Skip to main content

Introduction

  • Chapter
  • First Online:
Fuzzy Stochastic Optimization
  • 1491 Accesses

Abstract

Randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world. Randomness relates to the stochastic variability of all possible outcomes of a situation and can be perfectly and mathematically described by probability theory with random variable. Fuzziness, on the other hand, stems from the imprecision of subjective human knowledge and exists objectively with a variety of manifestations in numbers of situations such as data capture and process, blurred boundaries of the parameters, expertise applications, and lack of precise knowledge. Fuzzy variable in the context of theory of fuzzy set and possibility (see [114, 117, 118, 171, 172]) is widely accepted as an effective mathematical approach to model the fuzzy uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Garbage In, Garbage Out” (abbreviated to GIGO) is a phrase in the fields of computer science and information communication technology. It is used primarily to call attention to the fact that computers will unquestioningly process the most nonsensical of input data and produce nonsensical output. It was popular in the early days of computing, but it applies even more today to describe failures in human decision making due to imprecise, incomplete, or faulty data (see [12]).

References

  1. P.T. Agraz, On Borel measurability and large deviations for fuzzy random variables, Fuzzy Sets and Systems, vol. 157, no. 19, pp. 2558–2568, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  2. E.E. Ammar, On fuzzy random multiobjective quadratic programming, European Journal of Operational Research, vol. 193, no. 2, pp. 329–341, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Aletti, E.G. Bongiorno and V. Capasso, Statistical aspects of fuzzy monotone set-valued stochastic processes, Application to birth-and-growth processes Fuzzy Sets and Systems, vol. 160, no. 21, pp. 3140–3151, 2009.

    MathSciNet  MATH  Google Scholar 

  4. S. Bag, D. Chakraborty and A.R. Roy, A production inventory model with fuzzy random demand and with flexibility and reliability considerations, Computers & Industrial Engineering, vol. 56, no. 1, pp. 411–416, 2009.

    Article  Google Scholar 

  5. U. Bhattacharya, J.R. Rao, and R.N. Tiwari, Fuzzy multi-criteria facility location problem, Fuzzy Sets and Systems, vol. 51, no. 3, pp. 277–287, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  6. R.P. Bigelow, Computers and the Law: An Introductory Handbook, Commerce Clearing House, New York, 3rd Edition, 1981.

    Google Scholar 

  7. J.R. Birge and F.V. Louveaux, Introduction to Stochastic Programming, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  8. I. Bongartz, P.H. Calamai, and A.R. Conn, A projection method for lp norm location-allocation problems, Mathematical Programming, vol. 66, nos. 1-3, pp. 283–312, 1994.

    Article  MathSciNet  Google Scholar 

  9. Y.-H.O. Chang, Hybrid fuzzy least-squares regression analysis and its reliability measures, Fuzzy Sets and Systems, vol. 119, no. 2, pp. 225–246, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Cramer, Mathematical Methods of Statistics, Princeton University Press, Princeton, 1966.

    Google Scholar 

  11. L. Dupont, Branch and bound algorithm for a facility location problem with concave site dependent costs, International Journal of Production Economics, vol. 112, no. 1, pp. 245–254, 2008.

    Article  MathSciNet  Google Scholar 

  12. A.T. Ernst and M. Krishnamoorthy, Solution algorithms for the capacitated single allocation hub location problem, Annals of Operations Research, vol. 86, no. 1-4, pp. 141–159, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  13. G.S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications, Springer-Verlag, New York, 1996.

    MATH  Google Scholar 

  14. J.M. Garibaldi and T. Ozen, Uncertain fuzzy reasoning: A case study in modelling expert decision making, IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 16–30, 2007.

    Article  Google Scholar 

  15. M.A. Gil, L.D. Miguel and D.A. Ralescu, Overview on the development of fuzzy random variables, Fuzzy sets and systems, vol. 157, no. 19, pp. 2546–2557, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.

    MATH  Google Scholar 

  17. F. Glover, Tabu search-Part I, ORSA Journal on Computing, vol. 1, no. 3, pp. 190–206, 1989.

    Article  MATH  Google Scholar 

  18. F. Glover, Tabu search-Part II, ORSA Journal on Computing, vol. 2, no. 1, pp. 4–32, 1990.

    Article  MATH  Google Scholar 

  19. F.F. Hao and Y.K. Liu, Mean-variance models for portfolio selection with fuzzy random returns, Journal of Applied Mathematics and Computing, vol. 30, nos. 1-2, pp. 9–38, 2009.

    Article  MathSciNet  Google Scholar 

  20. S.L. Ho and S. Yang, A computationally efficient vector optimizer using ant colony optimizations algorithm for multiobjective designs, IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1034–1037, 2008.

    Article  Google Scholar 

  21. D.H. Hong and P.I. Ro, The law of large numbers for fuzzy numbers with unbounded supports, Fuzzy Sets and Systems, vol. 116, no. 2, pp. 269–274, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Huang, R. Zhao and W. Tang, Risk model with fuzzy random individual claim amount, European Journal of Operational Research, vol. 192, no. 3, pp. 879–890, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Huang, C.-G. Wu and Z.-F. Hao, A pheromone-rate-based analysis on the convergence time of ACO algorithm, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 4, pp. 910–923, 2009.

    Article  Google Scholar 

  24. C.-M. Hwang and J.-S. Yao, Independent fuzzy random variables and their application, Fuzzy Sets and Systems, vol. 82, no. 3, pp. 335–350, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Ishii, Y.L. Lee, and K.Y. Yeh, Fuzzy facility location problem with preference of candidate sites, Fuzzy Sets and Systems, vol. 158, no. 17, pp. 1922–1930, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Janson, D. Merkle and M. Middendorf, Molecular docking with multi-objective particle swarm optimization, Applied Soft Computing, vol. 8, no. 1, pp. 666–675, 2008.

    Article  MathSciNet  Google Scholar 

  27. P. Jorion, Value at Risk: The New Benchmark for Controlling Market Risk, McGraw-Hill, New York, 2000.

    Google Scholar 

  28. P. Kall and S.W. Wallace, Stochastic Programming, John Wiley & Sons, Chichester, 1994.

    MATH  Google Scholar 

  29. J. Kennedy and R.C. Eberhart, A discrete binary version of the particle swarm algorithm, In: Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Orlando, pp. 4104–4108, 1997.

    Google Scholar 

  30. J. Kennedy, R.C. Eberhart and Y. Shi, Swarm Intelligence, Morgan Kaufmann Publishers, San Francisco, 2001.

    Google Scholar 

  31. I. Khindanova, S. Rachev and E. Schwartz, Stable modeling of value at risk, Mathematical and Computer Modelling, vol. 34, nos. 9-11, pp. 1223–1259, 2001.

    Article  MathSciNet  Google Scholar 

  32. V. Krätschmer, Limit theorems for fuzzy-random variables, Fuzzy Sets and Systems, vol. 126, no. 2, pp. 253–263, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Kruse and K.D. Meyer, Statistics with Vague Data, D. Reidel Publishing Company, Dordrecht, 1987.

    Book  MATH  Google Scholar 

  34. K. J. Laidler, The World of Physical Chemistry, Oxford University Press, Oxford, 1993.

    Google Scholar 

  35. H.K. Lam and M. Narimani, Stability analysis and performance design for fuzzy-model-based control system under imperfect premise Matching, IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 949–961, 2009.

    Article  Google Scholar 

  36. G. Laporte, F.V. Louveaux and L.V. Hamme, Exact solution to a location problem with stochastic demands, Transportation Science, vol. 28, no. 2, pp. 95–103, 1994.

    Article  MATH  Google Scholar 

  37. S. Lee, S. Soak, S. Oh, W. Pedrycz and M. Jeon, Modified binary particle swarm optimization, Progress in Natural Science, vol. 18, no. 9, pp. 1161–1166, 2008.

    Article  MathSciNet  Google Scholar 

  38. S. Li and L. Guan, Fuzzy set-valued Gaussian processes and Brownian motions, Information Sciences, vol 177, no. 16, pp. 3251–3259, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Li, R. Zhao and W. Tang, Fuzzy random delayed renewal process and fuzzy random equilibrium renewal process, Journal of Intelligent & Fuzzy Systems, vol. 18, no. 2, pp. 149–156, 2007.

    MATH  Google Scholar 

  40. B. Li, M. Zhu and K. Xu, A practical engineering method for fuzzy reliability analysis of mechanical structures, Reliability Engineering & System Safety, vol. 67, no. 3, pp. 311–315, 2000.

    Article  Google Scholar 

  41. F. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system, Information Sciences, vol. 178, no. 9, pp. 2224–2236, 2008.

    Article  MathSciNet  Google Scholar 

  42. B. Liu, Fuzzy random chance-constrained programming, IEEE Transactions on Fuzzy Systems, vol. 9, no. 5, pp. 713–720, 2001.

    Article  Google Scholar 

  43. B. Liu, Fuzzy random dependent-chance programming, IEEE Transactions on Fuzzy Systems, vol. 9, no. 5, pp. 721–726, 2001.

    Article  Google Scholar 

  44. B. Liu, Theory and Practice of Uncertain Programming, Physica-Verlag, Heidelberg, 2002.

    MATH  Google Scholar 

  45. B. Liu, A survey of credibility theory, Fuzzy Optimization and Decision Making, vol.5, no.4, pp.387–408, 2006.

    Article  MathSciNet  Google Scholar 

  46. B. Liu and Y.K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transaction on Fuzzy Systems, vol. 10, no. 4, pp. 445–450, 2002.

    Article  Google Scholar 

  47. Y.K. Liu and B. Liu, Fuzzy random variable: A scalar expected value operator, Fuzzy Optimization and Decision Making, vol. 2. no. 2, pp. 143–160, 2003.

    Article  MathSciNet  Google Scholar 

  48. Y.K. Liu and B. Liu, A class of fuzzy random optimization: expected value models, Information Sciences, vol. 155, nos. 1-2, pp. 89–102, 2003.

    Article  Google Scholar 

  49. Y.K. Liu and B. Liu, On minimum-risk problems in fuzzy random decision systems, Computers & Operations Research, vol. 32, no. 2, pp. 257–283, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  50. Y. K. Liu and S. Wang, A credibility approach to the measurability of fuzzy random vectors, International Journal of Natural Sciences & Technology, vol. 1, no. 1, pp. 111–118, 2006.

    Google Scholar 

  51. Y.K. Liu, The approximation method for two-stage fuzzy random programming with recourse, IEEE Transactions on Fuzzy Systems, vol. 15, no. 6, pp. 1197–1208, 2007.

    Article  Google Scholar 

  52. Y.-C. Liu, P.-Y. Hsu, G.-J. Sheen, S. Ku and K.-W. Chang, Simultaneous determination of view selection and update policy with stochastic query and response time constraints, Information Sciences, vol. 178, no. 18, pp. 3491–3509, 2008.

    Article  MathSciNet  Google Scholar 

  53. F.V. Louveaux and D. Peeters, A dual-based procedure for stochastic facility location, Operations Research, vol. 40, no. 3, pp. 564–573, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  54. M. López-Diaz and M. A. Gil, Constructive definitions of fuzzy random variables, Statistics and Probability Letters, vol. 36, no. 2, pp. 135–143, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  55. M.K. Luhandjula, Fuzziness and randomness in an optimization framework, Fuzzy Sets and Systems, vol. 77, no. 3, pp. 291–297, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  56. D. Merkle, M. Middendorf and H. Schmeck, Ant colony optimization for resourceconstrained project scheduling, IEEE Transactions on Evolutionary Computation, vol. 6, no. 4, pp. 333–346, 2002.

    Article  Google Scholar 

  57. J.M. Mendel, Advances in type-2 fuzzy sets and systems, Information Sciences, vol. 177, no. 1, pp. 84–110, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  58. Z. Michalewicz, Genetic Algorithms + Data Stractures = Evolution Programs, Springer, New York, 1994.

    Google Scholar 

  59. B.M. Mohan and A. Sinha, Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets, ISA Transactions, vol. 47, no. 3, pp. 300–310, 2008.

    Article  Google Scholar 

  60. A.W. Mohemmed, N.C. Sahoo and T. K. Geok, Solving shortest path problem using particle swarm optimization, Applied Soft Computing, vol. 8, no. 4, pp. 1643–1653, 2008.

    Article  Google Scholar 

  61. A. Mukherjea, and K. Pothoven, Real and Functional Analysis, Plenum Press, New York, 1984.

    MATH  Google Scholar 

  62. S. Nahmias, Fuzzy variable, Fuzzy Sets and Systems, vol. 1, no. 2, pp. 97–101, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  63. W. Nather, Regression with fuzzy random data, Computational Statistics & Data Analysis, vol. 51, no. 1, pp. 235–252, 2006.

    Article  MathSciNet  Google Scholar 

  64. H.T. Nguyen and B. Wu, Foundations of Statistics with Fuzzy Data, Springer, New York, 2006.

    Google Scholar 

  65. W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets; Analysis and Design, MIT Press, Cambridge, MA, 1998.

    MATH  Google Scholar 

  66. V.R. Prasad and M. Raghavachari, Optimal allocation of interchangeable components in a series-parallel system, IEEE Transactions on Reliability, vol. 47, no. 3, pp. 255–260, 1998.

    Article  Google Scholar 

  67. Z. Qiao, Y. Zhang and G. Wang, Fuzzy random variable–valued exponential function, logarithmic function and power function, Fuzzy Sets and Systems, vol. 99, no. 3, pp. 311–324, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  68. R. Qin and Y.K. Liu, A new data envelopment analysis model with fuzzy random inputs and outputs, Journal of Applied Mathematics & Computing, in press (DOI: 10.1007/s12190-009-0289-7).

    Google Scholar 

  69. H. Raiffa and R. Schlaifer, Applied Statistical Decision Theory, Harvard University, Boston, MA, 1961.

    Google Scholar 

  70. M. Setnes, Supervised fuzzy clustering for rule extraction, Fuzzy Systems, IEEE Transactions, vol. 8, no. 4, pp. 416–424, 2000.

    Article  Google Scholar 

  71. A.F. Shapiro, Fuzzy random variables, Insurance: Mathematics and Economics, vol. 44, no. 2, pp. 307–314, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  72. W.E. Stein and K. Talati, Convex fuzzy random variables, Fuzzy Sets and Systems, vol. 6, no. 3, pp. 271–283, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  73. T. Stützle and H.H. Hoos, \(\mathcal{M}\mathcal{A}\mathcal{X}-\mathcal{M}\mathcal{I}\mathcal{N}\) Ant System, Future Generation Computer Systems, vol. 16, no. 8, pp. 889–914, 2000.

    Article  Google Scholar 

  74. K. Tanaka, T. Kosaki and H.O. Wang, Backing control problem of a mobile robot with multiple trailers: fuzzy modeling and LMI-based design, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 28, no. 3, pp. 329–337, 1998.

    Article  Google Scholar 

  75. M.F. Tasetiren and Y. C. Liang, A binary particle swarm optimization algorithm for lot sizing problem, Journal of Economic and Social Research, vol. 5, no. 2, pp. 1–20, 2003.

    Google Scholar 

  76. R. Tavakkoli-Moghaddam, J. Safari and F. Sassani, Reliability optimization of series-parallel system with a choice of redundancy strategies using a genetic algorithm, Reliability Engineering & System Safety, vol. 93, no. 4, pp. 550–556, 2008.

    Article  Google Scholar 

  77. P. Terán, Probabilistic foundations for measurement modelling using fuzzy random variables, Fuzzy Sets and Systems, vol. 158, no. 9, pp. 973–986, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  78. J.V. Tiel, Convex Analysis: An Introductory Text, John Wiley & Sons, 1984.

    Google Scholar 

  79. T.L. Urban, Inventory models with inventory-level-dependent demand: A comprehensive review and unifying theory, European Journal of Operational Research, vol. 162, no. 3, pp. 792–804, 2005.

    Article  MATH  Google Scholar 

  80. M.K. Urbanski and J. Wasowski, Fuzzy approach to the theory of measurement inexactness, Measurement, vol. 34, no. 1, pp. 67–74, 2003.

    Article  Google Scholar 

  81. R. Viertl, On reliability estimation based on fuzzy lifetime data, Journal of Statistical Planning and Inference, vol. 139, no. 5, pp. 1750–1755, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  82. B. Wang, S. Wang and J. Watada, Real options analysis based on fuzzy random variables, International Journal of Innovative Computing, Information & Control, vol.6, no.4, pp.1689–1698, 2010.

    MathSciNet  Google Scholar 

  83. B. Wang, S. Wang and J. Watada, Fuzzy portfolio selection models with Value-at-Risk, IEEE Transactions on Fuzzy Systems, to appear

    Google Scholar 

  84. S. Wang, Y. Liu and X. Dai, On the continuity and absolute continuity of credibility functions, Journal of Uncertain Systems, vol.1, no.3, pp.185–200, 2007.

    MATH  Google Scholar 

  85. S. Wang and J. Watada, T-independence condition for fuzzy random vector based on continuous triangular norms, Journal of Uncertain Systems, vol. 2, no. 2, pp. 155–160, 2008.

    Google Scholar 

  86. S. Wang and J. Watada, Modelling redundancy allocation for a fuzzy random parallel-series system, Journal of Computational & Applied Mathematics, vol. 232, no. 2, pp. 539–557, 2009.

    Article  MATH  Google Scholar 

  87. S. Wang and J. Watada, Fuzzy random renewal reward process and its applications, Information Sciences, vol. 179, no. 23, pp. 4057–4069, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  88. S. Wang and J. Watada, Reliability optimization of a series-parallel system with fuzzy random lifetimes, International Journal of Innovative Computing, Information & Control, vol.5, no.6, pp.1547–1558, 2009.

    Google Scholar 

  89. S. Wang, J. Watada and W. Pedrycz, Recourse-based facility location problems in hybrid uncertain environment, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 40, no. 4, pp. 1176–1187, 2010.

    Article  Google Scholar 

  90. S. Wang and J. Watada, Two-stage fuzzy stochastic programming with Value-at-Risk criteria, Applied Soft Computing, vol. 11, no. 1, pp. 1044–1056, 2011.

    Article  Google Scholar 

  91. S. Wang and J. Watada, Some properties of T-independent fuzzy variables, Mathematical & Computer Modelling, vol.53, nos.5-6, pp.970–984, 2011.

    MathSciNet  Google Scholar 

  92. S. Wang and J. Watada, A hybrid modified PSO approach to VaR-based facility location problems with variable capacity in fuzzy random uncertainty, Information Sciences, to appear, doi:10.1016/j.ins.2010.02.014.

    Google Scholar 

  93. J. Watada and W. Pedrycz, A fuzzy regression approach to acquisition of linguistic rules, Handbook on Granular Computation, In: W. Pedrycz, A. Skowron, V. Kreinovich (eds), Chapter 32, John Wiley & Sons Ltd, pp. 719–740, 2008.

    Google Scholar 

  94. J. Watada and S. Wang, Regression model based on fuzzy random variables, Seising Rodulf (Ed.), Chapter 26, Views on Fuzzy Sets and Systems from Different Perspectives, Spring-Verlag, Berlin, 2009.

    Google Scholar 

  95. J. Watada, S. Wang and W. Pedrycz, Building confidence-interval-based fuzzy random regression models, IEEE Transactions on Fuzzy Systems, vol. 17, no. 6, pp. 1273–1283, 2009.

    Article  Google Scholar 

  96. P. Wang, Fuzzy contactability and fuzzy variables, Fuzzy Sets and Systems, vol. 8, no. 1, pp.81–92, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  97. H.-C. Wu, The central limit theorems for fuzzy random variables, Information Sciences, vol. 120, nos. 1-4, pp. 239–256, 1999.

    Article  Google Scholar 

  98. J. Xu and Y.G. Liu, Multi-objective decision making model under fuzzy random environment and its application to inventory problems, Information Sciences, vol. 178, no. 15, pp. 2899–2914, 2008.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, S., Watada, J. (2012). Introduction. In: Fuzzy Stochastic Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9560-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9560-5_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9559-9

  • Online ISBN: 978-1-4419-9560-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics