Skip to main content

Dendritic Cells in Transplantation: Origin, Immune Activation, and Allograft Tolerance

  • Chapter
Immunobiology of Organ Transplantation

Abstract

For the past 30 years, since their discovery, dendritic cells (DCs) have been the focus of many studies that outline the critical role of DCs in activation and, more recently, regulation of the immune response. As will be discussed in this chapter, DCs are specialized antigen-presenting cells (APCs) that are integral to both the initiation of allograft rejection and the induction and maintenance of transplant tolerance. Both donor and recipient DCs contribute to the rejection response but it seems to be the DCs of the recipient that participate in both the acute and chronic phases of rejection. Therefore, these DCs are an ideal target for manipulation of the rejection response in favor of promoting tolerance induction. Before discussing these developing issues, we must first understand how these cells were first discovered and how we began to understand their importance in transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fearon, D.T. and R.M. Locksley (1996). The instructive role of innate immunity in the acquired immune response.Science272(5258), 50–54.

    Article  PubMed  CAS  Google Scholar 

  2. Akira, S., K. Takeda, and T. Kaisho (2001). Toll-like receptors: Critical proteins linking innate and acquired immunity.Nat. Immunol.2(8), 675–680.

    Article  PubMed  CAS  Google Scholar 

  3. Lipscomb, M.F. and B.J. Masten (2002). Dendritic cells: Immune regulators in health and disease.Physiol. Rev.82(1), 97–130.

    PubMed  CAS  Google Scholar 

  4. Dieu-Nosjean, M. et al. (1999). Regulation of dendritic cell trafficking: A process that involves the participation of selective chemokines.J. Leuk. Biol.66, 252–262.

    CAS  Google Scholar 

  5. Gallucci, S. and P. Matzinger (2001). Danger signals: SOS to the immune system.Curr. Opin. Immunol.13(1), 114–119.

    Article  PubMed  CAS  Google Scholar 

  6. Luster, A.D. (2002). The role of chemokines in linking innate and adaptive immunity.Curr. Opin. Immunol.14, 129–135.

    Article  PubMed  CAS  Google Scholar 

  7. Sozzani, S.et al.(1998). Differential regulation of chemokine receptors during dendritic cell maturation: A model for their trafficking properties.J. Immunol.161, 1083.

    Google Scholar 

  8. Langenkamp, A.et al.(2000). Kinetics of dendritic cell activation: Impact on priming TH1, TH2 and nonpolarized T cells.Nat. Immunol.1, 311–316.

    Article  PubMed  CAS  Google Scholar 

  9. Kalinski, P.et al.(1997). IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2promote type 2 cytokine production in maturing human naive T helper cells.J. Immunol.159, 28–35.

    PubMed  CAS  Google Scholar 

  10. Palucka, K. and J. Banchereau (1999). Dendritic cells: A link between innate and adaptive immunity.J. Clin. Immunol.19(1), 12–25.

    Article  PubMed  CAS  Google Scholar 

  11. Steinman, R.M. and Z.A. Cohn (1973). Identification of a novel cell type in peripheral lymphoid organs of mice.I. Morphology, quantitation, tissue distribution.J. Exp. Med.137(5), 1142–1162.

    Article  Google Scholar 

  12. Steinman, R.M., J. Adams, and Z. Cohn (1975). Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen.J. Exp. Med.141, 804–820.

    PubMed  CAS  Google Scholar 

  13. Steinman, R.M. and Z. Cohn (1974). Identification of a novel cell type in peripheral lymphoid organs of mice.II. Functional properties in vitro.J. Exp. Med.139, 380–397.

    Article  PubMed  CAS  Google Scholar 

  14. Banchereau, J., F. Briere, and C. Caux (2000). Immunobiology of dendritic cells.Annu. Rev. Immunol.18, 767.

    Article  PubMed  CAS  Google Scholar 

  15. Banchereau, J. and R.M. Steinman (1998). Dendritic cells and the control of immunity.Nature392(6673), 245–252.

    Article  PubMed  CAS  Google Scholar 

  16. Geijtenbeek, T.et al.(2000). Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses.Cell100, 575–585.

    Article  PubMed  CAS  Google Scholar 

  17. Granucci, F.et al.(2003). Early IL-2 production by mouse dendritic cells is the result of microbial-induced priming.J. Immunol.170(10), 5075–5081.

    PubMed  CAS  Google Scholar 

  18. Steinman, R.M. (1991). The dendritic cell system and its role in immunogenicity.Annu Rev. Immunol.9, 271–296.

    Article  PubMed  CAS  Google Scholar 

  19. Shortman, K. and Y.-J. Liu (2002). Mouse and human dendritic cell subtypes.Nat. Rev. Immunol.2, 151–161.

    Article  PubMed  CAS  Google Scholar 

  20. Inaba, K.et al.(1993). Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow.Proc. Natl. Acad. Sci. USA90(7), 3038–3042.

    Article  PubMed  CAS  Google Scholar 

  21. Bjorck, P. and P. Kincade (1998). CD19+pro-B cells can give rise to dendritic cells in vitro.J. Immunol.161, 5795–5799.

    PubMed  CAS  Google Scholar 

  22. Izon, D. (2001). A common pathway for dendritic cell and early B cell development.J. Immunol.167, 1387–1392.

    PubMed  CAS  Google Scholar 

  23. Ardavin, C.et al.(1993). Thymic dendritic cells and T cells develop simultaneously within the thymus from a common precursor population.Nature362, 761–763.

    Article  PubMed  CAS  Google Scholar 

  24. Ardavin, C. and K. Shortman (1992). Cell surface marker analysis of mouse thymic dendritic cells.Eur. J. Immunol.22(3), 859–862.

    Article  PubMed  CAS  Google Scholar 

  25. Manz, M.G.et al.(2001). Dendritic cell potentials of early lymphoid and myeloid progenitors.Blood97(11), 3333–3341.

    Article  PubMed  CAS  Google Scholar 

  26. Traver, D.et al.(2000). Development of CD8alpha-positive dendritic cells from a common myeloid progenitor.Science290(5499), 2152–2154.

    Article  PubMed  CAS  Google Scholar 

  27. Wu, L.et al.(2001). Development of thymic and splenic dendritic cell populations from different hemopoietic precursors.Blood98(12), 3376–3382.

    Article  PubMed  CAS  Google Scholar 

  28. Kamath, A.et al.(2000). The development, maturation, and turnover rate of mouse spleen dendritic cell populations.J. Immunol.165, 6762–6770.

    PubMed  CAS  Google Scholar 

  29. Strobl, H.et al.(1998). Identification of CD68+lin-peripheral blood cells with dendritic precursor characteristics.J. Immunol.161, 740–748.

    PubMed  CAS  Google Scholar 

  30. Masten, B.J.et al.(1997). Characterization of accessory molecules in murine lung dendritic cell function: Roles for CD80, CD86, CD54, and CD40L.Am. J. Respir. Cell Mol. Biol.16(3), 335–342.

    PubMed  CAS  Google Scholar 

  31. Woo, J.et al.(1994). Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells.Transplantation58(4), 484–491.

    Article  PubMed  CAS  Google Scholar 

  32. O’Connell, P.J.et al.(2000). Phenotypic and functional characterization of mouse hepatic CD8 alpha+ lymphoid-related dendritic cells.J. Immunol.165(2), 795–803.

    PubMed  Google Scholar 

  33. Leenen, P.J.et al.(1998). Heterogeneity of mouse spleen dendritic cells: In vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover.J. Immunol.160, 2166–2173.

    PubMed  CAS  Google Scholar 

  34. Garrigan, K.et al.(1996). Functional comparison of spleen dendritic cells and dendritic cells cultured in vitro from bone marrow precursors.Blood88(9), 3508–3512.

    PubMed  CAS  Google Scholar 

  35. Martin, P.et al.(2000). Concept of lymphoid versus myeloid dendritic cell lineages revisited: Both CD8alpha(-) and CD8alpha(+) dendritic cells are generated from CD4(low) lymphoid-committed precursors.Blood96(7), 2511–2519.

    PubMed  CAS  Google Scholar 

  36. Vremec, D.et al.(2000). CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen.J. Immunol.164(6), 2978–2986.

    PubMed  CAS  Google Scholar 

  37. Zou, G. and Y. Tam (2002). Cytokines in the generation and maturation of dendritic cells: Recent advances.Eur. Cytokine. Netw.13(2), 186–199.

    Google Scholar 

  38. Inaba, K.et al.(1998). Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells.J. Exp. Med.188(11), 2163–2173.

    Article  PubMed  CAS  Google Scholar 

  39. Sallusto, F. and A. Lanzavecchia (1994). Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage-colony-stimulating factor plus interleukin-4 and downregulated by tumor necrosis factor alpha. ZExp. Med.179, 1109–1118.

    Article  CAS  Google Scholar 

  40. Romani, N.et al.(1994). Proliferating dendritic cell progenitors in human blood.J. Exp. Med.180(1), 83–93.

    Article  PubMed  CAS  Google Scholar 

  41. Chomarat, P., M. Rybak, and J. Banchereau (1998). Interleukin-4. In Angus W. Thomson and Michael T. Lotze (eds.)The Cytokine HandbookVol. 3. Elsevier Ltd, Oxford. pp. 133–174.

    Google Scholar 

  42. Quesniaux, V.F.J. and T.C. Jones, (1998). Granulocyte-macrophage colony stimulating factor. In Angus W. Thomson and Michael T. Lotze (eds.)The Cytokine HandbookVol. 3. Elsevier Ltd, Oxford. pp. 637–670.

    Google Scholar 

  43. Holgate, S. (2000). Epithelial damage and response.Clin. Exp. Allergy.30(Suppl 1), 37–41.

    Article  PubMed  Google Scholar 

  44. Metcalf, D.et al.(1987). Hemopoietic responses in mice injected with purified recombinant murine GM-CSF.Exp. Hematol.15, 1–9.

    Google Scholar 

  45. Witmer-Pack, M.D.et al.(1987). Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells.J. Exp. Med.166(5), 1484–1498.

    Article  PubMed  CAS  Google Scholar 

  46. Inaba, K.et al.(1992). Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor.J. Exp. Med.176(6), 1693–1702.

    Article  PubMed  CAS  Google Scholar 

  47. Caux, C.et al.(1992). GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells.Nature360(6401), 258–261.

    Article  PubMed  CAS  Google Scholar 

  48. Sallusto, F. and A Lanzavecchia (1995). Dendritic cells use macropinocytosis and the mannose receptor to concentrate antigen in the MHC class II compartment: Downregulation by cytokines and bacterial products.J. Exp. Med.182, 389.

    Article  PubMed  CAS  Google Scholar 

  49. Weigel, B.et al.(2002). Comparative analysis of murine marrow-derived dendritic cells generated by F1t3L or GM-CSF/IL-4 and matured with immune stimulatory agents on the in vivo induction of antileukemia responses.Blood100(12), 4169–4176.

    Article  PubMed  CAS  Google Scholar 

  50. Gitlitz, B.et al.(2003). Phase I trial of granulocyte macrophage-colony stimulating factor and interleukin-4 as a combined immunotherapy for patients with cancer.J. Immunother.26(2), 171–178.

    Article  PubMed  CAS  Google Scholar 

  51. Randolph, G.J.et al.(1998). Differentiation of monocytes into dendritic cells in a model of transendothelial traffickingScience282(5388), 480–483.

    Article  PubMed  CAS  Google Scholar 

  52. Dauer, M.et al.(2003). Mature dendritic cells derived from human monocytes within 48 hours: A novel strategy for dendritic cell differentiation from blood precursors.J. Immunol.170, 4069–4076.

    PubMed  CAS  Google Scholar 

  53. Shurin, M.R., C. Esche, and M.T. Lotze (1998). FLT3: Receptor and ligand. Biology and potential clinical application.Cytokine Growth Factor Rev.9(1), 37–48.

    Article  PubMed  CAS  Google Scholar 

  54. Maraskovsky, E.et al.(1997). Dramatic numerical increase of functionally mature dendritic cells in FLT3 ligand-treated mice.Adv. Exp. Med. Biol.417, 33–40.

    PubMed  CAS  Google Scholar 

  55. Masurier, C.et al.(1999). Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: Implications for anti-tumoral cell therapy.Immunology96(4), 569–577.

    Article  PubMed  CAS  Google Scholar 

  56. Lyman, S.et al.(1993). Molecular cloning of a ligand for the flt3/flk2 tyrosine kinase receptor: A proliferative factor for primitive hematopoietic cells.Cell75, 1157–1167.

    Article  PubMed  CAS  Google Scholar 

  57. Lyman, S.et al.(1994). Cloning of the human homologue of the murine flt3 ligand: A growth factor for early hematopoietic progenitor cells.Blood83, 2795–2801.

    PubMed  CAS  Google Scholar 

  58. Lyman, S.et al.(1995). Identification of soluble and membrane-bound isoforms of the murine flt3 ligand generated by alternative splicing of mRNAs.Oncogene10, 149–157.

    PubMed  CAS  Google Scholar 

  59. Lyman, S.et al.(1995). Structural analysis of human and mutine flt3 ligand generated by alternative splicing of mRNAs.Oncogene11, 1165–1172.

    PubMed  CAS  Google Scholar 

  60. Gabbianelli, M.et al.(1995). Multi-level effects of Flt3 ligand on human hematopoiesis: Expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors.Blood86, 1661.

    PubMed  CAS  Google Scholar 

  61. Jacobsen, S.E.et al.(1996). Ability of flt3 ligand to stimulate the in vitro growth of primitive marine hematopoietic progenitors is potently and directly inhibited by transforming growth factor-beta and tumor necrosis factor-alpha.Blood87(12), 5016–5026.

    PubMed  CAS  Google Scholar 

  62. Maraskovsky, E.et al.(1996). Dramatic increase in the numbers of functionally mature dendritic cells in F1t3 ligand-treated mice: Multiple dendritic cell subpopulations identified.J. Exp. Med.184(5), 1953–1962.

    Article  PubMed  CAS  Google Scholar 

  63. Shurin, M.R.et al.(1997). FLT3 ligand induces the generation of functionally active dendritic cells in mice.Cell. Immunol.179(2), 174–184.

    Article  PubMed  CAS  Google Scholar 

  64. Pulendran, B.et al.(1997). Developmental pathways of dendritic cells in vivo: Distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice.J. Immunol.159(5), 2222–2231.

    PubMed  CAS  Google Scholar 

  65. O’Keeffe, M.et al.(2002). Effects of administration of progenipoietin 1, Flt-3 ligand, granulocyte colony-stimulating factor, and pegylated granulocyte-macrophage colony-stimulating factor on dendritic cell subsets in mice.Blood99(6), 2122–2130.

    Article  PubMed  Google Scholar 

  66. Miller, G.et al.(2003). Murine flt3 ligand expands distinct dendritic cells with both tolerogenic and immunogenic properties.J. Immunol.170(7), 3554–3564.

    PubMed  CAS  Google Scholar 

  67. Vremec, D.et al.(1992). The surface phenotype of dendritic cells purified from mouse thymus and spleen: Investigation of the CD8 expression by a subpopulation of dendritic cells.J. Exp. Med.176(1), 47–58.

    Article  PubMed  CAS  Google Scholar 

  68. Suss, G. and K. Shortman (1996). A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis.J. Exp. Med.183, 1789–1796.

    Article  PubMed  CAS  Google Scholar 

  69. Inaba, K.et al.(1997). High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T cell areas of lymph nodes.J. Exp. Med.186(5), 665–672.

    Article  PubMed  CAS  Google Scholar 

  70. Kronin, V.et al.(1996). A subclass of dendritic cells regulates the response of naive CD8 T cells by limiting their IL-2 production.J. Immunol.157, 3819–3827.

    PubMed  CAS  Google Scholar 

  71. Kronin, V.et al.(1997). Are CD8+ dendritic cells (DC) veto cells? The role of CD8 on DC in DC development and in the regulation of CD4 and CD8 T cell responses.Int. Immunol.9(7), 1061–1064.

    Article  PubMed  CAS  Google Scholar 

  72. Kronin, V.et al.(2001). Differential effect of CD8(+) and CD8(-) dendritic cells in the stimulation of secondary CD4(+) T cells.Int. Immunol.13(4), 465–473.

    Article  PubMed  CAS  Google Scholar 

  73. Zamoyska, R. (1994). The CD8 coreceptor: One chain good, two chains better.Immunity1, 243–246.

    Article  PubMed  CAS  Google Scholar 

  74. Gao, G.F. and B.K. Jakobsen (2000). Molecular interactions of coreceptor CD8 and MHC class I: The molecular basis for functional coordination with the T-cell receptor.Immunol. Today21(12), 630–636.

    Article  PubMed  CAS  Google Scholar 

  75. Garcia, K.et al.(1996). CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes.Nature384, 577–581.

    Article  PubMed  CAS  Google Scholar 

  76. Kern, R.et al.(1999). Expression, purification, and functional analysis of murine ectodomain fragments of CD8aa and CD8aß dimers.J. Biol. Chem.274, 27237–27243.

    Article  PubMed  CAS  Google Scholar 

  77. Bosselut, R.et al.(2000). Role of CD813 domains in CD8 coreceptor function: Importance for MHC I binding, signaling, and positive selection of CD8+T cells in the thymus.Immunity12, 409–418.

    Article  PubMed  CAS  Google Scholar 

  78. Leishman, A.et al.(2001). T cell responses modulated through interaction between CD8aa and the nonclassical MHC class I molecule.Science294, 1936–1939.

    Article  PubMed  CAS  Google Scholar 

  79. Cella, M., E Sallusto, and A Lanzavecchia (1997). Origin, maturation and antigen presenting function of dendritic cells.Curr. Opin. Immunol.9, 10–16.

    Article  PubMed  CAS  Google Scholar 

  80. Hart, D. (1997). Dendritic cells: Unique leukocyte populations which control the primary immune response.Blood90, 3245–3287.

    PubMed  CAS  Google Scholar 

  81. Coyle, A. and J. Gutierrez-Ramos (2001). The expanding B7 superfamily: Increasing complexity in costimulatory signals regulating T-cell function.Nat. Immunol.2, 203–209.

    Article  PubMed  CAS  Google Scholar 

  82. Granucci, F.et al.(2002). IL-2 mediates adjuvant effect of dendritic cells.Trends Immunol.23(4), 169–173.

    Article  PubMed  CAS  Google Scholar 

  83. Ridge, J., F.D. Rosa, and R. Matzinger (1998). A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper cell and a T-killer cell.Nature393, 474–478.

    Article  PubMed  CAS  Google Scholar 

  84. Swiggard, W.J.et al.(1995). DEC-205, a 205-kDa protein abundant on mouse dendritic cells and thymic epithelium that is detected by the monoclonal antibody NLDC-145: Purification, characterization, and N-terminal amino acid sequence.Cell. Immunol.165(2), 302–311.

    Article  PubMed  CAS  Google Scholar 

  85. Kronin, V.et al.(2000). DEC-205 as a marker of dendritic cells with regulatory effects on CD8 T cell responses.Int. Immunol.12(5), 731–735.

    Article  PubMed  CAS  Google Scholar 

  86. Winkel, K.et al.(1994). CD4 and CD8 expression by human and mouse thymic dendritic cells.Immunol. Lett.40(2), 93–99.

    Article  PubMed  CAS  Google Scholar 

  87. Grouard, G.et al.(1997). The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand.J. Exp. Med.185, 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  88. Martin, P.et al.(2002). Characterization of a new subpopulation of mouse CD8alpha+ B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential.Blood100(2), 383–390.

    Article  PubMed  CAS  Google Scholar 

  89. Asselin-Paturel, C.et al.(2001). Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology.Nat. Immunol.2, 1144.

    Article  PubMed  CAS  Google Scholar 

  90. Nakano, H., M. Yanagita, and M. Gunn (2001). CD11c+8220+Gr-1+cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells.J. Exp. Med.194, 1171.

    Article  PubMed  CAS  Google Scholar 

  91. Krug, A.et al.(2001). Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plas-macytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12.Eur. J. Immunol.31(1), 3026–3037.

    Article  PubMed  CAS  Google Scholar 

  92. Smedt, T.D.et al.(1996). Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo.J. Exp. Med.184, 1413–1424.

    Article  PubMed  Google Scholar 

  93. Hochrein, H.et al.(2001). Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets.J. Immunol.166(9), 5448–5455.

    PubMed  CAS  Google Scholar 

  94. O’Keeffe, M.et al.(2002). Mouse plasmacytoid cells: Long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus.J. Exp. Med.196(10), 1307–1319.

    Article  PubMed  CAS  Google Scholar 

  95. Hart, D. and J. Fabre (1981). Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain.J. Exp. Med.154, 347–361.

    Article  PubMed  CAS  Google Scholar 

  96. Steiniger, B., J. Klempnauer, and K. Wonigeit (1984). Phenotype and histological distribution of interstitial dendritic cells in the rat pancreas, liver, heart, and kidney.Transplantation38, 169–174.

    Article  PubMed  CAS  Google Scholar 

  97. Sato, T.et al.(1998). Maturation of rat dendritic cells during intrahepatic translocation evaluated using monoclonal antibodies and electron microscopy.Cell Tissue Res.294, 503–514.

    Article  PubMed  CAS  Google Scholar 

  98. Morelli, A.E.et al.(2000). Preferential induction of Thl responses by functionally mature hepatic (CD8alphaand CD8alpha+) dendritic cells: Association with conversion from liver transplant tolerance to acute rejection.Transplantation69(12), 2647–2657.

    Article  PubMed  CAS  Google Scholar 

  99. Lian, Z.et al.(2003). Heterogeneity of dendritic cells in the mouse liver: Identification and characterization of four distinct populations.J. Immunol.170, 2323–2330.

    PubMed  CAS  Google Scholar 

  100. Siegal, F. et al.(1999). The nature of the principal type I interferon-producing cells in human blood.Science284, 1835.

    Article  PubMed  CAS  Google Scholar 

  101. Bjorck, P. (2001). Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte-macrophage colony-stimulating factor-treated mice.Blood98(13), 3520–3526.

    Article  PubMed  CAS  Google Scholar 

  102. Holt, P.G.et al.(1989). Ia-positive dendritic cells form a tightly meshed network within the human airway epithelium.Clin. Exp. Allergy19(6), 597–601.

    Article  PubMed  CAS  Google Scholar 

  103. Schon-Hegrad, M.A.et al.(1991). Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways.J. Exp. Med.173(6), 1345–1356.

    Article  PubMed  CAS  Google Scholar 

  104. Holt, P.G., M.A. Schon-Hegrad, and J. Oliver (1988). MHC class II antigen-bearing dendritic cells in pulmonary tissues of the rat. Regulation of antigen presentation activity by endogenous macrophage populations.J. Exp. Med.167(2), 262–274.

    Article  PubMed  CAS  Google Scholar 

  105. Holt, P.G. (2000). Antigen presentation in the lung.Am. J Respir. Crit. Care Med.162(4 Pt 2), S151–S156.

    Google Scholar 

  106. Cochand, L.et al.(1999). Human lung dendritic cells have an immature phenotype with efficient mannose receptors.Am. J. Respir. Cell Mol. Biol.21(5), 547–554.

    PubMed  CAS  Google Scholar 

  107. Dodge, I.L.et al.(2003). IL-6 production by pulmonary dendritic cells impedes Thl immune responses.J. Immunol.170, 4457–4464.

    PubMed  CAS  Google Scholar 

  108. Valdez, Y.et al.(2002). Major histocompatibility complex class II presentation of cell-associated antigen is mediated by CD8alpha+ dendritic cells in vivo.J. Exp. Med.195(6), 683–694.

    Article  PubMed  CAS  Google Scholar 

  109. Julia, V.et al.(2002). A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cell long after antigen exposure.Immunity16(2), 271–283.

    Article  PubMed  CAS  Google Scholar 

  110. van Rijt, L.S.et al.(2002). Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD3lhiLy-6Cneg bone marrow precursors in a mouse model of asthma.Blood100(10), 3663–3671.

    Article  PubMed  CAS  Google Scholar 

  111. Holt, P.G.et al.(1994). Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways.J. Immunol.153(1), 256–261.

    PubMed  CAS  Google Scholar 

  112. Kurts, C.et al.(1997). Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells.J. Exp. Med.186, 239–245.

    Article  PubMed  CAS  Google Scholar 

  113. Huang, Y.M.et al.(2000). Autoantigen-pulsed dendritic cells induce tolerance to experimental allergic encephalomyelitis (EAE) in Lewis rats.Clin. Exp. Immunol.122(3), 437–444.

    Article  PubMed  CAS  Google Scholar 

  114. Constant, S., K. Lee, and K. Bottomly (2000). Site of antigen delivery can influence T cell priming: Pulmonary environment promotes preferential Th2-type differentiation.Eur. J. Immunol.30, 840.

    Article  PubMed  CAS  Google Scholar 

  115. Kuchroo, V.et al.(1995). B7–1 and B7–1 costimulatory molecules activate differentially the Thl/Th2 development pathways: Application to autoimmune disease therapy.Cell80, 7–1.

    Article  PubMed  CAS  Google Scholar 

  116. Straw, A.D.et al.(2003). CD154 plays a central role in regulating dendritic cell activation during infections that induce Thl or Th2 responses.J. Immunol.170(2), 727–734.

    PubMed  CAS  Google Scholar 

  117. Keane-Myers, A.et al.(1997). B7–CD28/CTLA-4 costimulatory pathways are required for the development of the T helper cell 2-mediated allergic airway responses to inhaled antigens.J. Immunol.158, B7–CD28.

    PubMed  CAS  Google Scholar 

  118. Sertl, K.et al.(1986). Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura.J. Exp. Med.163(2), 436–451.

    Article  PubMed  CAS  Google Scholar 

  119. Gong, J.L.et al.(1992). Intraepithelial airway dendritic cells: A distinct subset of pulmonary dendritic cells obtained by microdissection.J. Exp. Med.175(3), 797–807.

    Article  PubMed  CAS  Google Scholar 

  120. Nicod, L.P., L. Cochand, and D. Dreher (2000). Antigen presentation in the lung: Dendritic cells and macrophages.Sarcoidosis Vasc. Diffuse Lung Dis.17, 246–255.

    PubMed  CAS  Google Scholar 

  121. Vermaelen, K.Y.et al.(2001). Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes.J. Exp. Med.193(1), 51–60.

    Article  PubMed  CAS  Google Scholar 

  122. Lambrecht, B.et al.(2000). Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation.J. Clin. Invest.106, 551–559.

    Article  PubMed  CAS  Google Scholar 

  123. Geppert, T. and P. Lipsky (1987). Dissection of the antigen presenting function of tissue cells induced to express HLA-DR by gamma interferon.J. Rheumatol.14, 59–62.

    Google Scholar 

  124. Weinberg, D. and E. Unanue (1981). Antigen-presenting function of alveolar macrophages: Uptake and presentation of Listeria monocytogenes.J. Immunol.126, 794–799.

    PubMed  CAS  Google Scholar 

  125. Upham, J.et al(1995). Alveolar macrophages from humans and rodents selectively inhibit T-cell proliferation but permit T-cell activation and cytokine secretion.Immunology84, 142–147.

    PubMed  CAS  Google Scholar 

  126. Marietta, M.et al.(1988). Macrophage oxidation of L-arginine to nitrate and nitrite: Nitric oxide is an intermediate.Biochemistry27, 8706.

    Article  Google Scholar 

  127. Roth, M. and S. Golub (1993). Human pulmonary macrophages utilize prostaglandins and transforming growth factor betal to suppress lymphocyte activation.J. Leukoc. Biol.53, 366.

    PubMed  CAS  Google Scholar 

  128. Thepen, T., G. Kraal, and P.G. Holt (1994). The role of alveolar macrophages in regulation of lung inflammation.Ann. N. Y. Acad. Sci.725, 200–206.

    Article  PubMed  CAS  Google Scholar 

  129. Boehringer, N.et al.(1999). Differential regulation of tumour necrosis factor-a (TNF-a) and interleukin-10 (IL-10) secretion by protein kinase and phosphatase inhibition in human alveolar macrophages.Eur. Cytokine Netw.10, 211–217.

    PubMed  CAS  Google Scholar 

  130. Holt, P.G.et al.(1993). Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages.J. Exp. Med.177(2), 397–407.

    Article  PubMed  CAS  Google Scholar 

  131. Thepen, T., N.V. Rooijen, and G. Kraal, (1989). Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice.J. Exp. Med.170, 499–509.

    Article  PubMed  CAS  Google Scholar 

  132. Koch, F.et al.(1996). High level IL-12 production by murine dendritic cells: Upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. IExp. Med.184, 741–746.

    Article  CAS  Google Scholar 

  133. Armstrong, L.R.et al.(1994). Regulation of the immunostimulatory activity of rat pulmonary interstitial dendritic cells by cell-cell interactions and cytokines.Am. J. Respir. Cell Mol. Biol.11(6), 682–691.

    PubMed  CAS  Google Scholar 

  134. Bowers, W., M. Ruhoff, and E. Goodell (1990). Conditioned medium from activated rat macrophages and the recombinant factors, IL-lb and GM-CSF, enhance the accessory activity of dendritic cells.Immunobiology180, 362–384.

    Article  PubMed  CAS  Google Scholar 

  135. Tsitoura, D.et al.(2000). Mechanisms preventing allergen-induced airways hyperreactivity: Role of tolerance and immune deviation.J. Allergy Clin. Immunol.106, 239–246.

    Article  PubMed  CAS  Google Scholar 

  136. Tsitoura, D.et al.(1999). Intranasal exposure to protein antigen induces immunological tolerance mediated by functionally disabled CD4+ T cells. JImmunol.163, 2592–2600.

    PubMed  CAS  Google Scholar 

  137. Akbari, O., R.H. DeKruyff, and D.T. Umetsu (2001). Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen.Nat. Immunol.2(8), 725–731.

    Article  PubMed  CAS  Google Scholar 

  138. Mellor, A.L. and D.H. Munn (2003). Tryptophan catabolism and regulation of adaptive immunity.J. Immunol.170(12), 5809–5813.

    PubMed  CAS  Google Scholar 

  139. Constant, S.L.et al.(2002). Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation in situ.J. Clin. Invest.110(10), 1441–1448.

    PubMed  CAS  Google Scholar 

  140. Yoshida, R. and O. Hayaishi (1978). Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide.Proc. Natl. Acad. Sci. USA75(8), 3998–4000.

    Article  PubMed  CAS  Google Scholar 

  141. Yoshida, R.et al.(1979). Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection.Proc. Natl. Acad. Sci. USA76(8), 4084–4086.

    Article  PubMed  CAS  Google Scholar 

  142. Yoshida, R.et al.(1981). Induction of pulmonary indoleamine 2,3-dioxygenase by interferon.Proc. Natl. Acad. Sci. USA78(1), 129–132.

    Article  PubMed  CAS  Google Scholar 

  143. Urade, Y.et al.(1983). Induction of indoleamine 2,3-dioxygenase in alveolar interstitial cells of mouse lung by bacterial lipopolysaccharide.J. Biol. Chem.258(10), 6621–6627.

    PubMed  CAS  Google Scholar 

  144. Swanson, K.A.et al.(2004). CD11c+ cells modulate pulmonary immune responses by production of indoleamine 2,3-dioxygenasel.Am. J. Respir. Cell Mol. Biol.30(3), 311–318.

    Article  PubMed  CAS  Google Scholar 

  145. Hayaishi, 0.et al.(1975). Indoleamine 2,3-dioxygenase. Note II. Biological function.Acta Vitaminol. Enzymol.29(1–6), 1–6.

    PubMed  CAS  Google Scholar 

  146. Hirata, F., T. Ohnishi, and O. Hayaishi (1977). Indoleamine 2,3-dioxygenase. Characterization and properties of enzyme. 02-complex.J. Biol. Chem.252(13), 4637–4642.

    PubMed  CAS  Google Scholar 

  147. Grohmann, U., F. Fallarino, and P. Puccetti (2003). Tolerance, DCs and tryptophan: Much ado about IDO.Trends Immunol.24(5), 242–248.

    Article  PubMed  CAS  Google Scholar 

  148. Feigelson, P., Y. Ishimura, and 0. Hayaishi (1964). On the activation and catalytic mechanism of microbial tryptophan pyrrolase.Biochem. Biophys. Res. Commun.14, 96–101.

    Article  PubMed  CAS  Google Scholar 

  149. Cook, J.S., C.I. Pogson, and S.A. Smith (1980). Indoleamine 2,3-dioxygenase. A new, rapid, sensitive radiometric assay and its application to the study of the enzyme in rat tissues.Biochem. J.189(3), 461–466.

    PubMed  CAS  Google Scholar 

  150. Yamazaki, F.et al.(1985). Human indolylamine 2,3-dioxygenase. Its tissue distribution, and characterization of the placental enzyme.Biochem. J.230(3), 635–638.

    PubMed  CAS  Google Scholar 

  151. Kotake, Y. and T. Masayama (1937). Uber den mechanismus der kynurenin-bildung aus tryptophan.HoppeSeyler’s Z. Physiol. Chem.243, 237–244.

    Article  Google Scholar 

  152. Knox, W. and A. Mehler (1951). The adaptive increase of the tryptophan peroxidase oxidase system of liver.Science113, 237–238.

    Article  PubMed  CAS  Google Scholar 

  153. Takikawa, O.et al.(1986). Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase.J. Biol. Chem.261(8), 3648–3653.

    PubMed  CAS  Google Scholar 

  154. Mellor, A.L. and D.H. Munn (1999). Tryptophan catabolism and T-cell tolerance: Immunosuppression by starvation?Immunol. Today20(10), 469–473.

    Article  PubMed  CAS  Google Scholar 

  155. Bianchi, M., R. Bertini, and R Ghezzi (1988). Induction of indoleamine dioxygenase by interferon in mice: A study with different recombinant interferons and various cytokines.Biochem. Biophys. Res. Commun.152, 237–242.

    Article  PubMed  CAS  Google Scholar 

  156. Fujigaki, S., K. Saito, K. Sekikawa, S. Tone, O. Takikawa, H. Fujiietal. (2001). Lipopolysaccharide induction of indoleamine 2,3-dioxygenase is mediated dominantly by an IFN-g-independent mechanism.Eur. J. Immunol.31, 2313–2318.

    Article  PubMed  CAS  Google Scholar 

  157. Liebau, C.et al.(2002). Interleukin-12 and interleukin-18 induce indoleamine 2,3-dioxygenase (IDO) activity in human osteosarcoma cell lines independently from interferon-gamma.Anticancer Res.22(2A), 931–936.

    PubMed  CAS  Google Scholar 

  158. Alberati-Giani, D., R Malherbe, P. Ricciardi-Castagnoli, C. Kohler, S. Denis-Donini, and A.M. Cesura (1997). Differential regulation of indoleamine 2,3-dioxygenase expression by nitric oxide and inflammatory mediators in IFN-gamma-activated murine macrophages and microglial cells.J. Immunol.159(1), 419–426.

    PubMed  CAS  Google Scholar 

  159. Musso, T.et al.(1994). Interleukin-4 inhibits indoleamine 2,3-dioxygenase expression in human monocytes.Blood83(5), 1408–1411.

    PubMed  CAS  Google Scholar 

  160. MacKenzie, C.et al.(1999). Cytokine mediated regulation of interferon-gamma-induced IDO activation.Adv. Exp. Med. Biol.467, 533–539.

    Article  PubMed  CAS  Google Scholar 

  161. Yuan, W.et al.(1998). Modulation of cellular tryptophan metabolism in human fibroblasts by transforming growth factor-beta: Selective inhibition of indoleamine 2,3 dioxygenase and tryptophanyl-tRNA synthetase gene expression.J. Cell. Physiol.177(1), 174–186.

    Article  PubMed  CAS  Google Scholar 

  162. Munn, D.H.et al.(1999). Inhibition of T cell proliferation by macrophage tryptophan catabolism.J. Exp. Med.189(9), 1363–1372.

    Article  PubMed  CAS  Google Scholar 

  163. Hwu, P.et al.(2000). Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation.J. Immunol.164, 3596–3599.

    PubMed  CAS  Google Scholar 

  164. Mellor, A.L., D.B. Keskin, T. Johnson, R Chandler, and D.H. Munn (2002). Cells expressing indoleamine 2,3dioxygenase inhibit T cell responses.J. Immunol.168(8), 3771–3776.

    PubMed  CAS  Google Scholar 

  165. Frumento, G.et al.(2002). Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase.J. Exp. Med.196, 459–468.

    Article  PubMed  CAS  Google Scholar 

  166. Terness, P.et al.(2002). Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenaseexpressing dendritic cells: Mediation of suppression by tryptophan metabolites.J. Exp. Med.196, 447–457.

    Article  PubMed  CAS  Google Scholar 

  167. Munn, D.H.et al.(1998). Prevention of allogeneic fetal rejection by tryptophan catabolism.Science281, 1191–1193.

    Article  PubMed  CAS  Google Scholar 

  168. Mellor, A.L.et al.(2001). Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy.Nat. Immunol2(1), 64–68.

    Article  PubMed  CAS  Google Scholar 

  169. Alexander, A.M., M. Crawford, S. Bertera, W.A. Rudert, O. Takikawa, P.D. Robbinset al.(2002). Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes.Diabetes51(2), 356–365.

    Article  PubMed  CAS  Google Scholar 

  170. Grohmann, U.et al.(2002). CTLA-4-Ig regulates tryptophan catabolism in vivo.Nat. Immunol.3(11), 1097–1101.

    Article  PubMed  CAS  Google Scholar 

  171. Salomon, B. and J. Bluestone (2001). Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation.Annu. Rev. Immunol.19, 225–252.

    Article  PubMed  CAS  Google Scholar 

  172. Konieczny, B.et al.(1998). IFN-y is critical for long-term allograft survival induced by blocking the CD28 and CD40 ligand T cell costimulation pathways.J. Immunol.160, 2059–2064.

    PubMed  CAS  Google Scholar 

  173. Shinomiya, M.et al.(1999). Transfer of dendritic cells (DCs) ex vivo stimulated with interferon-gamma (IFN-y) down-modulates autoimmune diabetes in non-obese diabetic (NOD) mice.Clin. Exp. Immunol.117(1), 38–43.

    Article  PubMed  CAS  Google Scholar 

  174. Sobel, D.et al.(2002). Gamma interferon paradoxically inhibits the development of diabetes in the NOD mouse.J. Autoimmunity19(3), 129–137.

    Article  Google Scholar 

  175. Kaufman, K.et al.(1999). The CTLA-4 gene is expressed in placental fibroblasts.Mol. Hum. Reprod.5(1), 84–87.

    Article  PubMed  CAS  Google Scholar 

  176. Banchereau, J.et al.(2000). Immunobiology of dendritic cells.Annu. Rev. Immunol.18, 767–811.

    Article  PubMed  CAS  Google Scholar 

  177. Bevan, M. (1976). Minor H antigens introduced on H-2 different stimulating cells cross-react at the cytotoxic T cell level during in vivo priming.J. Immunol.117, 2233–2238.

    PubMed  CAS  Google Scholar 

  178. Bevan, M. (1976). Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay.J. Exp. Med.143, 1283–1288.

    Article  PubMed  CAS  Google Scholar 

  179. Albert, M., B. Sauter, and N. Bhardwaj (1998). Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs.Nature392, 86–89.

    Article  PubMed  CAS  Google Scholar 

  180. Munz, C.et al.(2000). Human CD4+T lymphocytes consistently respond to latent Epstein-Barr virus nuclear antigen EBNA1.J. Exp. Med.191, 1649–1660.

    Article  PubMed  CAS  Google Scholar 

  181. Kovacsovics-Bankowski, M. and K. Rock (1995). A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules.Science267, 243–246.

    Article  PubMed  CAS  Google Scholar 

  182. Rodriguez, A.et al.(1999). Selective transport of intemalized antigens to the cytosol for MHC class I presentation in dendritic cells.Nat. Cell Biol.1, 362–368.

    Article  PubMed  CAS  Google Scholar 

  183. Svensson, M., B. Stockinger, and M. Wick (1995). Hepatitis B virus small surface antigen particles are processed in a novel endosomal pathway for major histocompatibility complex class I-restricted epitope presentation.Eur. J. Immunol.25, 1063–1070.

    Article  Google Scholar 

  184. Svensson, M., B. Stockinger, and M. Wick (1997). Bone marrow-derived dendritic cells can process bacteria for MHC-I and MHC-II presentation to T cells.J. Immunol.158, 4229–4236.

    PubMed  CAS  Google Scholar 

  185. Huang, A.et al.(1994). Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens.Science264, 961–965.

    Article  PubMed  CAS  Google Scholar 

  186. Zitvogel, L.et al.(1998). Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes.Nat. Med.4, 594–600.

    Article  PubMed  CAS  Google Scholar 

  187. Kurts, C.et al.(1996). Constitutive class I-restricted exogenous presentation of self antigens in vivo.J. Exp. Med.184, 923–930.

    Article  PubMed  CAS  Google Scholar 

  188. Heath, W.R. and F.R. Carbone (2001). Cross-presentation, dendritic cells, tolerance and immunity.Annu. Rev. Immunol.19, 47–64.

    Article  PubMed  CAS  Google Scholar 

  189. Steinman, R.M.et al.(2000). The induction of tolerance by dendritic cells that have captured apoptotic cells.J. Exp. Med.191(3), 411–416.

    Article  PubMed  CAS  Google Scholar 

  190. Urban, B., N. Willcox, and D. Roberts (2001). A role for CD36 in the regulation of dendritic cell function.Proc. Natl. Acad. Sci. USA98, 8750–8755.

    Article  PubMed  CAS  Google Scholar 

  191. Stuart, L.et al.(2002). Inhibitory effects of apoptotic-cell ingestion upon endotoxin-driven myeloid dendriticcell maturation.J. Immunol.168, 1627–1635.

    PubMed  CAS  Google Scholar 

  192. Ohashi, P.et al.(1991). Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice.Cell65, 305–317.

    Article  PubMed  CAS  Google Scholar 

  193. Oldstone, M.et al.(1991). Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: Role of anti-self (virus) immune response.Cell65, 319–331.

    Article  PubMed  CAS  Google Scholar 

  194. Kurts, C.et al.(1998). Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction..J. Exp. Med.188, 409–414.

    Article  PubMed  CAS  Google Scholar 

  195. Kurts, C.et al.(1999). CD8 T cell ignorance or tolerance to islet antigens depends on antigen dose.Proc. Natl. Acad. Sci. USA96, 12703–12707.

    Article  PubMed  CAS  Google Scholar 

  196. Kovacsovics-Bankowski, M.et al.(1993). Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages.Proc. Natl. Acad. Sci. USA90, 4942–4946.

    Article  PubMed  CAS  Google Scholar 

  197. Yrlid, U. and M.J. Wick (2000). Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells.J. Exp. Med.191(4), 613–623.

    Article  PubMed  CAS  Google Scholar 

  198. Albert, M.L.et al.(1998). Immature dendritic cells phagocytose apoptotic cells via av135and CD36, and cross-present antigens to cytotoxic T lymphocytes.J. Exp. Med.188(7), 1359–1368.

    Article  PubMed  CAS  Google Scholar 

  199. den Haan, J.M., S.M. Lehar, and M.J. Bevan (2000). CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo.J. Exp. Med.192(12), 1685–1696.

    Article  Google Scholar 

  200. lyoda, T.et al.(2002). The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo.J. Exp. Med.195(10), 1289–1302.

    Article  CAS  Google Scholar 

  201. Austyn, J. and R. Steinman (1988). The passenger leukocyte-a fresh look.Transplant. Rev.2, 139–176.

    Article  Google Scholar 

  202. Lechler, R. and J. Batchelor (1982)..Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells.J. Exp. Med.155, 31–41.

    Article  PubMed  CAS  Google Scholar 

  203. Faustman, D. (1984). Prevention of rejection of mutine islet allografts by pretreatment with anti-dendritic cell antibody.Proc. Natl. Acad. Sci. USA81, 3864.

    Article  PubMed  CAS  Google Scholar 

  204. Iwai, H. (1989). Acceptance of mutine thyroid allografts by pretreatment of anti-la or anti-dendritic cell antibody.Transplantation47, 45.

    Article  PubMed  CAS  Google Scholar 

  205. Josien, R.et al.(1998). Critical requirement for graft passenger leukocytes in allograft tolerance induced by donor blood transfusion.Blood92(12), 4539–4544.

    PubMed  CAS  Google Scholar 

  206. Sun, J.et al.(1995). Deletion of spontaneous rat liver allograft acceptance by donor irradiation.Transplantation60(3), 233–236.

    Article  PubMed  CAS  Google Scholar 

  207. Daniel, C., S. Horvath, and P. Allen (1998). A basis for alloreactivity: MHC helical residues broaden peptide recognition by the TCR.Immunity162, 543–552.

    Article  Google Scholar 

  208. Matzinger, P. and M. Bevan (1977). Hypothesis: Why do so many lymphocytes respond to major histocompatibility antigens?Cell. Immunol.29(1), 1–5.

    Article  PubMed  CAS  Google Scholar 

  209. Suchin, E., A. Wells, and L. Turka (2001). Quantifying the frequency of alloreactive cells in vivo: New answers to an old question.J. Immunol.166, 973–981.

    PubMed  CAS  Google Scholar 

  210. Lechler, R.I., O.A. Garden, and L.A. Turka (2003). The complementary roles of deletion and regulation in transplantation tolerance.Nat. Rev. Immunol.3, 147–158.

    Article  PubMed  CAS  Google Scholar 

  211. Chow, D., V. Saper, and S. Strober (1987). Renal transplant patients treated with total lymphoid irradiation show specific unresponsiveness to donor antigens in the mixed leukocyte reaction (MLR).J. Immunol.138, 3746–3750.

    PubMed  CAS  Google Scholar 

  212. DeBruyne, L., D. Renlund, and D. Bishop (1995). Evidence that human cardiac allograft acceptance is associated with a decrease in donor-reactive helper T lymphocytes.Transplantation59, 778–783.

    Article  PubMed  CAS  Google Scholar 

  213. AL, P.H.E. (1998). Assessment of the contribution that direct allorecognition makes to the progression of chronic cardiac transplant rejection in humans.Circulation97, 1257–1263.

    Article  Google Scholar 

  214. AL, R.B.E. (2001). Loss of direct and maintenance of indirect alloresponses in renal allograft recipients: Implications for the pathogenesis of chronic allograft nephropathy.J. Immunol.167, 7199–7206.

    Google Scholar 

  215. Benichou, G., A. Valujskikh, and P. Heeger (1999). Contributions of direct and indirect T-cell alloreactivity during allograft rejection in mice.J. Immunol.162, 352–358.

    PubMed  CAS  Google Scholar 

  216. Benham, A., G. Sawyer, and J. Fabre (1995). Indirect T-cell allorecognition of donor antigens contributes to the rejection of vascularized kidney allografts.Transplantation59, 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  217. AL, M.B.E. (2001). Acute rejection in the absence of cognate recognition of allograft by T cells.J. Immunol.166, 4879–4883.

    Google Scholar 

  218. Larsen, C.P., P.J. Morris, and J.M. Austyn (1990). Donor dendritic leukocytes migrate from cardiac allografts into recipients’ spleens.Transplant. Proc.22(4), 1943–1944.

    PubMed  CAS  Google Scholar 

  219. Larsen, C.P.et al.(1990). Migration and maturation of Langerhans cells in skin transplants and explants.J. Exp. Med.172(5), 1483–1493.

    Article  PubMed  CAS  Google Scholar 

  220. Sauter, B.et al.(2000). Consequences of cell death: Exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells.J. Exp. Med.191, 423–434.

    Article  PubMed  CAS  Google Scholar 

  221. Forster, I. and I. Lieberam (1996). Peripheral tolerance of CD4 T cells following local activation in adolescent mice.Eur. J. Immunol.26, 3194–3202.

    Article  PubMed  CAS  Google Scholar 

  222. Adler, A.et al.(1998). CD4+ tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells.J. Exp. Med.187, 1555–1564.

    Article  PubMed  CAS  Google Scholar 

  223. Morgan, D., H. Kreuwel, and L. Sherman (1999). Antigen concentration and precursor frequency determine the rate of CD8+ T cell tolerance to peripherally expressed antigens.J. Immunol.163, 723–727.

    PubMed  CAS  Google Scholar 

  224. Pooley, J.L., W.R. Heath, and K. Shortman (2001). Cutting edge: Intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells.J. Immunol.166(9), 5327–5330.

    PubMed  CAS  Google Scholar 

  225. Jonuleit, H.et al.(2000). Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells.J. Exp. Med.192(9), 1213–1222.

    Article  PubMed  CAS  Google Scholar 

  226. Dhodapkar, M.V.et al.(2001). Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells.J. Exp. Med.193(2), 233–238.

    Article  PubMed  CAS  Google Scholar 

  227. Dhodapkar, M.V. and R.M. Steinman (2002). Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans.Blood100(1), 174–177.

    Article  PubMed  CAS  Google Scholar 

  228. Fu, Eet al.(1996). Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients.Transplantation62(5), 659–665.

    Article  PubMed  CAS  Google Scholar 

  229. Fu, F.et al.(1997). Costimulatory molecule-deficient dendritic cell progenitors induce T cell hyporesponsiveness in vitro and prolong the survival of vascularized cardiac allografts.Transplant. Proc.29(1–2), 1310.

    Article  PubMed  CAS  Google Scholar 

  230. DePaz, H.et al.(2003). Immature rat myeloid dendritic cells generated in low-dose granulocyte macrophage-colony stimulating factor prolong donor-specific rat cardiac allograft survival.Transplantation75(4), 521–528.

    Article  PubMed  CAS  Google Scholar 

  231. James, E.et al.(2002). HY peptides modulate transplantation responses to skin allografts.Int. Immunol.14(11), 1333–1342.

    Article  PubMed  CAS  Google Scholar 

  232. Lu, L. and A.W. Thomson (2002). Manipulation of dendritic cells for tolerance induction in transplantation and autoimmune disease.Transplantation73(1 Suppl), S19–S22.

    Article  PubMed  CAS  Google Scholar 

  233. Lu, L.et al.(1997). Blockade of the CD40–CD40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival.Transplantation64(12), CD40–CD40.

    Article  PubMed  CAS  Google Scholar 

  234. Steinbrink, K.et al.(1997). Induction of tolerance by IL-10-treated dendritic cells.J. Immunol.159, 4772.

    PubMed  CAS  Google Scholar 

  235. Nouri-Shirazi, M. and E. Guinet (2002). Direct and indirect cross-tolerance of alloreactive T cells by dendritic cells retained in the immature stage.Transplantation74(7), 1035–1044.

    Article  PubMed  CAS  Google Scholar 

  236. Szabo, G., C. Gavala, and P. Mandrekar (2001). Tacrolimus and cyclosporine A inhibit allostimulatory capacity and cytokine production of human myeloid dendritic cells.J. Invest. Med.49, 442.

    Article  CAS  Google Scholar 

  237. Satake, Y.et al.(2000). Characterization of rat OX40 ligand by monoclonal antibody.Biochim. Biophys. Acta270, 1041.

    CAS  Google Scholar 

  238. Yuan, X.et al.(2003). The role of the CD134–CD134 ligand costimulatory pathway in alloimmune responses in vivo.J. Immunol.170, CD134–CD134.

    PubMed  CAS  Google Scholar 

  239. Dupuy, P.et al.(1991). Cyclosporin A inhibits the antigen-presenting functions of freshly isolated human Langerhans cells in vitro.J. Invest. Dermatol.96(4), 408–413.

    Article  PubMed  CAS  Google Scholar 

  240. Griffin, M.D.et al.(2001). Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: A vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo.Proc. Natl. Acad. Sci. USA98(12), 6800–6805.

    Article  PubMed  CAS  Google Scholar 

  241. Piemonti, L., P. Monti, and M.S.E. AL (2000). Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells.J. Immunol.164, 4443.

    PubMed  CAS  Google Scholar 

  242. Clavreul, A., C. D’Hellencourt, and C. Montero-Menei (1998). Vitamin D differentially regulates B7.1 and B7.2 expression on human peripheral blood monocytes.Immunology95, 272.

    Article  PubMed  CAS  Google Scholar 

  243. Terada, N., J. Lucas, and A.S.E. AL (1993). Rapamycin blocks cell cycle progression of activated T cells prior to events characteristic of the middle to late G1 phase of the cell cycle.J. Cell Physiol.154, 7.

    Article  PubMed  CAS  Google Scholar 

  244. Aagaard-Tillery, K. and D. Jelinek (1994). Inhibition of B lymphocyte cell cycle progression and differentiation by rapamycin.Cell. Immunol.156, 493.

    Article  PubMed  CAS  Google Scholar 

  245. Taylor-Fishwick, M. Kahan, and P.H.E. AL, (1993). Evidence that rapamycin has differential effect on IL-4 function.Transplantation56, 368.

    Article  PubMed  CAS  Google Scholar 

  246. Monti, P.et al.(2003). Rapamycin impairs antigen uptake of human dendritic cells.Transplantation75(1), 137–145.

    Article  PubMed  CAS  Google Scholar 

  247. Vosters, O.et al.(2003). Dendritic cells exposed to nacystelyn are refractory to maturation and promote the emergence of alloreactive T cells.Transplantation75(3), 383–389.

    Article  PubMed  CAS  Google Scholar 

  248. Giannoukakis, N.et al.(2000). Prolongation of cardiac allograft survival using dendritic cells treated with NF-kB decoy oligodeoxyribonucleotides.Mol. Ther.1(5 Pt 1), 430–437.

    Article  PubMed  CAS  Google Scholar 

  249. Krasinskas, A.et al.(2000). Replacement of graft-resident donor-type antigen presenting cells alters the tempo and pathogenesis of murine cardiac allograft rejection.Transplantation70, 514–521.

    Article  PubMed  CAS  Google Scholar 

  250. Wise, M.et al.(1998). Cutting edge: Linked suppression of skin graft rejection can operate through indirect recognition.J. Immunol161, 5813–5816.

    PubMed  CAS  Google Scholar 

  251. Nimi, M.et al.(2001). Oral antigen induces allograft survival by linked suppression via the indirect pathway.Transplant. Proc.33, 81.

    Article  Google Scholar 

  252. Matsue, H.et al.(1999). Induction of antigen-specific immunosuppression by CD95L cDNA-transfected “killer” dendritic cells.Nat. Med.5(8), 930–937.

    Article  PubMed  CAS  Google Scholar 

  253. Lu, L.et al.(1999). Adenoviral delivery of CTLA4Ig into myeloid dendritic cells promotes their in vitro tolerogenicity and survival in allogeneic recipients.Gene Ther.6(4), 554–563.

    Article  PubMed  CAS  Google Scholar 

  254. O’Rourke, R.W.et al.(2000). A dendritic cell line genetically modified to express CTLA4-IG as a means to prolong islet allograft survival.Transplantation69(7), 1440–1446.

    Article  PubMed  Google Scholar 

  255. Takayama, T.et al.(2002). Retroviral delivery of transforming growth factor-betal to myeloid dendritic cells: Inhibition of T-cell priming ability and influence on allograft survival.Transplantation74(1), 112–119.

    Article  PubMed  CAS  Google Scholar 

  256. Buonocore, S.et al.(2002). Dendritic cells transduced with viral interleukin 10 or Fas ligand: No evidence for induction of allotolerance in vivo.Transplantation73(1), S27–S30.

    Article  PubMed  CAS  Google Scholar 

  257. Muller, A., M. Rafter, and G. Schonrich (1999). T cell stimulation upon long-term secretion of viral IL-10.J. Immunol.29, 2740.

    CAS  Google Scholar 

  258. Buonocore, S.et al.(2003). Dendritic cells overexpressing CD95 (Fas) ligand elicit vigorous allospecific T-cell responses in vivo.Blood101(4), 1469–1476.

    Article  PubMed  CAS  Google Scholar 

  259. Gershon, R.et al.(1972). Suppressor T cells..J. Immunol.108, 586–590.

    PubMed  CAS  Google Scholar 

  260. Sakaguchi, S.et al.(1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.J. Immunol.155, 1151–1164.

    PubMed  CAS  Google Scholar 

  261. AL, K.S.E. (2001). Requirement for natural killer T (NKT) cells in the induction of allograft tolerance.Proc. Natl. Acad. Sci. USA98, 2577–2581.

    Article  Google Scholar 

  262. AL, L.G.E. (2002). Both CD4+CD25+ and CD4+CD25- regulatory cells mediate dominant transplantation tolerance.J. Immunol.168, 5558–5565.

    Google Scholar 

  263. Jordan, M.et al.(2001). Thymic selection of CD4+CD25 + regulatory T cells induced by an agonist self-peptide.Nat. Immunol.2, 301.

    Article  PubMed  CAS  Google Scholar 

  264. Mahnke, K.et al.(2002). Immature, but not inactive: The tolerogenic function of immature dendritic cells.Immunol. Cell Biol.80, 477.

    Article  PubMed  Google Scholar 

  265. Steinman, R.M. and M.C. Nussenzweig (2002). Avoiding honor autotoxicus: The importance of dendritic cells in peripheral T cell tolerance.Proc. Natl. Acad. Sci. USA99(1), 351–358.

    Article  PubMed  CAS  Google Scholar 

  266. Dieckmann, D.et al.(2002). Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin-lproducing, contact-independent type- 1-like regulatory T cells.J. Exp. Med.196, 247–253.

    Article  PubMed  CAS  Google Scholar 

  267. Hori, S., T. Monura, and S. Sakaguchi (2003). Control of regulatory T cell development by the transcription factor Foxp3.Science299, 1057–1061.

    Article  PubMed  CAS  Google Scholar 

  268. Thomas, J.M.et al.(1999). Peritransplant tolerance induction in macaques: Early events reflecting the unique synergy between immunotoxin and deoxyspergualin.Transplantation68(11), 1660–1673.

    Article  PubMed  CAS  Google Scholar 

  269. Luke, P.et al.(2001). Anti-CD45RB monoclonal antibody-mediated transplantation tolerance.Curr. Mol. Med.1, 533.

    Article  PubMed  CAS  Google Scholar 

  270. Min, W.-P.et al.(2003). Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance.J. Immunol.170, 1304–1312.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Swanson, K.A., Wilkes, D.S. (2004). Dendritic Cells in Transplantation: Origin, Immune Activation, and Allograft Tolerance. In: Wilkes, D.S., Burlingham, W.J. (eds) Immunobiology of Organ Transplantation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8999-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8999-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4754-5

  • Online ISBN: 978-1-4419-8999-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics