Skip to main content

Resonator Characteristics of Bismuth Layer Structured Ferroelectric Materials

  • Chapter
  • First Online:
Lead-Free Piezoelectrics

Abstract

Crystallographic studies of Bismuth (Bi) layer structured ferroelectric (BLSF) materials were first carried out by Aurivillius [1–3] and their ferroelectric or piezoelectric properties have been revealed by a large number of researchers [4–106, 108, 110–117]. The piezoelectric properties of Na0.5Bi4.5Ti4O15 (NBT) [17, 23, 25, 26], BaBi4Ti4O15 [41], SrBi4Ti4O15 (SBTi) [17, 40, 54], and CaBi4Ti4O15 (CBT) [39, 53, 63] ceramic materials have been reported in terms of resonator application. Their applicability to practical application seemed to be quite high because the electromechanical coupling factors for thickness extensional mode vibrations were between 15 and 20%, and the typical values for the mechanical quality factor (Q m) were higher than 2,000 [39], and these properties are favorable for the oscillator applications. However, their temperature coefficient of resonance frequency (TCF) is not sufficiently low for the oscillator applications which require a stable resonance frequency with fine tolerance against various condition changes such as temperature changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aurivillius B (1949) Mixed bismuth oxides with layer lattices Ι. The structure type of CaNb2Bi2O9. Ark Kemi 1:463–480

    Google Scholar 

  2. Aurivillius B (1949) Mixed bismuth oxides with layer lattices ΙΙ. Structure of Bi4Ti3O12. Ark Kemi 1:499–512

    Google Scholar 

  3. Aurivillius B (1950) Mixed oxides with layer lattices ΙΙΙ. Structure of BaBi4Ti4O15. Ark Kemi 2:519–527

    Google Scholar 

  4. Uitert LGV, Egerton L (1961) Bismuth titanate. A ferroelectric. J Appl Phys 32:959

    Google Scholar 

  5. Subbarao EC (1961) Ferroelectricity in Bi4Ti3O12 and its solid solutions. Phys Rev 122:804–807

    Google Scholar 

  6. Subbarao EC (1961) Ferroelectricity in mixed bismuth oxides with layer-type structure. J Chem Phys 34:695–696

    Google Scholar 

  7. Subbarao EC (1962) Crystal chemistry of mixed bismuth oxides with layer-type structure. J Am Ceram Soc 45:166–169

    Google Scholar 

  8. Subbarao EC (1962) A family of ferroelectric bismuth compounds. J Phys Chem Solids 23:665–676

    Google Scholar 

  9. Aurivillius B, Fang PH (1962) Ferroelectricity in the compound Ba2Bi4Ti5O18. Phys Rev 126:893–896

    Google Scholar 

  10. Cummins SE, Cross LE (1968) Electrical and optical properties of ferroelectric Bi4Ti3O12 single crystals. J Appl Phys 39:2268–2274

    Google Scholar 

  11. Cross LE, Pohanka RC (1968) A thermodynamic analysis of ferroelectricity in bismuth titanate. J Appl Phys 39:3992–3995

    Google Scholar 

  12. Wolfe RW, Newnham RE, Kay MI (1969) Crystal structure of Bi2WO6. Solid State Commun 7:1797–1801

    Google Scholar 

  13. Fouskova A, Cross LE (1970) Dielectric properties of bismuth titanate. J Appl Phys 41:2834–2838

    Google Scholar 

  14. Wolfe RW, Newnham RE, Smithf DK, Kay MI (1971) Crystal structure of Bi3TiNbO9. Ferroelectrics 3:1–7

    Google Scholar 

  15. Newnham RE, Wolfe RW, Dorrian JF (1971) Structural basis of ferroelectricity in the bismuth titanate family. Mater Res Bull 6:1029–1039

    Google Scholar 

  16. Newkirk HW, Quadflieg P, Liebertz J, Kockel A (1972) Growth, crystallography and dielectric properties of Bi2WO6. Ferroelectrics 4:51–55

    Google Scholar 

  17. Ikegami S, Ueda I (1974) Piezoelectricity in ceramics of ferroelectric bismuth compound with layer structure. Jpn J Appl Phys 13:1572–1577

    Google Scholar 

  18. Kikuchi T, Watanabe A, Uchida K (1977) A family of mixed-layer type bismuth compounds. Mater Res Bull 12:299–304

    Google Scholar 

  19. Ismailzade IH, Aliyev IM, Ismailov RM, Alekberov AI, Rzayev DA (1979) Ferroelectricity in Bi2MoO6. Ferroelectrics 22:853–854

    Google Scholar 

  20. Hellwege KH (ed) (1981) “Landolt-Bornstein”, group III: crystal and solid state physics, vol 16. Springer, Berlin

    Google Scholar 

  21. Smolenskii GA, Bokov VA, Isupov VA, Krainik NN, Pasynkov RE, Sokolov AI (1984) Ferroelectrics and related materials. In: Smolenskii GA (ed) Ferroelectricity and related phenomena, vol 3. Gordon & Breach Science Publishers, Amsterdam

    Google Scholar 

  22. Takenaka T (1984) Grain orientation of bismuth layer structured ferroelectric ceramics and its application to piezoelectric and pyroelectric materials. Doctoral thesis, Kyoto University, Kyoto (in Japanese)

    Google Scholar 

  23. Takenaka T, Sakata K (1985) Piezoelectric properties of bismuth layer-structured ferroelectric Na0.5Bi4.5Ti4O15 ceramic. Jpn J Appl Phys 24(Suppl 24–2):730–732

    Google Scholar 

  24. Takenaka T, Sakata K (1985) Compositions and electrical properties of complex bismuth layer-structured ferroelectric ceramics. Jpn J Appl Phys 24(Suppl 24–3):117–119

    Google Scholar 

  25. Takenaka T, Sakata K (1988) Grain-oriented and Mn-doped (NaBi)(1−x)/2Ca x Bi4Ti4O15 ceramics for piezo- and pyrosensor materials. Sensors Mater 1:35–46

    Google Scholar 

  26. Takenaka T, Okuda T, Takegawara K (1997) Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3. Ferroelectrics 196:175–178

    Google Scholar 

  27. Madelung O (ed) (1990) “Landolt-Bornstein”, group III: crystal and solid state physics, vol 28. Springer, Berlin

    Google Scholar 

  28. Chu F, Damjanovic D, Steiner O, Setter N (1995) Piezoelectricity and phase transitions of the mixed-layer bismuth titanate niobate Bi7Ti4NbO21. J Am Ceram Soc 78:3142–3144

    Google Scholar 

  29. Takenaka T, Otoh T, Mutoh S, Sasaki T (1996) Possibility of new bismuth layer-structured ferroelectrics Nam-1.5Bi2.5NbmO3m+3 (2<m<5). Ferroelectrics 185:55–58

    Google Scholar 

  30. Jiménez B, Durán-Martín P, Castro A, Millán P (1996) Obtention and characterization of modified Bi2SrNb2O9 Aurivillius-typeceramics. Ferroelectrics 186:93–96

    Google Scholar 

  31. Shulman HS, Testorf M, Damjanovic D, Setter N (1996) Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate. J Am Ceram Soc 79:3124–3128

    Google Scholar 

  32. Horn JA, Zhang SC, Selvaraj U, Messing GL, Trolier-McKinstry S, Yokoyama M (1996) Fabrication of textured Bi4Ti3O12 by templated grain growth. Proceedings of the 10th IEEE international symposium on applications of ferroelectrics, pp 943–946

    Google Scholar 

  33. Takenaka T, Sasaki T (1997) New bismuth layer-structured ferroelectrics with niobium ions as B-site. Ferroelectrics 201:117–126

    Google Scholar 

  34. Komura K, Nagata H, Takenaka T (1998) Ferroelectric properties of bismuth layer-structured oxides. Ferroelectrics 218:233–240

    Google Scholar 

  35. Hayashi T, Sawayanagi S, Hara T, Takahashi H, Ueno S (1998) Influence of Bi excess and Sr deficient compositions on the microstructure and dielectric properties of Sr1−x Bi2+y Ta2O9 ferroelectric ceramics. J Korean Phys Soc 32:S1195–S1197

    Google Scholar 

  36. Thomazini D, Gelfuso MV, Eiras JA (1998) Synthesis, dielectric and ferroelectric characterization of bismuth titanate ceramics. J Korean Phys Soc 32:S1178–S1179

    Google Scholar 

  37. Durán-Martín P, Castro A, Millán P, Jiménez B (1998) Influence of Bi-site substitution on the ferroelectricity of the Aurivillius compound Bi2SrNb2O9. J Mater Res 13:2565–2571

    Google Scholar 

  38. Ando A, Kimura M, Sakabe Y (1999) Energy trapping phenomenon of piezoelectric SrBi2Nb2O9 ceramics. Proceedings of the 11th IEEE international symposium on applications of ferroelectrics, pp 303–306

    Google Scholar 

  39. Kimura M, Sawada T, Ando A, Sakabe Y (1999) Energy trapping characteristics of bismuth layer structured compound CaBi4Ti4O15. Jpn J Appl Phys 38:5557–5560

    Google Scholar 

  40. Hirose M, Suzuki T, Oka H, Itakura K, Miyauchi Y, Tsukada T (1999) Piezoelectric properties of SrBi4Ti4O15-based ceramics. Jpn J Appl Phys 38:5561–5563

    Google Scholar 

  41. Nakai Y, Fukuoka S (1999) Piezoelectric and mechanical properties of BaBi4Ti4O15/Ba4Ti13O30 ceramics. Jpn J Appl Phys 38:5568–5571

    Google Scholar 

  42. Voisard C, Damjanovic D, Setter N (1999) Electrical conductivity of strontium bismuth titanate under controlled oxygen partial pressure. J Eur Ceram Soc 19:1251–1254

    Google Scholar 

  43. Villegas M, Caballero AC, Moure C, Durán P, Fernández JF (1999) Factors affecting the electrical conductivity of donor-doped Bi4Ti3O12 piezoelectric ceramics. J Am Ceram Soc 82:2411–2416

    Google Scholar 

  44. Ando A, Kimura M, Sakabe Y (1999) Crystalline structure and piezoelectric properties of Bi layer structured compound SrBi2Nb2O9. In: Extended abstract of the 9th US-Japan seminar on dielectric and piezoelectric ceramics, pp 115–118

    Google Scholar 

  45. Jiménez B, Durán-Martín P, Jiménez-Rioboo R, Jiménez R (1999) Thermal behavior of the elastic (Young’s) modulus in SBN-derived compounds (Bi2SrNb2O9). J Eur Ceram Soc 19:1315–1319

    Google Scholar 

  46. Yan F, Wang Y, Liu J, Zhang Z, Chen X (1999) Mechanical relaxation in SrBi2Ta2O9 ceramics. Appl Phys Lett 74:2794–2796

    Google Scholar 

  47. Jiménez B, Durán-Martín P, Jiménez-Rioboo R, Jiménez R (2000) On the existence of a second phase transition in ferroelectrics with Aurivillius-type structure through the study of the Young’s modulus. J Phys Condens Matter 12:3883–3895

    Google Scholar 

  48. Jiménez B, Pardo L, Castro A, Millán P, Jiménez R, Elaatmani M, Oualla M (2000) Influence of the preparation on the microstructure and ferroelectricity of the (SBN)1−x (BTN) x ceramics. Ferroelectrics 241:279–286

    Google Scholar 

  49. Nagata H, Takahashi T, Chikushi N, Takenaka T (2000) A series of bismuth layer-structured ferroelectrics. Ferroelectrics 241:309–316

    Google Scholar 

  50. Pardo L, Castro A, Millán P, Alemany C, Jiménez R, Jiménez B (2000) (Bi3TiNbO9) x (SrBi2Nb2O9)1−x Aurivillius type structure piezoelectric ceramics obtained from mechanochemically activated oxides. Acta Mater 48:2421–2428

    Google Scholar 

  51. Shulman HS, Damjanovic D, Setter N (2000) Niobium doping and dielectric anomalies in bismuth titanate. J Am Ceram Soc 83:528–532

    Google Scholar 

  52. Sagalowicz L, Chu F, Durán-Martin P, Damjanovic D (2000) Microstructure, structural defects, and piezoelectric response of Bi4Ti3O12 modified by Bi3TiNbO9. J Appl Phys 88:7258–7263

    Google Scholar 

  53. Yan H, Li C, Zhou J, Zhu W, He L, Song Y (2000) A-site (MCe) substitution effects on the structures and properties of CaBi4Ti4O15 ceramics. Jpn J Appl Phys 39:6339–6342

    Google Scholar 

  54. Oka H, Hirose M, Tsukada T, Watanabe Y, Nomura T (2000) Thickness-shear vibration mode characteristics of SrBi4Ti4O15-based ceramics. Jpn J Appl Phys 39:5613–5615

    Google Scholar 

  55. Ramulu NV, Prasad G, Suryanarayana SV, Sankaram TB (2000) Studies on electrical properties of SrBi4Ti4−3x Fe4x O15. Bull Mater Sci 23:431–437

    Google Scholar 

  56. Shimakawa Y, Imai H, Kimura H, Kimura S, Kubo Y, Nishibori E, Takata M, Sakata M, Kato K, Hiroi Z (2002) Orbital hybridization and covalency in paraelectric and ferroelectric SrBi2Nb2O9. Phys Rev B66:144110

    Google Scholar 

  57. Nagata H, Takahashi T, Yano Y, Takenaka T (2001) Electrical properties of bismuth layer-structured ferroelectrics. Ferroelectrics 261:219–224

    Google Scholar 

  58. Makovec D, Pribošic I, Samardžija Z, Drofeniki M (2001) Incorporation of aliovalent dopants into the bismuth-layered Perovskite-like structure of BaBi4Ti4O15. J Am Ceram Soc 84:2702–2704

    Google Scholar 

  59. Yan H, Li C, Zhou J, Zhu W, He L, Song Y, Yu Y (2001) Effects of A-site (NaCe) substitution with Na-deficiency on structures and properties of CaBi4Ti4O15-based high-Curie-temperature ceramics. Jpn J Appl Phys 40:6501–6505

    Google Scholar 

  60. Noguchi Y, Miyayama M (2001) Large remanent polarization of vanadium-doped Bi4Ti3O12. Appl Phys Lett 78:1903–1905

    Google Scholar 

  61. Moure A, Pardo L, Alemany C, Millán P, Castro A (2001) Piezoelectric ceramics based on Bi3TiNbO9 from mechanochemically activated precursors. J Eur Ceram Soc 21:1399–1402

    Google Scholar 

  62. Ricote J, Pardo L, Moure A, Castro A, Millán P, Chateigner D (2001) Microcharacterisation of grain-oriented ceramics based on Bi3TiNbO9 obtained from mechanochemically activated precursors. J Eur Ceram Soc 21:1403–1407

    Google Scholar 

  63. Ogawa H, Kimura M, Ando A, Sakabe Y (2001) Temperature dependence of piezoelectric properties of grain-oriented CaBi4Ti4O15 ceramics. Jpn J Appl Phys 40:5715–5718

    Google Scholar 

  64. Nanao M, Hirose M, Tsukada T (2001) Piezoelectric properties of Bi3TiNbO9-BaBi2Nb2O9 ceramics. Jpn J Appl Phys 40:5727–5730

    Google Scholar 

  65. Shibata K, Shoji K, Sakata K (2001) Sr1−x Ca x Bi2Ta2O9 piezoelectric ceramics with high mechanical quality factor. Jpn J Appl Phys 40:5719–5721

    Google Scholar 

  66. Noguchi Y, Shimizu H, Miyayama M, Oikawa K, Kamiyama T (2001) Ferroelectric properties and structure distortion in A-site-modified SrBi2Ta2O9. Jpn J Appl Phys 40:5812–5815

    Google Scholar 

  67. Kholkin AL, Avdeev M, Costa MEV, Baptista JL (2001) Ba-based layered ferroelectric relaxors. Integr Ferroelectr 37:305–313

    Google Scholar 

  68. Kholkin AL, Avdeev M, Costa MEV, Baptista JL (2001) Dielectric relaxation in Ba-based layered perovskites. Appl Phys Lett 79:662–664

    Google Scholar 

  69. Miranda C, Costa MEV, Avdeev M, Kholkin AL, Baptista JL (2001) Relaxor properties of Ba-based layered perovskites. J Eur Ceram Soc 21:1303–1306

    Google Scholar 

  70. Noguchi Y, Miyayama M, Kudo T (2001) Direct evidence of A-site-deficient strontium bismuth tantalate and its enhanced ferroelectric properties. Phys Rev B 63:214102

    Google Scholar 

  71. Wu Y, Nguyen C, Seraji S, Forbess MJ, Limmer SJ, Chou T, Cao G (2001) Processing and properties of strontium bismuth vanadate niobate ferroelectric ceramics. J Am Ceram Soc 84:2882–2888

    Google Scholar 

  72. Ando A, Kimura M, Sawada T, Hayashi K, Sakabe Y (2002) Piezoelectric and ferroelectric properties of the modified SrBi2Nb2O9 ceramics. Ferroelectrics 268:65–70

    Google Scholar 

  73. Ando A, Sawada T, Ogawa H, Kimura M, Sakabe Y (2002) Fine-tolerance resonator applications of bismuth-layer-structured ferroelectric ceramics. Jpn J Appl Phys 41:7057–7061

    Google Scholar 

  74. Noguchi Y, Miyayama M, Oikawa K, Kamiyama T, Osada M, Kakihana M (2002) Defect engineering for control of polarization properties in SrBi2Ta2O9. Jpn J Appl Phys 41:7062–7075

    Google Scholar 

  75. Noguchi Y, Shimizu H, Miyayama M (2002) Lattice distortion and ferroelectric properties in Pb-substituted SrBi2Ta2O9. J Ceram Soc Japan 110:999–1024

    Google Scholar 

  76. Komagata K, Takeda H, Shiosaki T (2002) Synthesis and ferroelectric properties of M0.5Bi2.5Ta2O9(M=Na, K) ceramics. J Ceram Soc Jpn 110:255–258

    Google Scholar 

  77. Shimakawa Y, Imai H, Kimura H, Kimura S, Kubo Y, Nishibori E, Takata M, Sakata M, Kato K, Hiroi Z (2002) Orbital hybridization and covalency in paraelectric and ferroelectric SrBi2Nb2O9. Phys Rev B66:144110

    Google Scholar 

  78. Sugaya Y, Kishi Y, Koike Y, Shoji K, Sakata K (2002) (Sr0.2Ca0.8)Bi2Ta2O9-based piezoelectric ceramics substituted by neodymium with high mechanical quality factor. J Ceram Soc Jpn 110:1032–1034 (in Japanese)

    Google Scholar 

  79. Ando A (2003) Doctoral thesis, Tokyo Institute of Technology, Tokyo

    Google Scholar 

  80. Sanson A, Whatmore RW (2002) Properties of Bi4Ti3O12-(Na1/2Bi1/2)TiO3 piezoelectric ceramics. Jpn J Appl Phys 41:7127–7130

    Google Scholar 

  81. Yokosuka M (2002) Dielectric and piezoelectric properties of Mn-modified Bi4CaTi4O15 based ceramics. Jpn J Appl Phys 41:7123–7126

    Google Scholar 

  82. Zhao M, Wang C, Zhong W, Wang J, Chen H (2002) Ferroelectric, piezoelectric and pyroelectric properties of Sr1+x Bi4−x Ti4−x Ta x O15 ceramics (x=0–1). Jpn J Appl Phys 41:1455–1458

    Google Scholar 

  83. Nagata H, Takenaka T (2002) Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with Sr-Bi-Ti-Ta system. Ferroelectrics 273:359–364

    Google Scholar 

  84. Ando A, Kimura M, Sakabe Y (2003) Piezoelectric resonance characteristics of SrBi2Nb2O9-based ceramics. Jpn J Appl Phys 42:150–156

    Google Scholar 

  85. Ando A, Kimura M, Sakabe Y (2003) Piezoelectric properties of Ba and Ca doped SrBi2Nb2O9 based ceramic materials. Jpn J Appl Phys 42:520–525

    Google Scholar 

  86. Sawada T, Ando A, Sakabe Y, Damjanovic D, Setter N (2003) Properties of the elastic anomaly in SrBi2Nb2O9-based ceramics. Jpn J Appl Phys 42:6094–6098

    Google Scholar 

  87. Nagata H, Itagaki M, Takenaka T (2003) Piezoelectric properties of bismuth layer-structured ferroelectric SrBi2Ta2O9-Bi3TiTaO9 ceramics. Ferroelectrics 286:85–92

    Google Scholar 

  88. Suzuki M, Nagata H, Ohara J, Funakubo H, Takenaka T (2003) Bi3−x M x TiTaO9 (M = La or Nd) ceramics with high mechanical quality factor Q m. Jpn J Appl Phys 42:6090–6093

    Google Scholar 

  89. Ando A, Kimura M, Minamikawa T, Sakabe Y (2005) Layered piezoelectric ceramics for fine-tolerance resonator applications. Int J Appl Ceram Technol 2:33–44

    Google Scholar 

  90. Horiuchi S, Nagata H, Takenaka T (2005) Piezoelectric properties of Sr2Bi4Ti5O18-Ca2Bi4Ti5O18 solid solution ceramics. Ferroelectrics 324:3–9

    Google Scholar 

  91. Ogawa H, Sawada T, Kimura M, Shiratsuyu K, Wada N, Ando A, Tamura H, Sakabe Y (2005) Piezoelectric properties of SrBi2Nb2O9 textured ceramics. Jpn J Appl Phys 44:7050–7054

    Google Scholar 

  92. Aoyagi R, Inai S, Hiruma Y, Takenaka T (2005) Piezoelectric properties of vanadium-substituted strontium bismuth niobate. Jpn J Appl Phys 44:7055–7058

    Google Scholar 

  93. Miyayama M, Noguchi Y (2005) Polarization properties and oxygen-vacancy distribution of SrBi2Ta2O9 ceramics modified by Ce and Pr. J Eur Ceram Soc 25:2477–2482

    Google Scholar 

  94. Moure A, Pardo L (2005) Microstructure and texture dependence of the dielectric anomalies and D.C. conductivity of Bi3TiNbO9 ferroelectric ceramics. J Appl Phys 97:084103

    Google Scholar 

  95. Aoyagi R, Inai S, Hiruma Y, Takenaka T (2006) Piezoelectric properties of SrBi2M2−x V x O9 (M = Nb and Ta) ceramics. J Electroceram 17:1087–1090

    Google Scholar 

  96. Zhang S, Kim N, Shrout TR, Kimura M, Ando A (2006) High temperature properties of manganese modified CaBi4Ti4O15 ferroelectric ceramics. Solid State Commun 140:154–158

    Google Scholar 

  97. Sawada T, Ogawa H, Kimura M, Shiratsuyu K, Ando A (2006) Piezoelectric properties in textured ceramics of SrBi2Nb2O9. Key Eng Mater 320:15–18

    Google Scholar 

  98. Zheng L, Li G, Yin Q, Kwok KW (2006) Phase transition and failure at high temperature of bismuth-layered piezoelectric ceramics. J Am Ceram Soc 89:1317–1320

    Google Scholar 

  99. Inai S, Sato J, Aoyagi R, Hiruma Y, Suzuki M, Nagata H, Takenaka T (2007) Piezoelectric properties of V and Ba substituted SrBi2Nb2O9 ceramics. Ferroelectrics 358:148–152

    Google Scholar 

  100. Suzuki M, Inai S, Tokutsu T, Nagata H, Takenaka T (2007) Ferroelectric property of Bi3TiTaO9 based ceramics with Nd substitution. Ferroelectrics 356:62–66

    Google Scholar 

  101. Takenaka T, Shoji K, Takai H, Sakata K (1976) Ferroelectric and dielectric properties of press forged Bi4Ti3O12 ceramics. In: Proceedings of the19th Japan congress on materials research. The Society of Materials Science, Kyoto, pp 230–233

    Google Scholar 

  102. Tani T (1998) Crystalline-oriented piezoelectric bulk ceramics with a perovskite-type structure. J Korean Phys Soc 32:S1217–S1220

    Google Scholar 

  103. Watanabe H, Kimura T, Yamaguchi T (1989) Particle orientation during tape casting in the fabrication of grain-oriented bismuth titanate. J Am Ceram Soc 72:289–293

    Google Scholar 

  104. Takeuchi T, Tani T, Saito Y (1999) Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn J Appl Phys 38:5553–5556

    Google Scholar 

  105. Takenaka T, Sakata K (1989) Preparations and properties of grain-oriented ceramics and their applications to electronic materials. Ceram Jpn 24:965–974 (in Japanese)

    Google Scholar 

  106. Kimura M, Ogawa H, Sawada T, Shiratsuyu K, Wada N, Ando A (2008) Piezoelectric properties in textured ceramics of bismuth layer-structured ferroelectrics. J Electroceram 21:55–60

    Google Scholar 

  107. Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I. J Inorg Nucl Chem 9:113–123

    Google Scholar 

  108. Kimura M, Ogawa H, Kuroda D, Sawada T, Higuchi Y, Takagi H, Sakabe Y (2007) Temperature dependence of piezoelectric properties for textured SBN ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 54:2482–2486

    Google Scholar 

  109. Wersing W (2002) Applications of piezoelectric materials: an introductory review. In: Setter N (ed) Piezoelectric materials in devices. EPFL, Lausanne, pp 29–82

    Google Scholar 

  110. Takahashi S, Hirose S (1992) Vibration-level characteristics of lead-zirconate-titanate ceramics. Jpn J Appl Phys 31:3055–3057

    Google Scholar 

  111. Kawada S, Ogawa H, Kimura M, Higuch Y, Takagi H (2007) High-power characteristics of textured bismuth layer structured ferroelectric ceramics. Extended abstract of the 13th US-Japan seminar on dielectric and piezoelectric ceramics, pp 204–207

    Google Scholar 

  112. Kawada S, Ogawa H, Kimura M, Shiratsuyu K, Niimi H (2006) High-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 ceramics. Jpn J Appl Phys 45:7455–7459

    Google Scholar 

  113. Kawada S, Ogawa H, Kimura M, Shiratsuyu K, Niimi H (2007) Texture fraction dependences of high-power characteristics for textured SrBi2Nb2O9 ceramics. Ferroelectrics 356:175–179

    Google Scholar 

  114. Ogawa H, Kawada S, Kimura M, Shiratsuyu K, Sakabe Y (2007) High-power piezoelectric characteristics of textured bismuth layer structured ferroelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control 54:2500–2504

    Google Scholar 

  115. Cummins SE, Cross LE (1967) Crystal symmetry, optical properties, and ferroelectric polarization of Bi4Ti3O12 single crystals. Appl Phys Lett 10:14–15

    Google Scholar 

  116. Newnham RE (1975) Ferroelectrics and other ferroic materials: structure-property relations, chapter IV-4. Springer, New York, pp 86–89

    Google Scholar 

  117. Ogawa H, Kawada S, Kimura M, Higuchi Y, Takagi H (2009) High-power characteristics of thickness shear mode for textured SrBi2Nb2O9 ceramics. Jpn J Appl Phys 48:09KD05

    Google Scholar 

  118. Li E, Kakemoto H, Hoshina T, Tsurumi T (2008) A shear-mode ultrasonic motor using potassium sodium niobate-based ceramics with high mechanical quality factor. Jpn J Appl Phys 47:7702–7706

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ando, A., Kimura, M. (2012). Resonator Characteristics of Bismuth Layer Structured Ferroelectric Materials. In: Priya, S., Nahm, S. (eds) Lead-Free Piezoelectrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9598-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9598-8_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9597-1

  • Online ISBN: 978-1-4419-9598-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics