Skip to main content

Time-dependent Nanoindentation

  • Chapter
  • First Online:
Nanoindentation

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

In general, materials can resist deformation in a solid-like or viscous-like manner. Solid-like materials store energy under deformation, and upon removal of stress, returns to its original state. Viscous materials dissipate energy during deformation and upon removal of stress, remains in its deformed state. Materials with combined solid-like and viscous-like properties are said to be viscoelastic. Nanoindentation can be used to quantitatively determine the viscoelastic properties of materials. In one method, a small oscillatory force or displacement is imparted to the indenter. The resulting load and displacement signals provide a method whereby the elastic and viscous components of the specimen response can be calculated. In another method, the load or displacement is held at a fixed value and the change in displacement (creep) or load (relaxation) recorded over a period of time. Application of an appropriate mechanical model can yield values for the elastic and viscous properties of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, time-dependent plasticity is one where the deformation rate is fixed by the mechanical configuration of the specimen. It is a special case of the more general term of viscoplasticity.

References

  1. A. Kulkarni and B. Bhushan, “Nano/picoindentation measurements on a single-crystal aluminium using modified atomic force microscopy,” Mat. Lett. 29, 1996, pp. 221–227.

    Article  Google Scholar 

  2. S. Akita, H. Nishijima, T. Kishida and Y. Nakayama, “Nanoindentation of polycarbonate using a carbon nanotube tip,” Jpn. J. Appl. Phys. 39, 2000, pp. 7086–7089.

    Article  Google Scholar 

  3. S.A. Syed Asif, R.J. Colton, and K.J. Wahl, “Nanoscale surface mechanical property measurements: Force modulation techniques applied to nanoindentation,” in Interfacial properties on the submicron scale, J. Frommer and R. Overney, eds. ACS Books, Washington, DC, 2001, pp. 189–215.

    Google Scholar 

  4. S.A. Syed Asif, K.J. Wahl, and R.J. Colton, ‘The influence of oxide and adsorbates on the nanomechanical response of silicon surfaces,” J. Mater. Res. 15 2, 2000, pp. 546–553.

    Article  Google Scholar 

  5. B.N. Lucas, W.C. Oliver, and J.E. Swindeman, “The dynamics of frequency specific, depth sensing indentation testing,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 3–14.

    Article  Google Scholar 

  6. J.-L. Loubet, B.N. Lucas, and W.C. Oliver, in NIST Special Publication 896, Conference Proceedings: International Workshop on Instrumented Indentation, eds. D.T. Smith (NIST) 1995, pp. 31–34.

    Google Scholar 

  7. N.A. Burnham, S.P. Baker, and H.M. Pollock, “A model for mechanical properties of nanoprobes,” J. Mater. Res. 15 9, 2000, pp. 2006–2014.

    Article  Google Scholar 

  8. A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna, “Indentation of a power law creeping solid,” Proc. R. Soc. A441, 1993, pp. 97–124.

    Article  Google Scholar 

  9. J. Menčík, G. Rauchs, J. Bardon, and A. Riche, “Determination of elastic modulus and hardness of viscoelastic-plastic materials by instrumented indentation under harmonic load,” J. Mater. Res. 20 10, 2005 pp. 2660–2669.

    Article  Google Scholar 

  10. W.B. Li and R. Warren, “A model for nano-indentation creep,” Acta Metall. Mater. 41 10, 1993, pp. 3065–3069.

    Article  Google Scholar 

  11. P.M. Sargent and M.F. Ashby, “Indentation creep,” Mat. Sci. and Tech. 8, 1992, pp. 594–601.

    Article  Google Scholar 

  12. R. Hill, B. Storåkers, A.B. Zdunek, “A theoretical study of the Brinell hardness test,” Proc. R. Soc. A423, 1989, pp. 301–330.

    Article  Google Scholar 

  13. T.R.G. Kutty, C. Ganguly and D.H. Sastry, “Development of creep curves from hot indentation hardness data,” Scripta Materialia, 34 12, 1996, pp. 1833–1838.

    Article  Google Scholar 

  14. R. Hill, “Similarity analysis of creep indentation tests,” Proc. R. Soc. A436, 1992, pp. 617–630.

    Article  Google Scholar 

  15. B. Storåkers and P.-L. Larsson, “On Brinell and Boussinesq indentation of creeping solids,” J. Mech. Phys. Solids, 42 2, 1994, pp. 307–332.

    Article  MATH  Google Scholar 

  16. M. Sakai, “Time-dependent viscoelastic relation between load and penetration for an axisummetric indenter,” Phil. Mag. A 82 10, 2002, pp. 1841–1849.

    Article  Google Scholar 

  17. S.Dj. Mesarovic and N.A. Fleck, “Spherical indentation of elastic-plastic solids,” Proc. R. Soc. A455, 1999, pp. 2707–2728.

    Article  Google Scholar 

  18. J.R.M. Radok, “Viscoelastic stress analysis,” Q. Appl. Math. 15, 1957, pp. 198–202.

    MATH  MathSciNet  Google Scholar 

  19. E.H. Lee and J.R.M. Radok, “The contact problem for viscoelastic solids,” Trans. ASME Series E, J.App.Mech. 27, 1960, pp. 438–444.

    Article  MATH  MathSciNet  Google Scholar 

  20. K.L. Johnson, Contact Mechanics, Cambridge University Press, 1985.

    Google Scholar 

  21. L. Cheng, X. Xia, W. Yu, L.E. Scriven, and W.W. Gerberich, “Flat-punch indentation of a viscoelastic material,” J. Polymer Sci. 38, 2000, pp. 10–22.

    Article  Google Scholar 

  22. T.C.T. Ting, “The contact stresses between a rigid indenter and a viscoelastic half-space,” Trans. ASME, J. App. Mech. 33, 1966, pp. 845–854.

    Article  MATH  Google Scholar 

  23. M. Sakai and S. Shimizu, “Indentation rheometry for glass-forming materials,” J. Non-Crystalline Solids, 282, 2001, pp. 236–247.

    Article  Google Scholar 

  24. S. Shimizu, Y. Yanagimoto and M. Sakai, “Pyramidal indentation load-depth curve of viscoelastic materials,” J. Mater. Res. 14 10, 1999, pp. 4075–4085.

    Article  Google Scholar 

  25. X. Xia, A. Strojny, L.E. Scriven, W.W. Gerberich, A. Tsou, and C.C. Anderson, “Constitutive property evaluation of polymeric coatings using nanomechancial methods,” Mat. Res. Symp. Proc. 522, 1998, 199–204.

    Article  Google Scholar 

  26. K.B. Yoder, S. Ahuja, K.T. Dihn, D.A. Crowson, S.G. Corcoran, L. Cheng, and W.W. Gerberich, “Nanoindentation of viscoelastic materials: Mechanical properties of polymer coatings an aluminum sheets,” Mat. Res. Symp. 522, 1998, pp. 205–210.

    Article  Google Scholar 

  27. G. Feng and A.H.W. Ngan, “Effects of creep and thermal drift on modulus measurement using depth-sensing indentation,” J. Mater. Res. 17 3, 2002, pp. 660–668.

    Article  Google Scholar 

  28. A.H.W. Ngan and B. Tang, “Viscoelastic effects during unloading in depth-sensing indentation,” J. Mater. Res. 17 10, 2002, pp. 2604–2610.

    Article  Google Scholar 

  29. L. Cheng, L.E. Scriven, and W.W. Gerberich, “Viscoelastic analysis of micro- and nanoindentation,” Mat. Res. Symp. Proc. 522, 1998, pp. 193–198.

    Article  Google Scholar 

  30. M.L. Oyen and R.F. Cook, “Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials,” J. Mater. Res. 18 1, 2003, pp. 139–150.

    Article  Google Scholar 

  31. A. Strojny and W.W. Gerberich, “Experimental analysis of viscoelastic behavior in nanoindentation,” Mat. Res. Soc. Symp. Proc. 522, 1998, pp. 159–164.

    Article  Google Scholar 

  32. S.A. Syed Asif and J.B. Pethica, “Nano-scale indentation creep testing at non-ambient temperatures,” J.Adhesion, 67, 1998, pp. 153–165.

    Article  Google Scholar 

  33. T. Chudoba and F. Richter, “Investigation of creep behavior under load during indentation experiments and its influence on hardness and modulus results,” Surf. Coat. Tech. 148, 2001, pp. 191–198.

    Article  Google Scholar 

  34. M. Oyen, “Spherical indentation creep following ramp loading,” J. Mater. Res. 20 8, 2005, pp. 2094–2100.

    Article  Google Scholar 

  35. C.Y. Zhang, Y.W Zhang, K.Y. Zeng and L. Shen, “Nanoindentation of polymers with a sharp indenter,” J. Mater. Res. 20 6, 2005, pp. 1597–1605.

    Article  Google Scholar 

  36. M. Sakai, Phil. Mag. A 86 2006, pp. 5607.

    Google Scholar 

  37. Y.P. Cao, D. Ma and D. Raabe, “The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate,’ Acta Biomater. 5, 2009, pp. 240–248.

    Article  Google Scholar 

  38. Y.P. Cao, “Determination of the creep exponent of a power-law creep solid using indentation tests,” Mech Time-Depend Mater 11, 2007, pp. 159–172.

    Article  Google Scholar 

  39. D. François, A. Pineau, and A. Zaoui, Mechanical Behaviour of Materials, Kluwer Academic Publishers, The Netherlands,1998.

    Google Scholar 

  40. Y.P. Cao, X.Y. Ji, and X.Q. Feng, “Geometry independence of the normalized relaxation functions of viscoelastic materials in indentation,” Phil. Mag. 90 12, 2010, pp. 1639–1655

    Article  Google Scholar 

  41. B.J. Briscoe, L. Fiori and E. Pelillo, “Nano-indentation of polymeric surfaces,” J. Phys. D. Appl. Phys. 31, 1998, pp. 2395–2405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Fischer-Cripps .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fischer-Cripps, A.C. (2011). Time-dependent Nanoindentation. In: Nanoindentation. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9872-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9872-9_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9871-2

  • Online ISBN: 978-1-4419-9872-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics