczyk, T. Pisarczyk, and J. Wolowski (Eds.), Vol. IV, p. 17.

    Google Scholar 

  259. M. M. Bibby and G. Carter, Trans. Faraday Soc. 59, 2455 (1963).

    Google Scholar 

  260. M. V. Kurepa, in 3rd Czechoslovakian Conference on Electronics and Vacuum Physics Transactions, Prague, September 1965, p. 107.

    Google Scholar 

  261. J. A. Beran and L. Kevan, J. Phys. Chem. 73, 3866 (1969).

    Google Scholar 

  262. D. Rapp and P. Englander-Goiden, J. Chem. Phys. 43, 1464 (1965).

    ADS  Google Scholar 

  263. H. Deutsch, K. Becker, R. Basner, M. Schmidt, and T. D. Mark, J. Phys. Chem. A 102, 8819 (1998).

    Google Scholar 

  264. J. G. Carter, S. R. Hunter, and L. G. Christophorou, inGaseous Dielectrics VL. G. Christophorou and D. W. Bouldin (Eds.), Pergamon, New York, 1987, p. 47.

    Google Scholar 

  265. W. W. Byszewski, M. J. Enright, and J. M. Proud, inGaseous Dielectrics IVL. G. Christophorou and M. O. Pace (Eds.), Pergamon, New York, 1984, p. 53.

    Google Scholar 

  266. W. W. Byszewski, M. J. Enright, and J. M. Proud, inGaseous Dielectrics IVL. G. Christophorou and M. O. Pace (Eds.), Pergamon, New York, 1984, p. 255.

    Google Scholar 

  267. L. G. Christophorou, R. A. Mathis, S. R. Hunter, and J. G. Carter, inGaseous Dielectrics VL. G. Christophorou and D. W. Bouldin (Eds.) Pergamon, New York, 1987, p. 88.

    Google Scholar 

  268. L.G. Christophorou, R. A. Mathis, S. R. Hunter, and J. G. Carter, J. Appl. Phys. 63, 52 (1988).

    ADS  Google Scholar 

  269. W. A. Wilson, J. H. Simons, and T. J. Brice, J. Appl. Phys. 21, 203 (1950).

    ADS  Google Scholar 

  270. G. Biasiutti, inGaseous Dielectrics IIIL. G. Christophorou (Ed.), Pergamon, New York, 1982, p. 174.

    Google Scholar 

  271. G. Camilli, T. W. Liao, and R. E. Plump, Trans. AIEE 74 (Pt I), 637 (1955).

    Google Scholar 

  272. K. Nakanishi, L. G. Christophorou, J. G. Carter, and S. R. Hunter, J. Appl. Phys. 58, 633 (1985).

    ADS  Google Scholar 

  273. L. G. ChristophorouAtomic and Molecular Radiation PhysicsWiley-Interscience, New York, 1971, Ch. 2.

    Google Scholar 

  274. S. S. Nagra and D. A. Armstrong, Can. J. Chem. 53, 3305 (1975).

    Google Scholar 

  275. S. C. Sun, V. Patel, E. A. Whittaker, B. Singh, and J. H. Thomas III, J. Vac. Sci. Technol. A 11, 1193 (1993).

    ADS  Google Scholar 

  276. K. Miyata, M. Hori, and T. Goto, J. Vac. Sci. Technol. A 14, 2343 (1996).

    ADS  Google Scholar 

  277. S. M. Spyrou and L. G. Christophorou, J. Chem. Phys. 82, 2620 (1985).

    ADS  Google Scholar 

  278. K. A. G. MacNeil and J.C.J. Thynne, Int. J. Mass Spectrom. and Ion Phys. 2, 1 (1969).

    Google Scholar 

  279. J. W. Coomber and E. Whittle, Trans. Faraday Soc. 63, 1394 (1967).

    Google Scholar 

  280. R. W. Crompton and R. L. Jory, Aust. J. Phys. 15, 451 (1962).

    ADS  Google Scholar 

  281. E. Kay, A. Dilks, and D. Seybold, J. Appl. Phys. 51, 5678 (1980).

    ADS  Google Scholar 

  282. C. Bubeck and E. Kay, J. Vac. Sci. Technol. 18, 360 (1981).

    ADS  Google Scholar 

  283. R. d’Agostino, F. Cramarossa, V. Colaprico, and R. d’Ettole, J. Appl. Phys. 54, 1284 (1983).

    ADS  Google Scholar 

  284. M. Haverlag, A. Kono, D. Passchier, G. M. W. Kroesen, W. J. Goedheer, and F. J. de Hoog, J. Appl. Phys. 70, 3472 (1991).

    ADS  Google Scholar 

  285. Y. Haque and B. D. Ratner, J. Polym. Sci.: Part B: Polym. Phys. 26, 1237 (1988).

    ADS  Google Scholar 

  286. L. Zazzera, W. Reagen, and A. Cheng, J. Electrochem. Soc. 144, 3597 (1997).

    Google Scholar 

  287. J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Katten-berg, and K. Maskell, Climate Change 1995, The Science of Climate Change, Cambridge University Press, New York, 1996, p. 22.

    Google Scholar 

  288. C. M. Roehl, D. Boglu, C. Briihl, and G. K. Moortgat, Geophys. Res. Lett. 22, 815 (1995).

    ADS  Google Scholar 

  289. P. Bletzinger, in XVI International Conference on Phenomena in Ionized Gases, Contributed Papers, Vol. 2, W. Botticher, H. Wenk, and E. Schulz-Gulde (Eds.), Duesseldorf, Germany, August 29-September 2, 1983, p. 218.

    Google Scholar 

  290. L. G. Christophorou and S. R. Hunter, inElectron-Molecule Interactions and Their ApplicationsL. G. Christophorou (Ed.) Academic, New York, 1984, Vol. 2, Ch. 5.

    Google Scholar 

  291. L. G. Christophorou, Nucl. Instr. Meth. Phys. Res. A 268, 424 (1988).

    ADS  Google Scholar 

  292. M. J. S. Dewar and S. D. Worley, J. Chem. Phys. 50, 654 (1969).

    ADS  Google Scholar 

  293. P. J. Chantry and C. L. Chen, J. Chem. Phys. 90, 2585 (1989).

    ADS  Google Scholar 

  294. C. Lifshitz and R. Grajower, Int. J. Mass Spectrom. Ion Phys. 3, 211 (1969).

    Google Scholar 

  295. C. Lifshitz and F. A. Long, J. Phys. Chem. 69, 3746 (1965).

    Google Scholar 

  296. G. Belanger, P. Sauvageau, and C. Sandorfy, Chem. Phys. Lett. 3, 649 (1969).

    ADS  Google Scholar 

  297. T. Shinohara, Y. Tachibana, M. Yuri, H. Tanaka, and L. Boesten, inProceedings of the International Conference on the Physics of Electronic and Atomic CollisionsWhistler, British Columbia, Canada, 26 July - 1 August 1995; Abstracts of Contributed Papers, J. B. A. Mitchell, J. W. McConkey, and C. E. Brion (Eds.), p. 13.

    Google Scholar 

  298. H. Tanaka, Private communication, 1997.

    Google Scholar 

  299. C. Lifshitz and R. Grajower, Int. J. Mass Spectrom. Ion Phys. 4, 92 (1970).

    Google Scholar 

  300. S. M. Spyrou and L. G. Christophorou, J. Chem. Phys. 83, 2829 (1985).

    ADS  Google Scholar 

  301. L. G. ChristophorouAtomic and Molecular Radiation PhysicsWiley-Interscience, New York, 1971, Ch. 5.

    Google Scholar 

  302. C. D. Jiao, A. Garscadden, and P. D. Haaland, Chem. Phys. Lett. 325, 203 (2000).

    ADS  Google Scholar 

  303. B.-H. Jeon and Y. Nakamura, inInternational Conference on Atomic and Molecular Data and Their Applications29 September - 2 October 1997, National Institute of Standards and Technology, Gaithersburg, MD, USA. Paper M035; Book of Abstracts, p. 45; Private communication, October 1997.

    Google Scholar 

  304. H. Tanaka, Y. Tachibana, M. Kitajima, O. Sueoka, H. Takaki, A. Hamada, and M. Kimura, Phys. Rev. A 59, 2006 (1999).

    ADS  Google Scholar 

  305. M. E. Riley, C. J. MacCallum, and F. Biggs, At. Data Nucl. Data Tables 15, 443 (1975); Erratum 28, 379 (1983).

    Google Scholar 

  306. R. Hermann, Radiat. Phys. Chem. 34, 369 (1989).

    Google Scholar 

  307. N. P. Danilevskii, I. Yu. Rapp, V. T. Koppe, and A. G. Koval, Opt. Spectrosc. (USSR) 60, 441 (1986).

    ADS  Google Scholar 

  308. M.-M. Chen and Y. H. Lee, Proc. Electrochem. Soc. 83, 3 (1983).

    Google Scholar 

  309. J. L. Moruzzi and J. D. Craggs, Proc. Phys. Soc. 82, 979 (1963).

    ADS  Google Scholar 

  310. K. Nakanishi, D. R. James, H. Rodrigo, and L. G. Christophorou, J. Phys. D 17, L73 (1984).

    ADS  Google Scholar 

  311. S. R. Hunter, L. G. Christophorou, D. R. James, and R. A. Mathis, inGaseous Dielectrics IIIL. G. Christophorou (Ed.), Pergamon, New York, 1982, p. 7.

    Google Scholar 

  312. S. R. Hunter and L. G. Christophorou, J. Appl. Phys. 57, 4377 (1985).

    ADS  Google Scholar 

  313. S. R. Hunter and L. G. Christophorou, inGaseous Dielectrics IVPergamon, New York, L. G. Christophorou and M. O. Pace (Ed.), 1984, p. 115.

    Google Scholar 

  314. W. C. Wang and L. C. Lee, J. Appl. Phys. 58, 184 (1985).

    ADS  Google Scholar 

  315. D. Rapp and D. D. Briglia, J. Chem. Phys. 43, 1480 (1965).

    ADS  Google Scholar 

  316. P. W. Harland and J. C. J. Thynne, Int. J. Mass Spectrom. Ion Phys. 9, 253 (1972).

    Google Scholar 

  317. L. G. Christophorou, L. A. Pinnaduwage, and P. G. Datskos, inLinking the Gaseous and Condensed Phases of MatterL. G. Christophorou, E. Illen-berger and W. Schmidt (Ed.), Plenum, New York, 1994, p. 415.

    Google Scholar 

  318. L. G. Christophorou and P. G. Datskos, Int. J. Mass Spectrom. and Ion Processes 149/150, 59 (1995).

    ADS  Google Scholar 

  319. L. G. Christophorou and J. K. Olthoff, Adv. At. Mol. Opt. Phys. 44, 155 (2000).

    Google Scholar 

  320. W. W. Stoffels, E. Stoffels, and K. Tachibana, Jpn. J. Appl. Phys., Part 1 36, 4638 (1997).

    Google Scholar 

  321. E. Stoffels, W. W. Stoffels, D. Vender, M. Haverlag, G. M. W. Kroesen, and F. J. de Hoog, Contrib. Plasma Phys. 35, 331 (1995).

    ADS  Google Scholar 

  322. R. Milstein and R. S. Berry, J. Chem. Phys. 55, 4146 (1971).

    ADS  Google Scholar 

  323. H.-P. Popp, Z. Naturforsch. A 20, 642 (1965).

    Google Scholar 

  324. B.-H. Jeon, S.-C. Ha, and Y. Nakamura, inProceedings of the XXIII International Conference on Phenomena in Ionized GasesContributed Papers, M. C. Bordage and A. Gleizes (Eds.), Toulouse, France, July 1977, Vol. 5, p. V-4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Christophorou, L.G., Olthoff, J.K. (2004). Electron Interactions with CF4, C2F6, and C3F8 . In: Fundamental Electron Interactions with Plasma Processing Gases. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8971-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8971-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4741-5

  • Online ISBN: 978-1-4419-8971-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics