Skip to main content

Electrophoretic Deposition of Nanocrystals in Non-polar Solvents

  • Chapter
  • First Online:
Electrophoretic Deposition of Nanomaterials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Non-polar solvent electrophoretic deposition (EPD) is a rapidly emerging technique for the formation of tightly packed, robust, and smooth films of nanocrystals, typically synthesized through colloidal chemistry. Using non-polar solvents, such as hexane , for the nanocrystal deposition suspension promotes the transport of only the desired charged species, the nanocrystals, toward the field-emanating electrodes where the materials eventually deposit. This approach allows for substantial control over the thickness, roughness, and packing of the nanocrystals, an attractive characteristic for the possible implementation of nanocrystalline films into next generation device applications. This chapter reviews recent progress in non-polar solvent electrophoretic deposition, including the production of freestanding films of nanocrystals that were assembled by EPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, D., Rubner, M.F., Cohen, R.E.: All-nanoparticle thin film coatings. Nano Lett. 6(10), 2305–2312 (2006)

    CAS  PubMed  Google Scholar 

  2. Shchukin, D.G., Zheludkevich, M., Yasakau, K., Lamaka, S., Ferreira, M.G.S., Mohwald, H.: Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv. Mater. 18(13), 1672–1678 (2006)

    CAS  Google Scholar 

  3. Maenosono, S., Okubo, T., Yamaguchi, Y.: Overview of nanoparticle array formation by wet coating. J. Nanopart. Res. 5(1–2), 5–15 (2003)

    CAS  Google Scholar 

  4. Tian, Y.C., Fendler, J.H.: Langmuir-Blodgett film formation from fluorescence-activated, surfactant-capped, size-selected CdS nanoparticles spread on water surfaces. Chem. Mater. 8(4), 969–974 (1996)

    CAS  Google Scholar 

  5. Islam, M.A., Herman, I.P.: Electrodeposition of patterned CdSe nanocrystal films using thermally charged nanocrystals. Appl. Phys. Lett. 80(20), 3823–3825 (2002)

    CAS  Google Scholar 

  6. Mahajan, S.V., Kavich, D.W., Redigolo, M.L., Dickerson, J.H.: Structural properties of electrophoretically deposited europium oxide nanocrystalline thin films. J. Mater. Sci. 41(24), 8160–8165 (2006)

    CAS  Google Scholar 

  7. Hamaker, H.C., Verwey, E.J.W.: Colloid stability. The role of the forces between the particles in electrodeposition and other phenomena. Trans. Faraday Soc. 36, 180–185 (1940)

    CAS  Google Scholar 

  8. Koelmans, H.: Philips Res. Rep. 10, 161 (1955)

    Google Scholar 

  9. Giersig, M., Mulvaney, P.: Formation of ordered 2-dimensional gold colloid lattices by electrophoretic deposition. J. Phys. Chem. 97(24), 6334–6336 (1993)

    CAS  Google Scholar 

  10. Islam, M.A., Xia, Y.Q., Steigerwald, M.L., Yin, M., Liu, Z., O’Brien, S., Levicky, R., Herman, I.P.: Addition, suppression, and inhibition in the electrophoretic deposition of nanocrystal mixture films for CdSe nanocrystals with gamma-Fe2O3 and Au nanocrystals. Nano Lett. 3(11), 1603–1606 (2003)

    CAS  Google Scholar 

  11. Islam, M.A., Xia, Y.Q., Telesca, D.A., Steigerwald, M.L., Herman, I.P.: Controlled electrophoretic deposition of smooth and robust films of CdSe nanocrystals. Chem. Mater. 16(1), 49–54 (2004)

    CAS  Google Scholar 

  12. Teranishi, T., Hosoe, M., Tanaka, T., Miyake, M.: Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B. 103(19), 3818–3827 (1999)

    CAS  Google Scholar 

  13. Wong, E.M., Searson, P.C.: Kinetics of electrophoretic deposition of zinc oxide quantum particle thin films. Chem. Mater. 11(8), 1959–1961 (1999)

    CAS  Google Scholar 

  14. Wong, E.M., Searson, P.C.: ZnO quantum particle thin films fabricated by electrophoretic deposition. Appl. Phys. Lett. 74(20), 2939–2941 (1999)

    CAS  Google Scholar 

  15. Zhao, S.Y., Lei, S.B., Chen, S.H., Ma, H.Y., Wang, S.Y.: Assembly of two-dimensional ordered monolayers of nanoparticles by electrophoretic deposition. Colloid Polym. Sci. 278(7), 682–686 (2000)

    CAS  Google Scholar 

  16. Somarajan, S., Hasan, S.A., Adkins, C.T., Harth, E., Dickerson, J.H.: Controlled electrophoretic deposition of uniquely nanostructured star polymer films. J. Phys. Chem. B. 112(1), 23–28 (2008)

    CAS  PubMed  Google Scholar 

  17. Islam, M.A., Xia, S.G.: Electrostatic properties of maghemite (gamma-Fe2O3) nanocrystalline quantum dots determined by electrophoretic deposition. J. Phys.: Condens. Matter 21(28) (2009). doi:28530110.1088/0953-8984/21/28/285301

    Google Scholar 

  18. Jia, S., Banerjee, S., Herman, I.P.: Mechanism of the electrophoretic deposition of CdSe nanocrystal films: influence of the nanocrystal surface and charge. J. Phys. Chem. C. 112(1), 162–171 (2008). doi:10.1021/jp0733320

    CAS  Google Scholar 

  19. Jia, S.G., Banerjee, S., Lee, D., Bevk, J., Kysar, J.W., Herman, I.P.: Fracture in electrophoretically deposited CdSe nanocrystal films. J. Appl. Phys. 105(10) (2009). doi:10351310.1063/1.3118630

    Google Scholar 

  20. Mahajan, S.V., Dickerson, J.H.: Understanding the growth of Eu2O3 nanocrystal films made via electrophoretic deposition. Nanotechnology 21(14) (2010). doi:10.1088/0957-4484/21/14/145704

    Google Scholar 

  21. Mahajan, S.V., Dickerson, J.H.: Dielectric properties of colloidal Gd2O3 nanocrystal films fabricated via electrophoretic deposition. Appl. Phys. Lett. 96(11) (2010). doi:10.1063/1.3359418

    Google Scholar 

  22. Giersig, M., Mulvaney, P.: Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9(12), 3408–3413 (1993)

    CAS  Google Scholar 

  23. Mohammad, A.I.: Amphoteric CdSe nanocrystalline quantum dots. Nanotechnology 19(25), 255708 (2008)

    Google Scholar 

  24. Smith, N.J., Emmett, K.J., Rosenthal, S.J.: Photovoltaic cells fabricated by electrophoretic deposition of CdSe nanocrystals. Appl. Phys. Lett. 93(4) (2008). doi:04350410.1063/1.2965464

    Google Scholar 

  25. Kavich, D.W., Hasan, S.A., Mahajan, S.V., Park, J.H., Dickerson, J.H.: Field dependence of the spin relaxation within a film of iron oxide nanocrystals formed via electrophoretic deposition. Nanoscale Res. Lett. 5(10), 1540–1545 (2010). doi:.1007/s11671-010-9674-2

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)

    CAS  Google Scholar 

  27. Bowers, M.J., McBride, J.R., Rosenthal, S.J.: White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 127(44), 15378–15379 (2005). doi:10.1021/ja055470d

    CAS  PubMed  Google Scholar 

  28. Murray, C.B., Norris, D.J., Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115(19), 8706–8715 (1993)

    CAS  Google Scholar 

  29. Nirmal, M., Brus, L.: Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32(5), 407–414 (1999)

    CAS  Google Scholar 

  30. Peng, X.G., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P.: Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119(30), 7019–7029 (1997)

    CAS  Google Scholar 

  31. Rogach, A.L., Kornowski, A., Gao, M.Y., Eychmuller, A., Weller, H.: Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J. Phys. Chem. B. 103(16), 3065–3069 (1999)

    CAS  Google Scholar 

  32. Blanton, S.A., Leheny, R.L., Hines, M.A., GuyotSionnest, P.: Dielectric dispersion measurements of CdSe nanocrystal colloids: observation of a permanent dipole moment. Phys. Rev. Lett. 79(5), 865–868 (1997)

    CAS  Google Scholar 

  33. Dollefeld, H., Weller, H., Eychmuller, A.: Particle-particle interactions in semiconductor nanocrystal assemblies. Nano Lett. 1(5), 267–269 (2001)

    Google Scholar 

  34. Nann, T., Schneider, J.: Origin of permanent electric dipole moments in wurtzite nanocrystals. Chem. Phys. Lett. 384(1–3), 150–152 (2004)

    CAS  Google Scholar 

  35. Rabani, E.: Structure and electrostatic properties of passivated CdSe nanocrystals. J. Chem. Phys. 115(3), 1493–1497 (2001)

    CAS  Google Scholar 

  36. Shim, M., Guyot-Sionnest, P.: Permanent dipole moment and charges in colloidal semiconductor quantum dots. J. Chem. Phys. 111(15), 6955–6964 (1999)

    CAS  Google Scholar 

  37. van Dijken, S., Fain, X., Watts, S.M., Nakajima, K., Coey, J.M.D.: Magnetoresistance of Fe3O4/Au/Fe3O4 and Fe3O4/Au/Fe spin-valve structures. J. Magn. Magn. Mater. 280(2–3), 322–326 (2004)

    CAS  Google Scholar 

  38. Gupta, A., Sun, J.Z.: Spin-polarized transport and magnetoresistance in magnetic oxides. J. Magn. Magn. Mater. 200(1–3), 24–43 (1999)

    Google Scholar 

  39. Hu, G., Suzuki, Y.: Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys. Rev. Lett. 89(27), 276601 (2002)

    CAS  PubMed  Google Scholar 

  40. Bate, G.: Ferromagnetic materials, recording materials, vol. 2. North-Holland, Amsterdam (1980)

    Google Scholar 

  41. Ito, A., Shinkai, M., Honda, H., Kobayashi, T.: Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100(1), 1–11 (2005)

    CAS  PubMed  Google Scholar 

  42. Kang, Y.S., Risbud, S., Rabolt, J.F., Stroeve, P.: Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles. Chem. Mater. 8(9), 2209 (1996)

    CAS  Google Scholar 

  43. Mornet, S., Vasseur, S., Grasset, F., Duguet, E.: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14(14), 2161–2175 (2004)

    CAS  Google Scholar 

  44. Raj, K., Moskowitz, R.: Commercial applications of ferrofluids. J. Magn. Magn. Mater. 85(1–3), 233–245 (1990)

    CAS  Google Scholar 

  45. Vollath, D., Szabo, D.V., Taylor, R.D., Willis, J.O., Sickafus, K.E.: Synthesis and properties of nanocrystalline superparamagnetic gamma-Fe2O3. Nanostructured Mater. 6(5–8), 941–944 (1995)

    Google Scholar 

  46. Ziolo, R.F., Giannelis, E.P., Weinstein, B.A., Ohoro, M.P., Ganguly, B.N., Mehrotra, V., Russell, M.W., Huffman, D.R.: Matrix-mediated synthesis of nanocrystalline gamma-Fe2o3—a new optically transparent magnetic material. Science 257(5067), 219–223 (1992)

    CAS  PubMed  Google Scholar 

  47. Kavich, D.W., Dickerson, J.H., Mahajan, S.V., Hasan, S.A., Park, J.H.: Exchange bias of singly inverted FeO/Fe3O4 core-shell nanocrystals. Phys. Rev. B. 78(17), 6(2008). doi:17441410.1103/PhysRevB.78.174414

    Google Scholar 

  48. Bazzi, R., Flores, M.A., Louis, C., Lebbou, K., Zhang, W., Dujardin, C., Roux, S., Mercier, B., Ledoux, G., Bernstein, E.: Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu. J. Colloid Interface Sci. 273(1), 191–197 (2004)

    CAS  PubMed  Google Scholar 

  49. Eilers, H., Tissue, B.M.: Laser spectroscopy of nanocrystalline Eu2O3 and Eu3 +:Y2O3. Chem. Phys. Lett. 251(1–2), 74–78 (1996)

    CAS  Google Scholar 

  50. Mahajan, S.V., Dickerson, J.H.: Understanding the growth of Eu2O3 nanocrystal films made via electrophoretic deposition. Nanotechnology 21(14). doi:10.1088/0957-4484/21/14/145704

    Google Scholar 

  51. Mahajan, S.V., Dickerson, J.H.: Synthesis of monodisperse sub-3 nm RE2O3 and Gd2O3:RE3 +nanocrystals. Nanotechnology 18(32), 325605 (2007)

    Google Scholar 

  52. Wakefield, G., Keron, H.A., Dobson, P.J., Hutchison, J.L.: Synthesis and properties of sub-50-nm europium oxide nanoparticles. J. Colloid Interface Sci. 215(1), 179–182 (1999)

    CAS  PubMed  Google Scholar 

  53. Bazzi, R., Flores, M.A., Louis, C., Lebbou, K., Zhang, W., Dujardin, C., Roux, S., Mercier, B., Ledoux, G., Bernstein, E., Perriat, P., Tillement, O.: Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu. J. Colloid Interface Sci. 273, 191 (2004)

    CAS  PubMed  Google Scholar 

  54. Feng, J., Shan, G.M., Maquieira, A., Koivunen, M.E., Guo, B., Hammock, B.D., Kennedy, I.M.: Functionalized europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine. Anal. Chem. 75(19), 5282–5286 (2003)

    CAS  Google Scholar 

  55. Shionoya, S., Yen, W.M.: Phosphor handbook. CRC Press, Boca Raton (1999)

    Google Scholar 

  56. Wang, J.C., Lai, C.S., Chen, Y.K., Lin, C.T., Liu, C.P., Huang, M.R.S., Fang, Y.C.: Characteristics of gadolinium oxide nanocrystal memory with optimized rapid thermal annealing. Electrochem. Solid State Lett. 12(6), H202-H204 (2009). doi:10.1149/1.3109573

    CAS  Google Scholar 

  57. An, L.Q., Zhang, J., Liu, M., Wang, S.W.: Preparation and upconversion properties of Yb3+, Ho3+: LU2O3 nanocrystalline powders. J. Am. Ceram. Soc. 88(4), 1010–1012 (2005)

    CAS  Google Scholar 

  58. An, L.Q., Zhang, J., Liu, M., Wang, S.W.: Synthesis and luminescence properties of Yb3+/HO3+ co-doped Lu2O3 nanocrystalline powders. In: High-Performance Ceramics Iii, Pts 1 and 2, vol 280–283. Key engineering materials, pp 521–524. Trans Tech Publications Ltd, Zurich-Uetikon (2005)

    Google Scholar 

  59. Azad, A.M., Matthews, T., Swary, J.: Processing and characterization of electrospun Y2O3-stabilized ZrO2 (YSZ) and Gd2O3-doped CeO2 (GDC) nanofibers. Mater. Sci. Eng. B-Solid State Mater. Adv. Tech. 123(3), 252–258 (2005)

    Google Scholar 

  60. Camenzind, A., Strobel, R., Krumeich, F., Pratsinis, S.E.: Luminescence and crystallinity of flame-made Y2O3: Eu3+ nanoparticles. Adv. Powder Technol. 18(1), 5–22 (2007)

    CAS  Google Scholar 

  61. Capobianco, J.A., Vetrone, F., Boyer, J.C., Speghini, A., Bettinelli, M.: Visible upconversion of Er3+ doped nanocrystalline and bulk Lu2O3. Opt. Mater. 19(2), 259–268 (2002)

    CAS  Google Scholar 

  62. Chen, Q.W., Shi, Y., An, L.Q., Chen, J.Y., Shi, J.L.: Fabrication and photoluminescence characteristics of Eu3+-Doped Lu2O3 transparent ceramics. J. Am. Ceram. Soc. 89(6), 2038–2042 (2006)

    CAS  Google Scholar 

  63. Chen, Q.W., Shi, Y., Shi, J.L.: Preparation and characterization of a new phosphor Lu2O3: Eu3 +. In: High-Performance Ceramics Iii, Pts 1 and 2, vol. 280–283. Key engineering materials, pp 525–528. Trans Tech Publications Ltd, Zurich-Uetikon (2005)

    Google Scholar 

  64. Dosev, D., Nichkova, M., Liu, M.Z., Guo, B., Liu, G.Y., Hammock, B.D., Kennedy, I.M.: Application of luminescent Eu: Gd2O3 nanoparticles to the visualization of protein micropatterns. J Biomed. Opt. 10(6), 7(2005)

    Google Scholar 

  65. Flores-Gonzalez, M.A., Louis, C., Bazzi, R., Ledoux, G., Lebbou, K., Roux, S., Perriat, P., Tillement, O.: Elaboration of nanostructured Eu3+-doped Gd2O3 phosphor fine spherical powders using polyol-mediated synthesis. Appl. Phys. A-Mater. Sci. Process 81(7), 1385–1391 (2005).

    CAS  Google Scholar 

  66. Fu, X.Y., Niu, S.Y., Zhang, H.W.: Preparation and characterization of dysprosium oxide doped in ZrO2 and yttrium-stabilized zirconium(YSZ) nanocrystalline. Abstr. Pap. Am. Chem. Soc. 230, U2096-U2096 (2005)

    Google Scholar 

  67. Gedanken, A., Reisfeld, R., Sominski, L., Zhong, Z., Koltypin, Y., Panczer, G., Gaft, M., Minti, H.: Time-dependence of luminescence of nanoparticles of Eu2O3 and Tb2O3 deposited on and doped in alumina. Appl. Phys. Lett. 77(7), 945–947 (2000)

    CAS  Google Scholar 

  68. Gogoi, P., Konwar, K., Baishya, B.: A study of Ge-thin film transistors with rare earth oxides as gate insulators. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci. 80(10), 1021–1023 (2006)

    CAS  Google Scholar 

  69. Gordon, W.O., Carter, J.A., Tissue, B.M.: Long-lifetime luminescence of lanthanide-doped gadolinium oxide nanoparticles for immunoassays. J. Lumin. 108(1–4), 339–342 (2004)

    CAS  Google Scholar 

  70. Hirai, T., Orikoshi, T.: Preparation of Gd2O3: Yb,Er and Gd2O2S: Yb, Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system. J. Colloid Interface Sci. 269(1), 103–108 (2004)

    CAS  PubMed  Google Scholar 

  71. Jenouvrier, P., Boccardi, G., Fick, J., Jurdyc, A.M., Langlet, M.: Up-conversion emission in rare earth-doped Y2Ti2O7 sol-gel thin films. J. Lumin. 113(3–4), 291–300 (2005)

    CAS  Google Scholar 

  72. Nichkova, M., Dosev, D., Perron, R., Gee, S.J., Hammock, B.D., Kennedy, I.M.: Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing. Anal. Bioanal. Chem. 384(3), 631–637 (2006)

    CAS  PubMed  Google Scholar 

  73. Nyk, M., Hreniak, D., Strek, W., Misiewicz, J., Zych, E.: Photo- and cathodoluminescence properties of LU2O3: Tb3+ nanocrystallites embedded in TiO2 films on silicon and quartz substrates. Opt. Mater. 26(2), 129–132 (2004)

    CAS  Google Scholar 

  74. Pedersen, H., Ojamae, L.: Towards biocompatibility of RE2O3 nanocrystals—Water and organic molecules chemisorbed on Gd2O3 and Y2O3 nanocrystals studied by quantum-chemical computations. Nano Lett. 6(9), 2004–2008 (2006)

    CAS  PubMed  Google Scholar 

  75. Eilers, H., Tissue, B.M.: Synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas-phase condensation with cw-CO2 laser heating. Mater. Lett. 24(4), 261–265 (1995)

    CAS  Google Scholar 

  76. Feng, J., Shan, G., Maquieira, A., Koivunen, M.E., Guo, B., Hammock, B.D., Kennedy, I.M.: Functionalized Europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine. Anal. Chem. 75(19), 5282–5286 (2003)

    CAS  Google Scholar 

  77. Wakefield, G., Keron, H.A., Dobson, P.J., Hutchinson, J.L.: Synthesis and properties of sub-50-nm europium oxide nanoparticles. J. Colloid Interface Sci. 215, 179 (1999)

    CAS  PubMed  Google Scholar 

  78. Peng, Z.A., Peng, X.: Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 123(7), 1389–1395 (2001). doi:10.1021/ja0027766

    CAS  Google Scholar 

  79. Park, J., An, K.J., Hwang, Y.S., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M., Hyeon, T.: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3(12), 891–895 (2004)

    CAS  PubMed  Google Scholar 

  80. Morrison, I.D., Ross, S.: Colloidal dispersions: suspension, emulsions, and foams. Wiley, New York (2002)

    Google Scholar 

  81. Pugh, R.J., Matsunaga, T., Fowkes, F.M.: The dispersibility and stability of carbon-black in media of low dielectric-constant.1. Electrostatic and steric contributions to colloidal stability. Colloids Surf. 7(3), 183–207 (1983)

    CAS  Google Scholar 

  82. Israelachvili, J.N.: Intermolecular and surface forces, 2nd edn. Academic Press, New York (1992)

    Google Scholar 

  83. Russel, W.B., Saville, D.A., Schowalter, D.A.: Colloidal dispersions. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  84. Kornbrekke, R.E., Morrison, I.D., Oja, T.: Electrophoretic mobility measurements in low conductivity media. Langmuir 8, 1211–1217 (1992)

    CAS  Google Scholar 

  85. Tadmor, R.: The London-van der Waals interaction energy between objects of various geometries. J. Phys. Condens. Matter. 13(9), L195–L202 (2001)

    CAS  Google Scholar 

  86. Morimoto, H., Maekawa, T.: Cluster structures and cluster-cluster aggregations in a two-dimensional ferromagnetic colloidal system. J. Phys. Math. Gen. 33(2), 247–258 (2000)

    CAS  Google Scholar 

  87. Collier, C.P., Vossmeyer, T., Heath, J.R.: Nanocrystal superlattices. Annu. Rev. Phys. Chem. 49, 371–404 (1998)

    CAS  PubMed  Google Scholar 

  88. Ohara, P.C., Leff, D.V., Heath, J.R., Gelbart, W.M.: Crystallization of opals from polydisperse nanoparticles. Phys. Rev. Lett. 75(19), 3466–3469 (1995)

    CAS  PubMed  Google Scholar 

  89. Motte, L., Courty, A., Ngo, A.-T., Lisiecki, I., Pileni, M.-P.: Self-organization of inorganic nanocrystals. Nanocrystals forming mesoscopic structures. Wiley, Weinheim (2005)

    Google Scholar 

  90. Shevchenko, E.V., Talapin, D.V., Kotov, N.A., O’Brien, S., Murray, C.B.: Structural diversity in binary nanoparticle superlattices. Nature 439(7072), 55–59 (2006)

    Google Scholar 

  91. Leunissen, M.E., Christova, C.G., Hynninen, A.P., Royall, C.P., Campbell, A.I., Imhof, A., Dijkstra, M., van Roij, R., van Blaaderen, A.: Ionic colloidal crystals of oppositely charged particles. Nature 437(7056), 235–240 (2005)

    CAS  PubMed  Google Scholar 

  92. Yethiraj, A., van Blaaderen, A.: A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421(6922), 513–517 (2003)

    CAS  PubMed  Google Scholar 

  93. van Roij, R., Hansen, J.P.: Van der Waals-like instability in suspensions of mutually repelling charged colloids. Phys. Rev. Lett. 79(16), 3082–3085 (1997)

    Google Scholar 

  94. Rosensweig, R.E.: Ferrohydrodynamics. Dover, Mineola (1997)

    Google Scholar 

  95. Taylor, J., Kippeny, T.C., Rosenthal, S.J.: Surface stoichiometry of CdSe nanocrystals determined by Rutherford backscattering spectroscopy. J. Clust. Sci. 12(4), 571–582 (2001)

    CAS  Google Scholar 

  96. Van Der Biest, O.O., Vandeperre, L.J.: Electrophoretic deposition of materials. Annu. Rev. Mate. Sci. 29, 327–352 (1999)

    Google Scholar 

  97. Islam, M.A.: Amphoteric CdSe nanocrystalline quantum dots. Nanotechnology 19(25), 255708 (2008)

    PubMed  Google Scholar 

  98. Morrison, I.D.: Electrical charges in nonaqueous media. Colloids Surf. Physicochem. Eng. Aspects 71(1), 1–37 (1993)

    CAS  Google Scholar 

  99. Ahmed, S., Ryan, K.M.: Centimetre scale assembly of vertically aligned and close packed semiconductor nanorods from solution. Chem. Commun. 14(42), 6421–6423 (2009). doi:10.1039/b914478a

    Google Scholar 

  100. Salant, A., Shalom, M., Hod, I., Faust, A., Zaban, A., Banin, U.: Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition. ACS Nano 4(10), 5962–5968 (2010). doi:10.1021/nn1018208

    CAS  PubMed  Google Scholar 

  101. Kwo, J., Hong, M., Kortan, A.R., Queeney, K.T., Chabal, Y.J., Mannaerts, J.P., Boone, T., Krajewski, J.J., Sergent, A.M., Rosamilia, J.M.: High epsilon gate dielectrics Gd2O3 and Y2O3 for silicon. Appl. Phys. Lett. 77(1), 130–132 (2000)

    CAS  Google Scholar 

  102. Guan, W.H., Long, S.B., Liu, M., Li, Z.G., Hu, Y., Liu, Q.: Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide. J. Phys. D-Appl. Phys. 40(9), 2754–2758 (2007). doi:10.1088/0022-3727/40/9/012

    CAS  Google Scholar 

  103. Park, B., Cho, K., Kim, H., Kim, S.: Capacitance characteristics of MOS capacitors embedded with colloidally synthesized gold nanoparticles. Semicond. Sci. Technol. 21(7), 975–978 (2006). doi:10.1088/0268-1242/21/7/025

    CAS  Google Scholar 

  104. Yim, S.-S., Lee, M.-S., Kim, K.-S., Kim, K.-B.: Formation of Ru nanocrystals by plasma enhanced atomic layer deposition for nonvolatile memory applications. Appl. Phys. Lett. 89(9), 093115–093113 (2006)

    Google Scholar 

  105. Kanjilal, A., Hansen, J.L., Gaiduk, P., Larsen, A.N., Cherkashin, N., Claverie, A., Normand, P., Kapelanakis, E., Skarlatos, D., Tsoukalas, D.: Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy. Appl. Phys. Lett. 82(8), 1212–1214 (2003). doi:10.1063/1.1555709

    CAS  Google Scholar 

  106. Islam, M.A., Herman, I.P.: Electrodeposition of patterned CdSe nanocrystal films using thermally charged nanocrystals. Appl. Phys. Lett. 80(20), 3823–3825 (2002). doi:10.1063/1.1480878

    CAS  Google Scholar 

  107. Baker, J.L., Jimison, L.H., Mannsfeld, S., Volkman, S., Yin, S., Subramanian, V., Salleo, A., Alivisatos, A.P., Toney, M.F.: Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector. Langmuir 26(11), 9146–9151 (2010). doi:10.1021/la904840q

    CAS  PubMed  Google Scholar 

  108. Baker, J.L., Widmer-Cooper, A., Toney, M.F., Geissler, P.L., Alivisatos, A.P.: Device-scale perpendicular alignment of colloidal nanorods. Nano Lett. 10(1), 195–201 (2010). doi:10.1021/nl903187v

    CAS  PubMed  Google Scholar 

  109. Redl, F.X., Cho, K.S., Murray, C.B., O’Brien, S.: Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423(6943), 968–971 (2003). doi:10.1038/nature01702

    Google Scholar 

  110. Akey, A., Lu, C.G., Yang, L., Herman, I.P.: Formation of thick, large-area nanoparticle superlattices in lithographically defined geometries. Nano Lett. 10(4), 1517–1521 (2010). doi:10.1021/nl1001291

    CAS  PubMed  Google Scholar 

  111. Baranov, D., Fiore, A., van Huis, M., Giannini, C., Falqui, A., Lafont, U., Zandbergen, H., Zanella, M., Cingolani, R., Manna, L.: Assembly of colloidal semiconductor nanorods in solution by depletion attraction. Nano Lett. 10(2), 743–749 (2010). doi:10.1021/nl903946n

    CAS  PubMed  Google Scholar 

  112. Zanella, M., Bertoni, G., Franchini, I.R., Brescia, R., Baranov, D., Manna, L.: Assembly of shape-controlled nanocrystals by depletion attraction. Chem. Commun. 47(1), 203–205 (2011). doi:10.1039/c0cc02477e

    CAS  Google Scholar 

  113. Bishop, K.J.M., Wilmer, C.E., Soh, S., Grzybowski, B.A.: Nanoscale forces and their uses in self-assembly. Small 5(14), 1600–1630 (2009). doi:10.1002/smll.200900358

    CAS  PubMed  Google Scholar 

  114. Podsiadlo, P., Sui, L., Elkasabi, Y., Burgardt, P., Lee, J., Miryala, A., Kusumaatmaja, W., Carman, M.R., Shtein, M., Kieffer, J., Lahann, J., Kotov, N.A.: Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23(15), 7901–7906 (2007). doi:10.1021/la700772a

    CAS  PubMed  Google Scholar 

  115. Srivastava, S., Kotov, N.A.: Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc. Chem. Res. 41(12), 1831–1841 (2008). doi:10.1021/ar8001377

    CAS  PubMed  Google Scholar 

  116. Wu, Z., Lee, D., Rubner, M.F., Cohen, R.E.: Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks. Small 3(8), 1445–1451 (2007). doi:10.1002/smll.200700084

    CAS  PubMed  Google Scholar 

  117. Rigueur, J.L., Hasan, S.A., Mahajan, S.V., Dickerson, J.H.: Buckypaper fabrication by liberation of electrophoretically deposited carbon nanotubes. Carbon 48(14), 4090–4099 (2010). doi:10.1016/j.carbon.2010.07.016

    CAS  Google Scholar 

  118. Hasan, S.A., Rigueur, J.L., Harl, R.R., Krejci, A.J., Gonzalo-Juan, I., Rogers, B.R., Dickerson, J.H.: Transferable graphene oxide films with tunable microstructures. ACS Nano 4(12), 7367–7372 (2010). doi:10.1021/nn102152x

    CAS  PubMed  Google Scholar 

  119. Hasan, S.A., Kavich, D.W., Dickerson, J.H.: Sacrificial layer electrophoretic deposition of free-standing multilayered nanoparticle films. Chem. Commun. 7(25), 3723–3725 (2009). doi:10.1039/b902622c

    Google Scholar 

  120. Hasan, S.A., Kavich, D.W., Mahajan, S.V., Dickerson, J.H.: Electrophoretic deposition of CdSe nanocrystal films onto dielectric polymer thin films. Thin Solid Films 517(8), 2665–2669 (2009). doi:10.1016/j.tsf.2008.10.122

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Dickerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dickerson, J.H. (2012). Electrophoretic Deposition of Nanocrystals in Non-polar Solvents. In: Dickerson, J., Boccaccini, A. (eds) Electrophoretic Deposition of Nanomaterials. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9730-2_3

Download citation

Publish with us

Policies and ethics