Skip to main content

Plastics and Composites from Lignophenols

  • Chapter
Natural Fibers, Plastics and Composites

Abstract

Alkali and ionized air treated and untreated lignocellulosic fibers, such as sisal, jute and curaua, were used to reinforce phenolic and lignophenolic matrix materials. The results favor sisal fiber for its excellent performance as a reinforcing agent of phenolic and lignophenolic matrices, increasing the impact strength up to 35 fold in relation to that obtained with thermoset composites. The use of lignin as a partial substitute for phenol in closed cell lignophenolic foams reduces the thermal conductivity and allows classifying the lignophenolic foam as a thermal isolating structural foam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achary, P.S. and Ramaswamy, R. Reactive compatibilization of a nitrile rubber/phenolic resin blend: Effect on adhesive and composite properties. J. Appl. Polym. Sci. 1998; 69: 1187–2101.

    Article  CAS  Google Scholar 

  2. Agrawal, R., Saxena, N.S., Sharma, K.B., Thomas, S. and Sreekala, M.S. Activation energy and cristallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater. Sci. Eng. 2000; A277: 77–82.

    Article  CAS  Google Scholar 

  3. Anderson, T.L., Fracture Mechanics: Fundamentals and Applications. 2nd. ed. New York: CRC, 1995.

    Google Scholar 

  4. Anglès, M.N., Ferrando, F., Farriol, X. and Salvadö, J. Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition, Biomass and Bioenergy. 2001; 21: 211–224.

    Google Scholar 

  5. Avérous, L., Fringant, C. and Moro, L. Plasticized starch-cellulose interactions in polysaccharide composites. Polymer 2001; 42: 6565–6572.

    Article  Google Scholar 

  6. Azis, S. and Sarkanen, K, Organosol pulping — a review. Tappi J. 1989; March: 169–175.

    Google Scholar 

  7. Baiardo, M., Frisoni, G., Scandola, M. and Licciardello, A. Surface chemical modification of natural cellulose fibers. J. Appl. Polym. Sci. 2002; 83: 38–45.

    Article  CAS  Google Scholar 

  8. Barry, A.O., Peng, W. and Riedl, B. The effect of lignin content on the cure properties of phenol-formaldehyde resin as determined by differential scanning calorimetry. Holzforchung 1993; 47: 247–252.

    Article  CAS  Google Scholar 

  9. Baumberger, S., Lapierre, C, Monties, B. and Delia Valle, G. Use of Kraft lignin as fillers for starch films. Polym. Degrad. Stab. 1998; 59: 273–277.

    Article  CAS  Google Scholar 

  10. Benar, P., Gonçalves A.R., Mandelli, D. and Schuchardt, U. Eucalyptus organosolv lignins: Study of the hydroxymethilation and use in resols. Bioresource Technology 1999; 68: 11–16.

    Article  CAS  Google Scholar 

  11. Benatti, R., Jr. “Natural fibers in Brazil — Utilization, perspective and processing for sisal, ramie, jute, kenaf and allied fibers for composites production,”.In: Lignocellulosics-Plastics Composites, A.L. Leão, F. X. Carvalho, and E. Frollini, eds. São Paulo, Brazil: Universidade de São Paulo and Universidade Estadual Paulista, 1997; pp.343–347.

    Google Scholar 

  12. Belgacem, M.N., Bataille, P. and Sapieha, S. Effect of corona modification on the mechanical properties of polypropilene/cellulose composites. J. Appl. Polym. Sci., 1994; 53: 379–385.

    Article  CAS  Google Scholar 

  13. Belgacem, M.N., Czeremuszkin, G., Sapieha, S. and Gandini, A. Surface characterization of cellulose fibres by xPS and inverse gas chromatography. Cellulose 1995; 2: 145–157.

    Article  CAS  Google Scholar 

  14. Bledzki, A.K., Reihmane, S. and Gassan, J. Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym Sci. 1996; 59:1329–1336.

    Article  CAS  Google Scholar 

  15. Bledzki, A.K. and Gassan, J. Composites reinforced with cellulose based fibres. Progress in Polymer Science 1999; 24: 221–274.

    Article  CAS  Google Scholar 

  16. Campana Filho, S.P., Frollini, E. and Curvelo, A.S. “Organosolv delignification of lignocellulosic materials: Preparation and characterization of lignin and cellulose derivatives.” In: Lignocellulosic-Plastics Composites, A.L. Leão, F.X. Carvalho and E. Frollini, eds. São Paulo, Brazil: Universidade de São Paulo and Universidade Estadual Paulista, 1997; pp 163–180.

    Google Scholar 

  17. Canché-Escamilla, G., Cauich-Cupul, J.I., Mendizábal, E., Puig, J.E., Vásquez-Torres, H. and Herrera-Franco, P.J. Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites. Composites 1999; A30,: 349–359.

    Article  Google Scholar 

  18. Cantwell, W.J. and Morton, J. The impact resistance of composite materials — a review. Composites 1991; 22: 347–362.

    Article  CAS  Google Scholar 

  19. Leao, A.L., Caraschi, J.C. and Tan, I.G. “Curaua fiber-a tropical natural fiber from Amazon: Potential and applications in composites.” In: Natural Polymers and Agrofibers Composites, L.H.C. Mattoso, A. Leão and E. Frollini, eds. São Carlos, Brazil: EMBRAPA Instrumentação Agropecuária, Universidade de São Paulo and Universidade Estadual Paulista, 2000; pp. 257–272.

    Google Scholar 

  20. Carvalho, G., Frollini, E. and Santos, W.N. Thermal conductivity of polymers by hotwire method. J. Appl. Polym. Sci. 1996; 62:2281–2285.

    Article  Google Scholar 

  21. Carvalho, G. and Frollini, E. Lignin in phenolic closed cells foams: thermal stability and apparent density. J. Macromol. Sci, Pure Appl. Chem. 2002; A39(7): 643–656.

    Article  Google Scholar 

  22. Cook, P.M. and Sellers, T., Jr. “Organosolv lignin modified phenolic resins.” In: ACS Symposium Series, 1999; pp 324–333.

    Google Scholar 

  23. Danielson, B. and Simonsen, R. Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood. J. Adhesion Sci. Technol. 1998; 12: 923–939.

    Article  CAS  Google Scholar 

  24. Dong, S., Sapieha, S. and Schreiber, H.P. Rheological properties of corona modified cellulose/polyethylene composites. Polym. Eng. Sci. 1992; 32: 1734–1739.

    Article  CAS  Google Scholar 

  25. Evtuguin, D.V., Andreolety, J.P. and Gandini, A. Polyurethanes based on oxygenorganosolv lignin. Eur. Polym. J. 1998; 34: 1163–1169.

    Article  CAS  Google Scholar 

  26. Falkehag, S.I. Lignin in materials. Appl. Polym. Symp. 1975; 28: 247–257.

    CAS  Google Scholar 

  27. Feldman, D. and Banu, D. Lignin and its polyblends. Jour. Macromol. Sci.-Pure Appl. Chem. 1995; A32(8,9): 1613–1619.

    Article  CAS  Google Scholar 

  28. Fengel, D. and Wegener, G. Wood: Chemistry, Ultrastructure, Reactions. New York: Walter de Gruyter, 1989.

    Google Scholar 

  29. Funaoka, M.A. New type of phenolic lignin-based network polymer with the structure-variable function composed of 1,1-diarylpropane units. Polymer International. 1998; 47: 277–290.

    Article  CAS  Google Scholar 

  30. Gamstedt, E.K. Effects of debonding and fiber strength distribution on fatigue-damage propagation in carbon fiber-reinforced epoxy. J. Appl. Polym. Sci. 2000; 76: 457–474.

    Article  CAS  Google Scholar 

  31. Gandini, A. “Polymeric materials derived from the explotation of the biomass.” In: Natural Polymers and Composites, L.H.C. Mattoso, A. Leao and E. Frollini, eds. Brazil, 2000; pp 3–9.

    Google Scholar 

  32. Gandini, A. “Polymers from renewable resources.” In: Comprehensive Polymer Science, Suppl. S.L. Aggrawal and S. Russo, eds. Oxford: Pergamon Press, 1990; 1: 527–570.

    Google Scholar 

  33. Gassan, J. and Bledzki, A.K. The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene. Composites 1997; A28:1001–1005.

    Article  Google Scholar 

  34. Gassan, J., Gutowski, V.S. and Bledzki, A.K. About the surface characteristics of natural fibres. Macromol. Mater. Eng. 2000; 283:132–139.

    Article  CAS  Google Scholar 

  35. Gauthier, R., Joly, C. and Coupas, A.C. Interfaces in polyolefin/cellulosic fiber composites: Chemical coupling, morphology, correlation with adhesion and aging in moisture. Polym. Compos. 1998; 19: 287–300.

    Article  CAS  Google Scholar 

  36. Gellerstedt, F. and Gatenholm, P. Surface properties of lignocellulosic fibers bearing carboxylic groups. Cellulose 1999; 6: 103–121.

    Article  CAS  Google Scholar 

  37. George, J., Ivens, J. and Verpoest, I. Mechanical properties of flax fibre reinforced epoxy composites. Angew. Makromol. Chem. 1999; 272: 41–45.

    Article  CAS  Google Scholar 

  38. Ghosh, P. and Das, D. Modification of jute by some low molecular weight glycols and a polyol under thermal treatment. Eur. Polym. J. 2000; 36: 2147–2157.

    Article  CAS  Google Scholar 

  39. Glasser, G. “Lignin utilization in thermosetting and thermoplastic polymers and materials.” In: Proceedings Second International Symposium on Natural Polymers and Composites, L H.C. Mattoso, E. Frollini and A. Leão, eds. São Carlos, Brazil: EMBRAPA Instrumentação Agropecuaria, Universidade de São Paulo and Universidade Estadual Paulista,1998; pp 33–39.

    Google Scholar 

  40. Gonçalves, A.R. and Benar, P. “Modification and utilization of organosolv lignins.” In: Natural Polymers and Agrofibers Based Composites, E. Frollini, A.L. Leão and L.H.C. Mattoso, eds. Säo Carlos, Brazil: EMBRAPA Instrumentação Agropecuária, Universidade de São Paulo and Universidade Estadual Paulista, 2000; pp 91–114.

    Google Scholar 

  41. Greil, P. Biomorphous ceramics from lignocellulosics. J. Eur. Ceram. Soc. 2001; 21: 105–118.

    Article  CAS  Google Scholar 

  42. Hassan, M.L., Rowell, R.M., Fadl, N.A. and Yacoub, S.F. Thermoplasticization of bagasse. I. Preparation and characterization of esterified bagasse fibers. J. Appl. Polym. Sci. 2000; 76: 561–574.

    Article  CAS  Google Scholar 

  43. Hattalli, S., Benaboura, A., Ham-Pichavant, F., Nourmamode, A. and Castellan, A. Adding value to alfa grass (Stipa tenacissima L.), soda lignin as phenolic resins 1. Lignin characterization. Polym. Degrad. Stab. 2002; 75: 259–264.

    Article  Google Scholar 

  44. Herakovich, C.T. Mechanics of Fibrous Composites. USA: John Wiley & Sons, 1998; pp1–7.

    Google Scholar 

  45. Hill, C.A.S. and Abdul Khalil, H.P.S. Effect of fiber treatment on mechanical properties of coir or oil palm fiber reinforced polyester composites. J. Appl. Polym. Sci. 2000; 78: 1685–1697.

    Article  CAS  Google Scholar 

  46. Homma, A.K.O. “A civilização da juta na Amazônia: expansão e declínio.” In: AMAZÔNIA: Meio ambiente e desenvolvimento agricola. Brasilia: Embrapa/SPI, 1998; pp13–67.

    Google Scholar 

  47. Hon, D.N-S. “Pragmatic approaches to utilization of natural polymers: Challenges and opportunities.” In: Natural Polymers and Agrofibers Based Composites, E. Frollini, A. Leão and L.H.C. Mattoso, eds. Säo Carlos, Brazil: EMBRAPA Instrumentação Agropecuaria, Universidade de São Paulo and Universidade Estadual Paulista, 2000; pp 1–14 and references cited therein.

    Google Scholar 

  48. Jana, S.C. and Prieto, A. Natural fiber composites of high-temperature thermoplastic polymers: Efects of coupling agents. J. Appl. Polym. Sci. 2002; 86: 2168–2173.

    Article  CAS  Google Scholar 

  49. Joseph, K., Thomas, S. and Pavithran, C. Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 1996; 37,: 5139–5149.

    Article  CAS  Google Scholar 

  50. Kazayawoko, J.S.M., Riedl, B., Poliquin, J., Barry, A.O. and Matuana, L.M. A ligninphenol-formaldehyde binder for particleboard. Part 1. Thermal characteristics. Holzforchung 1992; 46: 257–262.

    Article  CAS  Google Scholar 

  51. Kusak, S.G., Hiltz, J.A. and Waitkus, P.A. Impact performance of phenolic composites following thermal exposure. J. Appl. Polym. Sci. 1998; 67:349–361.

    Article  Google Scholar 

  52. Leão, A.L., Tan, I.H. and Caraschi, J.C. “Curauá fiber — A tropical natural fiber from Amazons potential and applications in composites.” In: International Conference on Advanced Composites 98. Egypt, 1998; pp 558–564.

    Google Scholar 

  53. Leão, A.L., Caraschi, J.C. and Tan, I.H. Curaua Fiber — A Tropical Natural Fiber from Amazons potential and applications in composites.” In: Natural Polymers and Agrofibers Based Composites, E. Frollini, A. Leão and L.H.C. Mattoso, eds. Säo Carlos,Brazil: EMBRAPA Instrumentação Agropecuaria, Universidade de São Paulo and Universidade Estadual Paulista, 2000; pp 257–272.

    Google Scholar 

  54. Liu, J., Li, L., Cheng, J., Wang, L. and Ye, L. Molecular weight and distrubution of copolymer of lignin-phenol in copolymerization catalysed by peroxidase. J. Appl. Polym. Sci. 2001; 81: 2408–2418.

    Article  CAS  Google Scholar 

  55. Li, J.Z., Wu, Q. and McNabb, H.S., Jr. Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci. 2000; 32: 88–104.

    Google Scholar 

  56. Marcovich, N.E., Reboredo, M.M. and Araguren, M.I. Dependence of the mechanical properties of woodfluor-polymer composites on the moisture content. J. Appl. Polym. Sci. 1998; 68: 2069–2076.

    Article  CAS  Google Scholar 

  57. Mohanty, A.K. and Mishra, M. Studies on jute fiber in composites: a literature review. Polymer Plastic Technology Engeering 1995; 34: 729–792.

    Article  CAS  Google Scholar 

  58. Mohanty, A.K., Khan, M.A. and Hinrichsen, G. Influence of chemical surface modification on the properties of biodegradable jute fabrics — polyester amide composites. Composites 2000; A31:143–150.

    Article  Google Scholar 

  59. Mohanty, A.K., Misra, M. and Drzal, L.T. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. J. Polym. Environ. 2002; 10: 19–26.

    Article  CAS  Google Scholar 

  60. Munk, P. Introduction to Macromolecular Science. USA: John Wiley & Sons, 1989; pp 498–499.

    Google Scholar 

  61. Narayan, R. “Biomass (renewable) resources for production of materials, chemicals, and fuels.” In: Emerging Technologies for Materials and Chemicals from Biomass, R.M. Rowell, T.P. Schultz and R. Narayan, eds. Washington, DC: American Chemical Society, 1992; pp 1–5, 12-15.

    Chapter  Google Scholar 

  62. Nunes, R.C.R. and Visconte, L.L.Y. “Natural fibers/elastomeric composites.” In: Natural Polymer and Agrofibers Based Composites, E. Frollini, A. Leão, and L.H.C. Mattoso., eds. São Carlos, Brazil, 2000; pp 135–157.

    Google Scholar 

  63. Narayan, R. “Polymeric Materials from Agricultural Feedstocks.” In: Polymers from Agricultural Coproducts, M.L. Fishman, R.B. Friedman, and S.J. Huang, eds. American Chemical Society, Washington, DC, 1994.

    Google Scholar 

  64. Nothenberg, M. Compósites. Anuário Brasileiro do Plástico 1996: 6–15.

    Google Scholar 

  65. Oertel, G. Polyurethane Handbook. Munich: Hanser Publishers, 1985.

    Google Scholar 

  66. Paiva, J.M.F. and Frollini, E. “Natural fibers reinforced thermoset composites.” In: Natural Polymers and Agrofibers Based Composites, E. Frollini, A.L. Leão and L.H.C. Mattoso, eds. Säo Carlos, Brazil: EMBRAPA Instrumentação Agropecuaria, Universidade de São Paulo and Universidade Estadual Paulista, 2000; pp 229–255.

    Google Scholar 

  67. Paiva, J.M.F. and Frollini, E. Sugarcane bagasse reinforced phenolic and lignophenolic composites. J. Appl. Polym. Sci. 2002; 83: 880–888.

    Article  CAS  Google Scholar 

  68. Paul, A., Joseph, K. and Thomas, S. Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos. Sci. Technol. 1997; 57: 67–79.

    Article  CAS  Google Scholar 

  69. Piccolo, R.S.J., Santos, F. and Frollini, E. Sugar cane bagasse lignin in resol-type resin: Alternative application for lignin-phenol-formaldehyde resins. J. Macromol. Sci., Pure Appl. Chem. 1997; A34: 153–164.

    Article  CAS  Google Scholar 

  70. Pou, J., Boutinguiza, M., Quintero, F., Lusquinos, F., Soto, R. and Pérez-Amor, M. Comparative study of the cutting of car interior trim panels reinforced by natural fibers. Journal of Laser Applications 2001; 13: 90–95.

    Article  Google Scholar 

  71. Rials, T.G. and Glasser, W.G. Engineering plastics from lignin. X. Enthalpy relaxation of prepolymers. J Wood Chem Technol. 1984; 4: 331–345.

    Article  CAS  Google Scholar 

  72. Rong, M.Z., Zhang, M.Q., Liu, Y., Zhang, Z.W., Yang, G.C. and Zeng, H.M. Mechanical properties of sisal reinforced composites in response to water absorption. Polym. and Polym. Compos. 2002; 10: 407–426.

    CAS  Google Scholar 

  73. Rowell, R.M. “Opportunities for lignocellulosic materials and composites.” In: Emerging Technologies for Materials and Chemicals from Biomass, R.M. Rowell, T.P. Schultz and R. Narayan, eds. Washington, DC: American Chemical Society, 1992; pp 12–15.

    Chapter  Google Scholar 

  74. Rowell, R.M., Sanadi, A.R., Caulfield, D.F. and Jacobson, R.E. “Utilization of natural fibers in plastic composites: Problems and opportunities.” In: Lignocellulosics-Plastics Composites, A.L. Leão, F.X. Carvalho and E. Frollini, eds. São Paulo, Brazil: Universidade de São Paulo and Universidade Estadual Paulista, 1997; pp 23–51.

    Google Scholar 

  75. Rowell, R.M., Han, J.S. and Rowell, J.S. “Characterization and factors effecting fiber properties.” In: Natural Polymers and Agrofibers Based Composites, E. Frollini, A.L. Leão and L.H.C. Mattoso, eds. Säo Carlos, Brazil: EMBRAPA Instrumentação Agropecuária, Universidade de São Paulo and Universidade Estadual Paulista, 2000; pp 115–134.

    Google Scholar 

  76. Rozman, H.D., Kumar, R.N., Adlli, M.R.M., Abusamah, A. and Mohd Ishad, Z.A. The effect of lignin and surface activation on the mechanical properties of rubberwoodpolypropylene composites. Journal of Wood Chemistry and Technology 1998; 18: 471–490.

    Article  CAS  Google Scholar 

  77. Rozman, H.D., Tan, K.W, Kumar, R.N., Abubakar, A.A., Ishak, Z.A.M. and Ismail, H. The effect of lignin as a compatibilizer on the physical properties of coconut fiber-polypropylene composites. Eur. Polym. J. 2000; 36:1483–1494.

    Article  CAS  Google Scholar 

  78. Savastano, H., Jr., Warden, P.G. and Coutts, R.S.P. Brazilian waste fibres as reinforcement for cement-based composites. Cement & Concrete Composites 2000; 22: 379–384.

    Article  CAS  Google Scholar 

  79. Schuh, T. and Gayer, U. “Automotive applications of natural fiber composites. Benefits for the environment and competitiveness with man-made materials” In: Lignocellulosic-Plastics Composites, A.L. Leão, F.X. Carvalho and E. Frollini, eds. São Paulo, Brazil: Universidade de São Paulo and Universidade Estadual Paulista, 1997; pp 181–195.

    Google Scholar 

  80. Seymour, R.B. Polymer Composites. Utrecht: VSP, 1990; pp73–81.

    Google Scholar 

  81. Sreekala, M.S., Kumaran, M.G. and Thomas, S. Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. J. Appl. Polym. Sci. 1997; 66: 821–835.

    Article  CAS  Google Scholar 

  82. Sreekala, M.S., Kumaran, M.G. and Thomas, S. “Effect of chemical modifications on the mechanical performance of oil palm fibre reinforced phenol formaldehyde composites.” In: Natural Polymers and Agrofibers Based Composites, E. Frollini, A.L. Leão and L.H.C. Mattoso, eds. Säo Carlos, Brazil: EMBRAPA Instrumentação Agropecuária, Universidade de São Paulo and Universidade Estadual Paulista, 2000; pp 349–354.

    Google Scholar 

  83. Suh, K.W. and Webb, D.D. “Cellular Materials.” In: Encyclopedia of Polymer Science and Engineering, 2nd ed. New York: John Wiley & Sons, 1989; pp1–59.

    Google Scholar 

  84. Sun, C; Dong, Z. and Wardsworth, L.C. Corona treatment of polyolefin films — a review. Adv. Polym. Technol. 1999; 18: 171–180.

    Article  CAS  Google Scholar 

  85. Tripathi, S.S., Landro, L, Fontanelli, D., Marchetti, A. and Levita, G. Mechanical properties of jute fibers and interface strength with na epoxy resin. J. Appl. Polym. Sci. 2000; 75: 1585–1596.

    Article  Google Scholar 

  86. Tyberg, C.S., Sankarapandian, M., Bears, K., Shih, P., Loos, A.C., Dillard, D., McGrath, J.E., Riffle, J.S. and Sorathia, U. Tough, void-free, flame retardant phenolic matrix materials. Construction and Building Materials 1999; 13: 343–353.

    Article  Google Scholar 

  87. Vazques, G., Gonzalez, J., Freire, S. and Antorrena, G. Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resins. Bioresource Technol. 1997; 60:191–198.

    Article  Google Scholar 

  88. Vásquez, G., Rodriguez-Bona, C, Freire, S., Gonzalez-Alvarez, J. and Antorrena, G. Acetosolv pine lignin as copolymer in resins for manufacture of exterior grade plywoods. Bioresource Technol. 1999; 70:209–214 and references cited therein.

    Article  Google Scholar 

  89. Vorher, W. and Schweers, H.M. Utilization of phenol lignin. Appl. Polym Symp. 1975; 28: 277–284.

    CAS  Google Scholar 

  90. xiao, B., Sun, X.F. and Sun, R. The chemical modification of lignins with succinic anhydride in aqueous systems. Polym. Degrad. Stab. 2001; 71: 223–231.

    Article  CAS  Google Scholar 

  91. Young, R.A. “Utilization of Natural Fibers: Characterization, Modification and Applications.” In: Lignocellulosic-Plastics Composites, A.L. Leão, F.X. Carvalho and E. Frollini, eds. São Paulo, Brazil: Universidade de São Paulo and Universidade Estadual Paulista, 1997; pp 1–21.

    Google Scholar 

  92. Ysbrandi, R.E., Sanderson, R.D. and Gerischer, G.F.R. Adhesives from autohydrolisys bagasse lignin, a renewable resource. Holzforchung 1992; 46:249–252.

    Article  Google Scholar 

  93. Ysbrandi, R.E., Sanderson, R.D., Wright, R.L. and Gerischer, G.F.R. Thermal reactivity and molecular mass analyses of phenolsolvan pitch resols and phenolated pitch/lignin mixtures. Holzforchung 1994; 48: 244–253.

    Article  Google Scholar 

  94. Zhang, D., Sun, Q. and Wadsworth, L.C. Mechanism of corona treatment on polyolefin films. Polym. Eng. Sci. 1998; 38: 965–970.

    Article  CAS  Google Scholar 

  95. Ghavami, K., Toledo Filho, R.D. and Barbosa, N.P. Behaviour of composite soil reinforced with natural fibres. Cement and Concrete Composites 1999; 21: 39–48.

    Article  CAS  Google Scholar 

  96. Satyanarayana, K.G., Pillai, C.K.S., Sukumaran, K., Pillai, S.G.K., Rohatgi, P.K. and Vijayan, K. Structure property studies of fibres from various parts of the coconut tree. J. Mat. Sci. 1982; 17: 2453–2462.

    Article  CAS  Google Scholar 

  97. Saheb, D.N. and Jog, J.P. Natural polymer composites: A review. Advances in Polymer Technology 1999; 18: 351–363.

    Article  CAS  Google Scholar 

  98. Razera, I.A.T. and Frollini, E. Composites based on jute fibers and phenolic matrices: properties of fibers and composites. J. Appl. Polym. Sci, 2002, in print

    Google Scholar 

  99. Pilato, L.A. and Michno, M. J. Advanced Composite Materials, Heidelberg: Springer-Verlag, 1994.

    Book  Google Scholar 

  100. Mishra, S., Naik, J.B. and Patil, Y.P. The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Compos. Sci. and Technol. 2000; 60: 1729–1735

    Article  CAS  Google Scholar 

  101. Matthews, F.L. and Rawlings, R.D. Composite Materials: Engineering and Science. Chapman & Hall, 1994; pp 3–16 and 168-169.

    Google Scholar 

  102. Mansour, O., El-Hady, B.A., Ibrahim, S.K. and Goda, M. Lignocellulose-Polymer Composites-V. Polym. Plast. Technol. Eng. 2001; 40: 311–320.

    Article  CAS  Google Scholar 

  103. Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing and Design. Marcel Dekker, 1988; pp1–2.

    Google Scholar 

  104. Knop, A. and Pilato, L.A. Phenolic Resins. Berlin: Springer-Verlag, 1985.

    Book  Google Scholar 

  105. Stael, G.C., Tavares, M.I.B. and D’Almeida, J.R.M. Tensile and flexural behaviour of sugar cane bagasse waste reinforced EVA matrix composites. Polymers and Polymer Composites 2000; 8: 489–495.

    CAS  Google Scholar 

  106. Van Krevelen, D.W. Properties of Polymers. 3rd ed. Netherlands: Elsevier Science Publishers, 1990; pp705–706.

    Google Scholar 

  107. Yosomiya, R. Adhesion and Bonding in Composites. Marcel Dekker, 1990; pp1–4.

    Google Scholar 

  108. Das, S., Saha, A.K., Choudhury, P.K., Basak, R.K., Mitra, B.C., Todd, T. and Lang, S. Effect of steam pretreatment of jute fiber on dimensional stability of jute composite. J. Appl. Polym. Sci. 2000; 76: 1652–1661.

    Article  CAS  Google Scholar 

  109. Bisanda, E.T.N. The effect of alkali treatment on the adhesion characteristics of sisal fibres. Appl. Compos. Mater. 2000; 7: 331–339.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frollini, E., Paiva, J.M.F., Trindade, W.G., Tanaka Razera, I.A., Tita, S.P. (2004). Plastics and Composites from Lignophenols. In: Wallenberger, F.T., Weston, N.E. (eds) Natural Fibers, Plastics and Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9050-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9050-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4774-3

  • Online ISBN: 978-1-4419-9050-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics