Skip to main content

Catecholamines and Cardiac Remodeling

  • Chapter
Cardiac Remodeling and Failure

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 5))

Abstract

In the rat heart, there is a remarkable remodeling due to catecholamines. As to the functional effects, norepinephrine (NE) induced a marked positive chronotropic effect and an elevation in right ventricular (RV) systolic pressure, while left ventricular (LV) systolic pressure was only slightly affected in rats in vivo at least during the first two weeks of continuous i.v. administration. In the isolated perfused working rat heart, there was an increase in aortic flow and coronary flow and thus in cardiac output during the first 120 minutes of continuous NE administration. NE induced hypertrophy of predominantly the LV as indicated by the elevation in LV weight/body weight ratio and the increase in the expression of the atrial natriuretic peptide. Increased expression of colligin, collagen I and III preceded the histologically determined interstitial fibrosis of the LV. Several metabolic processes were also altered. A characteristic feature was the stimulation of the oxidative pentose phosphate pathway by all catecholamines tested. Both the activity and mRNA of glucose-6-phosphate dehydrogenase, the first and regulating enzyme of this pathway, turned out to be elevated and seemed to be a marker of cardiac hypertrophy. In the isolated perfused working rat heart, NE increased the expression of the proto-oncogenes c-fos and c-myc. Combination of NE with pre- and afterload elevation induced the signals of both proto-oncogenes to appear earlier and to persist for a longer period of time. There was also an increased expression of interleukin (IL)-6 predominantly in the LV in a narrow time window between 4 and 12 hours of continuous NE application. The maximum increase was seen at 4 hours. IL-1β mRNA was also increased/ however, the maximum was at 12 hours. The increase in the RV was much smaller than in the LV. IL-6 and IL-lβ may be involved both in the development of cardiac hypertrophy and fibrosis which both occurred mainly in the LV under the influence of NE and could be prevented by appropriate adrenergic blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tigerstedt C. 1912. Zur Kenntnis des Druckverlaufes in der linken Herzkammer und der Aorta beim Kaninchen. Skand Arch Physiol 28:37–64.

    Article  Google Scholar 

  2. Zimmer H-G. 1983. Measurement of left ventricular hemodynamic parameters in closed-chest rats under control and various pathophysiologic conditions. Basic Res Cardiol 78:77–84.

    Article  PubMed  CAS  Google Scholar 

  3. Zimmer H-G, Zierhut W, Seesko RC, Varekamp AE. 1988. Right heart catheterization in rats with pulmonary hypertension and right ventricular hypertrophy. Basic Res Cardiol 83:48–57.

    Article  PubMed  CAS  Google Scholar 

  4. Irlbeck M, Zimmer H-G. 1993. Acute effects of catecholamines on function of the rat right heart. Cardiovasc Res 27:2146–2151.

    Article  PubMed  CAS  Google Scholar 

  5. Irlbeck M, Mühling O, Iwai T, Zimmer H-G. 1996. Different response of the rat left and right heart to norepinephrine. Cardiovasc Res 31:157–162.

    PubMed  CAS  Google Scholar 

  6. Irlbeck M, Mühling O, Iwai T, Zimmer H-G. 1996. Influence of angiotensin II receptor blockade on chronic noradrenaline stimulation of the rat left and right heart. Exp Clin Cardiol 1:49–55.

    Google Scholar 

  7. Rassler B, Barth W, Zimmer H-G. 2001. Transient pleural effusion in norepinephrine-stimulated rats. Basic Res Cardiol 96:471–477.

    Article  PubMed  CAS  Google Scholar 

  8. Zimmer H-G. 1998. The isolated perfused heart and its pioneers. News Physiol Sci 13:203–210.

    PubMed  Google Scholar 

  9. Neely JR, Liebermeister H, Battersby EJ, Morgan HE. 1967. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 212:804–814.

    PubMed  CAS  Google Scholar 

  10. Schneider A, Zimmer H-G. 1991. Effect of inosine on function and adenine nucleotide content of the isolated working rat heart: Studies of postischemic reperfusion. J Cardiovasc Pharmacol 17:466–473.

    Article  PubMed  CAS  Google Scholar 

  11. Horban A, Kolbeck-Rühmkorff C, Zimmer H-G. 1997. Correlation between function and proto-oncogene expression in isolated working rat hearts under various overload conditions. J Mol Cell Cardiol 29:2903–2914.

    Article  PubMed  CAS  Google Scholar 

  12. Zierhut W, Zimmer H-G. 1989. Significance of myocardial α-and β-adrenoceptors in cate-cholamine-induced cardiac hypertrophy. Circ Res 65:1417–1425.

    Article  PubMed  CAS  Google Scholar 

  13. Barth W, Deten A, Bauer M, Reinohs M, Leicht M, Zimmer H-G. 2000. Differential remodeling of the left and right heart after norepinephrine treatment in rats. J Mol Cell Cardiol 32:273–284.

    Article  PubMed  CAS  Google Scholar 

  14. Briest W, Hölzl A, Rassler B, Deten A, Leicht M, Baba HA, Zimmer H-G. 2001. Cardiac remodeling after long term norepinephrine treatment in rats. Cardiovasc Res 52(2):265–273.

    Article  PubMed  CAS  Google Scholar 

  15. Brown L, Sernia C, Newling R, Fletcher P. 1992. Cardiac responses after norepinephrine-induced ventricular hypertrophy. J Cardiovasc Pharmacol 20:316–323.

    Article  PubMed  CAS  Google Scholar 

  16. Hosokawa N, Hohenadl C, Satoh M, Kuhn K, Nagata K. 1998. HSP47, a collagen-specific molecular chaperone, delays the secretion of type III procollagen transfected in human embryonic kidney cell line 293: a possible role for HSP47 in collagen modification. J Biochem 124:654.662.

    Google Scholar 

  17. Bhambi B, Eghbali M. Effect of norepinephrine on myocardial collagen gene expression and response of cardiac fibroblasts after norepinephrine treatment. 1991. Am J Pathol 139:1131–1142.

    PubMed  CAS  Google Scholar 

  18. Leicht M, Greipel N, Zimmer H-G. 2000. Comitogenic effect of catecholamines on rat cardiac fibroblasts in culture. Cardiovasc Res 48:274–284.

    Article  PubMed  CAS  Google Scholar 

  19. Zimmer H-G, Ibel H, Suchner U. 1990. β-Adrenergic agonists stimulate the oxidative pentose phosphate pathway in the rat heart. Circ Res 67:1525–1534.

    Article  PubMed  CAS  Google Scholar 

  20. Zimmer H-G, Lankat-Buttgereit B, Kolbeck-Rühmkorff C, Nagano T, Zierhut W. 1992. Effects of norepinephrine on the oxidative pentose phosphate pathway in the rat heart. Circ Res 71:451–459.

    Article  PubMed  CAS  Google Scholar 

  21. Robison GA, Butcher RW, Oye I, Morgan HE, Sutherland EW. 1965. The effect of epinephrine on adenosine 3′5′-phosphate levels in the isolated perfused rat heart. Mol Pharmacol 1:168–177.

    PubMed  CAS  Google Scholar 

  22. Heckmann M, Zimmer H-G. 1992. Effects of triiodothyronine in spontaneously hypertensive rats. Studies on cardiac metabolism, function, and heart weight. Basic Res Cardiol 87:333–343.

    Article  PubMed  CAS  Google Scholar 

  23. Irlbeck M, Iwai T, Lerner T, Zimmer H-G. 1997. Effects of angiotensin II receptor blockade on hypoxia-induced right ventricular hypertrophy in rats. J Mol Cell Cardiol 29:2931–2939.

    Article  PubMed  CAS  Google Scholar 

  24. Zimmer H-G. 2000. Glucose-6-phosphate dehydrogenase: A marker of cardiac hypertrophy. In: The Hypertrophied Heart. Ed. N Takeda, M Nagano, NS Dhalla, 17–30. Boston: Kluwer Academic Publishers.

    Google Scholar 

  25. Tian W-N, Braunstein LD, Pang J, Stuhlmeier KM, Xi Q-C, Tian X, Stanton RC. 1998. Importance of glucose-6-phosphate dehydrogenase for cell growth. J Biol Chem 273:10609–10617.

    Article  PubMed  CAS  Google Scholar 

  26. Starksen NF, Simpson PC, Bishopric N, Coughlin SR, Lee WMF, Escobedo JA, Williams LT. 1986. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci USA 83:8348–8350.

    Article  PubMed  CAS  Google Scholar 

  27. Iwaki K, Sukhatme VP, Shubeita HE, Chien KR. 1990. α-and β-Adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. J Biol Chem 265:13809–13817.

    PubMed  CAS  Google Scholar 

  28. Barka T, van der Noen H, Shaw PA. 1987. Proto-oncogene fos (c-fos) expression in the heart. Oncogene 1:439–443.

    PubMed  CAS  Google Scholar 

  29. Moalic JM, Bauters C, Himbert D, Bercovici J, Mouas C, Guicheney P, Baudoin-Legros M, Rappaport L, Emanoil-Ravier R, Mezger V, Swynghedauw B. 1989. Phenylephrine, vasopressin and angiotensin II as determinants of proto-oncogene and heat-shock protein gene expression in adult rat heart and aorta. J Hypertens 7:195–201.

    Article  PubMed  CAS  Google Scholar 

  30. Moalic JM, Moazami-Goudarzi K, Thiem NV, Delcayre C, Bercovici J, Mouas C, Swynghedauw B. 1992. Hormonal induction of c-fos and HSP68 mRNAs on an isolated coronary perfused adult rat heart. Arch Int Physiol Biochim Biophys 100:165–170.

    Article  PubMed  CAS  Google Scholar 

  31. Kolbeck-Riihmkorff C, Horban A, Zimmer H-G. 1993. Effect of pressure and volume overload on proto-oncogene expression in the isolated working rat heart. Cardiovasc Res 27:1998–2004.

    Article  Google Scholar 

  32. Kolbeck-Riihmkorff C, Zimmer H-G. 1995. Proto-oncogene expression in the isolated working rat heart: Combination of pressure and volume overload with norepinephrine. J Mol Cell Cardiol 27:501–511.

    Article  Google Scholar 

  33. Barth W, Thalmeier K, Kolbeck-Riihmkorff C, Zimmer H-G. 1997. Effect of norepinephrine on c-fos expression in adult rat cardiac myocytes. Pflügers Arch 433(Suppl.): P–431, R 121 (Abstract).

    Google Scholar 

  34. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L. 1990. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. Consensus Trial Study Group. Circulation 82:1730–1736.

    Article  PubMed  CAS  Google Scholar 

  35. Tsutamoto T, Hisanaga T, Wada A, Maeda K, Onishi M, Fukai D, Mabuchi N, Sawaki M, Kinoshita M. 1998. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 31:391–398.

    Article  PubMed  CAS  Google Scholar 

  36. Weber KT, 1997. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 96:4065–4082.

    Google Scholar 

  37. Bürger A, Benicke M, Deten A, Zimmer H-G. 2001. Catecholamines stimulate interleukin-6 synthesis in rat cardiac fibroblasts. Am J Physiol 281:H14–H21.

    Google Scholar 

  38. Deten A, Volz HC, Briest W, Zimmer H-G. 2002. Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc Res 55:329–340.

    Article  PubMed  CAS  Google Scholar 

  39. Deten A, Barth W, Leicht M, Hölzl A, Zimmer H-G. 2001. Extracellular matrix changes in the infarct area and in the noninfarcted left ventricle after coronary artery ligation in rats. J Mol Cell Cardiol 33:1191–1207.

    Article  PubMed  CAS  Google Scholar 

  40. Zimmer H-G, Gerdes AM, Lortet S, Mall G. 1990. Changes in heart function and cardiac cell size in rats with chronic myocardial infarction. J Mol Cell Cardiol 22:1231–1243.

    Article  PubMed  CAS  Google Scholar 

  41. Hirota H, Yoshida K, Kishimoto T, Taga T. 1995. Continuous activation of gp130, a signal-transducing receptor compound for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA 92:4862–4866.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Gerd Zimmer M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zimmer, HG. (2003). Catecholamines and Cardiac Remodeling. In: Singal, P.K., Dixon, I.M.C., Kirshenbaum, L.A., Dhalla, N.S. (eds) Cardiac Remodeling and Failure. Progress in Experimental Cardiology, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9262-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9262-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4864-1

  • Online ISBN: 978-1-4419-9262-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics