Skip to main content

Advanced Spider Silk Fibers by Biomimicry

  • Chapter
Natural Fibers, Plastics and Composites

Abstract

Spider silk is an ancient biomaterial that is useful for modern medicine and industry. This chapter explains the relevant spider biology, outlines the technical limitations of producing recombinant silk from published literature and describes how biomimicry works. The process begins with spider silk genes, production of recombinant dragline silk proteins in vitro and within in vivo lactation systems, and ends with the purification of silk proteins and their conversion into continuous silk fibers. Finally, this chapter offers a view to the future of the potential for nature inspired performance biomaterials

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, G.H., Horan, R.L., Lu, H.H. et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 2002; 23: 4131–4141.

    Article  CAS  Google Scholar 

  2. Andersen, S.O. Amino acid composition of spider silks. Comp. Biochem. Physiol. 1970; 35: 705–711.

    Article  CAS  Google Scholar 

  3. Arcidiacono, S., Mello, C, Kaplan, D., Cheley, S. and Bayley, H. Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl. Microbiol. Biotechnol. 1998; 49: 31–38.

    Article  CAS  Google Scholar 

  4. Beckwitt, R., Arcidiacono, S. and Stote, R. Evolution of repetitive proteins: spider silks from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). Insect Biochem. Mol. Biol. 1998; 28: 121–130.

    Article  CAS  Google Scholar 

  5. Bell, F.I., McEwen, I.J. and Viney, C. Supercontraction in wet spider dragline. Nature 2002;41b:37.

    Article  Google Scholar 

  6. Case, S.T. and Thornton, J.R. High molecular mass complexes of aquatic silk proteins. Int. J. Biol. Macromol. 1999; 24: 89–101.

    Article  CAS  Google Scholar 

  7. Clark, A.J. The mammary gland as a bioreactor: expression, processing, and production of recombinant proteins. J. Mammary Gland Biol. Neoplasia 1998; 3: 337–350.

    Article  CAS  Google Scholar 

  8. Denny, M. The physical properties of spider’s silk and their role in the design of orbwebs. J. Exp. Biol. 1976; 65: 483–506.

    Google Scholar 

  9. Edmunds, T., Van Patten, S.M., Pollock, J., Hanson, E., Bernasconi, R., Higgins, E., Manavalan, P., Ziomek, C, Meade, H., McPherson, J.M. and Cole, E.S. Transgenically produced human antithrombin — structural and functional comparison to human plasmaderived antithrombin. Blood 1998; 91: 4561–4571.

    CAS  Google Scholar 

  10. Fahnestock, S.R. Novel recombinantly produced spider silk analogs. International Patent Application, Publication No. WO 94/ 29450, 1994.

    Google Scholar 

  11. Fahnestock, S.R. and Irwin, S.L. Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl. Microbiol. Biotechnol. 1997; 47: 23–32.

    Article  CAS  Google Scholar 

  12. Fahnestock, S.R. and Bedzyk, L.A. Production of synthetic spider dragline silk protein in Pichia pastoris. Appl. Microbiol. Biotechnol. 1997; 47: 33–39.

    Article  CAS  Google Scholar 

  13. Fahnestock, S.R., Yao, Z. and Bedzyk, L.A. Microbial production of spider silk proteins. Rev. Mol. Biotechnol. 2000; 74: 105–119.

    Article  CAS  Google Scholar 

  14. Gatesy, J., Hayashi, C, Motriuk, D., Woods, J. and Lewis, R. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 2001; 291: 2603–2605.

    Article  CAS  Google Scholar 

  15. Gosline, J.M., DeMont, M.E. and Denny, M.W. The structure and properties of spider silk. Endeavour 1986; 10: 38–43.

    Article  Google Scholar 

  16. Gosline, J.M., Guerette, P.A., Ortlepp, C.S. and Savage, K.N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 1999; 202: 3295–3303.

    CAS  Google Scholar 

  17. Guerette, P.A., Ginzinger, D.G., Weber, B.H.F. and Gosline, J.M. Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 1996; 272:112–115.

    Article  CAS  Google Scholar 

  18. Hayashi, C.Y., Shipley, N.H. and Lewis, R.V Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 1999; 24: 271–275.

    Article  CAS  Google Scholar 

  19. Hayashi, C.Y. and Lewis, R.V. Molecular architecture and evolution of a modular spider silk protein gene. Science 2000; 287: 1477–1479.

    Article  CAS  Google Scholar 

  20. Hinman, M.B., Dong, Z., xu, M. and Lewis, R.V. “Spider silk: a mystery starting to unravel.” In Biopolymers, S.T. Case, ed. Berlin, Heidelberg: Springer-Verlag, 1992.

    Google Scholar 

  21. Hinman, M.B. and Lewis, R.V. Isolation of a clone encoding a second dragline silk fibroin. J. Biol. Chem. 1992; 267: 19320–19324.

    CAS  Google Scholar 

  22. Hinman, M.B., Jones, J.A. and Lewis, R.V. Synthetic spider silk: a modular fiber. Trends Biotechnol. 2000; 18: 374–379.

    Article  CAS  Google Scholar 

  23. Hobbs, A.A., Richards, D.A., Kessler, DJ. and Rosen, J.M. Complex hormonal regulation of rat casein gene expression. J. Biol. Chem. 1982; 257: 3598–3605.

    CAS  Google Scholar 

  24. Hogan, B., Beddington, R., Constantini, F. and Lacy, E. Manipulating the mouse embryo: A laboratory manual. New York: Cold Spring Harbor Press, 1994.

    Google Scholar 

  25. Kaplan, D., Fossey, S., Mello, CM., et al. Biosynthesis and processing of silk proteins. Mater. Res. Soc. Bull. 1992; 10:41–47.

    Google Scholar 

  26. Kaplan, D., Adams, W.W., Farmer, B. and Viney, C. “Silk: Biology, Structure, Properties and Genetics.” In Silk polymers —Materials Science and Biotechnology, D. Kaplan, W.W. Adams, B.L. Farmer and C. Viney, eds. Washington, DC: American Chemical Society, 1994; pp. 2–16.

    Google Scholar 

  27. Karatzas et al. “High-toughness spider silk fibers spun from soluble recombinant silk produced in mammalian cells.” In Biopolymers. Volume 8: Polyamides and complex proteinaceous materials II, Fahnestock and Steinbüchel, eds. Weinheim: Wiley-VCH, 2003; Chapter 19.

    Google Scholar 

  28. Koover, J. “Comparative structure and histochemistry of silk-producing organs in arachnids.” In Ecophysiology of Spiders, W. Nentwig, ed. Berlin-Heidelberg: Springer-Verlag, 1987; pp 160–186.

    Chapter  Google Scholar 

  29. Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J.F., Duguay, F., Chretien, N., Welsh, E. A., Soares, J.W. and Karatzas, C.N. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 2002; 295: 472–476.

    Article  CAS  Google Scholar 

  30. Lewis, R. V., Hinman, M., Kothakota, S. and Fournier, M. J. Expression and purification of spider silk protein: a new strategy for producing repetitive proteins. Protein. Expr.Purif. 1996; 7: 400–405.

    Article  CAS  Google Scholar 

  31. Liivak, O., Blye, A., Shah, N. and Jelinski, L.W. A microfabricated wet-spinning apparatus to spin fibers of silk proteins. Structure-property correlations. Macromolecules 1998; 31:2947–2951.

    Article  CAS  Google Scholar 

  32. Lock, R.L. Process for making silk fibroin fibers. U.S. Patent No. 5,252,285, 1993.

    Google Scholar 

  33. Lucas, F. Spiders and their silks. Discovery 1964; 25: 20–26.

    Google Scholar 

  34. Meade, H.M., Echelard, Y., Ziomek, A., Young, M.W., Harvey, M., Cole, E.S., Groet, S., Smith, T.E. and Cruling, J.M. “Expression of recombinant proteins in the milk of transgenic animals.” In Gene Expression Systems: Using Nature for the Art of Expression, J.M. Fernandez and J.P. Hoeffler, eds. San Diego: Academic Press, 1998; pp 399–427.

    Google Scholar 

  35. O’Brien, J.P., Fahnestock, S.R., Termonia, Y. and Gardner, K.C.H. Nylons from nature: synthetic analogs to spider silk. Adv. Mater. 1998; 10:1185–1195.

    Article  Google Scholar 

  36. Prince, J.T., McGrath, K.P., DiGirolamo, CM. and Kaplan, D.L. Construction, cloning and expression of synthetic genes encoding spider dragline silk. Biochemistry 1995; 34: 10879–10885.

    Article  CAS  Google Scholar 

  37. Seidel, A., Liivak, O. and Jelinski, L.W. Artificial spinning of spider silk. Macromolecules 1998; 31: 6733–6736.

    Article  CAS  Google Scholar 

  38. Seidel, A., Liivak, O., Calve, S., Adaska, J., Ji, G.D., Yang, Z.T., Grubb, D., Zax, D.B. and Jelinski, L.W. Regenerated spider silk: processing, properties, and structure. Macromolecules 2000; 33: 775–780.

    Article  CAS  Google Scholar 

  39. Scheller, J., Guhrs, K.H., Grosse, F. and Conrad, U. Production of spider silk proteins in tobacco and potato. Nature Biotechnol. 2001; 19: 573–577.

    Article  CAS  Google Scholar 

  40. Termonia, Y. Structural Biological Materials: Design and structure-property relationships, M. Elices, ed. Washington, DC: Am. Chem. Soc. 2000; 10: 271–291.

    Chapter  Google Scholar 

  41. Trabbic, K.A. and Yager, P. Comparative structural characterization of naturally-and synthetically-spun fibers of Bombyx mori fibroin. Macromolecules 1998; 31: 462–471.

    Article  CAS  Google Scholar 

  42. Viney, C, Huber, A.E., Dunaway, D.L., Kerkam, K. and Case, S.T. “Optical characterization of silk secretions and fibers.” In Silk Polymers: Materials Science and Biotechnolog., D. Kaplan, W.W. Adams, B.L. Farmer and C. Viney, eds. Washington, DC: American Chemical Society, 1994; pp 120–136.

    Google Scholar 

  43. Viney, C. From natural silks to new polymer fibres. J. Text. Inst. 2003; Part 3: 2–23.

    Google Scholar 

  44. Vollrath, F. and Knight, D.P. Liquid crystalline spinning of spider silk. Nature 2001; 410: 541–548.

    Article  CAS  Google Scholar 

  45. Wilson, R.S. Control of drag-line spinning in certain spiders. Am. Zoologist. 1969; 9: 108–111.

    Google Scholar 

  46. Wilson, R.S. The control of dragline spinning in the garden spider. Quart. J. Micr. Sci. 1962; 104, pt. 4: 557–71.

    Google Scholar 

  47. Work, R.W. The force-elongation behavior of web fibers and silks forcibly obtained from orb-web-spinning spiders. Text. Res. J. 1976; 46: 485–492.

    CAS  Google Scholar 

  48. xu, M. and Lewis, R.V. Structure of a protein superfiber: spider dragline silk. Proc. Natl. Acad. Sci. USA 1990; 87: 7120–7124.

    Article  CAS  Google Scholar 

  49. Zemlin, J.C. A study of the mechanical behavior of spider silks. Technical Report 69 — 29-CM (AD684333). Natick, MA: U.S. Army Natick Laboratories, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Turner, J., Karatzas, C. (2004). Advanced Spider Silk Fibers by Biomimicry. In: Wallenberger, F.T., Weston, N.E. (eds) Natural Fibers, Plastics and Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9050-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9050-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4774-3

  • Online ISBN: 978-1-4419-9050-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics