Skip to main content

Metabolism and Roles of Eicosanoids in Brain

  • Chapter
  • First Online:
Lipid Mediators and Their Metabolism in the Brain
  • 933 Accesses

Abstract

Eicosanoids are signaling molecules generated through enzymic oxidation of arachidonic acid (ARA, 20:4n-6) by cyclooxygenases (COX-1 and 2) (O’Banion, 1999; Vane et al., 1998; Phillis et al., 2006), lipoxygenases (LOX) (Kuhn and O’Donnell, 2006; Kim et al., 2008), and epoxygenases (EPOX) (Phillis et al., 2006; Spector, 2009). Eicosanoids include prostaglandins (PGs), leukotriene (LTs), lipoxins (LXs), and thromboxanes (TXs), as well as hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatetraenoic acids (EETs), and dihydroxyeicosatrienoic acids (DHETs) (Figs. 1.1 and 1.2). Numerous eicosanoids have been detected in the nervous system in neurons, astrocytes, cerebral vascular endothelial cells, and cerebrospinal fluid (O’Banion, 1999; Schaad et al., 1991; Simmons et al., 2004; Toda and Okamura, 1993; Vila, 2004; Werz, 2002; Wolfe and Horrocks, 1994). Eicosanoids produce a wide range of biological actions including potent effects on inflammation, vasodilation, vasoconstriction, apoptosis, and immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi K., Yimin Y., Satake K., Matsuyama Y., Ishiguro N., Sawada M., Hirata Y., and Kiuchi K. (2005). Localization of cyclooxygenase-2 induced following traumatic spinal cord injury. Neurosci Res. 51:73–80.

    Article  PubMed  CAS  Google Scholar 

  • Ahn M. J., Sherwood E. R., Prough D. S., Lin C. Y., and DeWitt D. S. (2004). The effects of traumatic brain injury on cerebral blood flow and brain tissue nitric oxide levels and cytokine expression. J. Neurotrauma 21:1431–1442.

    Article  PubMed  Google Scholar 

  • Aid S., Parikh N., Palumbo S., and Bosetti F. (2010). Neuronal overexpression of cyclooxygenase-2 does not alter the neuroinflammatory response during brain innate immune activation. Neurosci. Lett. 478:113–118.

    Article  PubMed  CAS  Google Scholar 

  • Aktan S., Aykut C., and Ercan S. (1991). Leukotriene C4 and prostaglandin E2 activities in the serum and cerebrospinal fluid during acute cerebral ischemia, Prostaglandins Leukot. Essent. Fatty Acids 43:247–249.

    Article  PubMed  CAS  Google Scholar 

  • Alkayed N. J., Goyagi T., Joh H. D., Klaus J., Harder D. R., Traystman R. J., and Hurn P. D. (2002). Neuroprotection and P450 2C11 upregulation after experimental transient ischemic attack, Stroke, 33:1677–1684.

    Article  PubMed  CAS  Google Scholar 

  • Almer, G., Guegan, C., Teismann, P., Naini, A., Rosoklija, G., Hays, A. P., Chen, C. P., and Przedborski, S. (2001). Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis, Ann. Neurol., 49:176–185.

    Article  PubMed  CAS  Google Scholar 

  • Back M. (2008). Leukotriene signaling in atherosclerosis and ischemia. Cardiovas Drug Ther. 23:41–48.

    Article  CAS  Google Scholar 

  • Ballou L. R., Botting R. M., Goorha S., Zhang J., and Vane J. R. (2000). Nociception in cyclooxygenase isozyme-deficient mice, Proc. Natl. Acad. Sci. U. S. A. 97:10272–10276.

    Article  PubMed  CAS  Google Scholar 

  • Bao F., Chen Y., Dekaban G.A., and Weaver L.C. (2004). An anti-CD11d integrin antibody reduces cyclooxygenase-2 expression and protein and DNA oxidation after spinal cord injury in rats. J Neurochem. 90:1194–1204.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G. (1971). Changes in free fatty acids of brain by drug-induced convulsions, electroshock and anesthesia, J. Neurochem., 18:1379–1385.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G., Birkle D. L., Tang W., and Reddy T. S. (1986). The accumulation of free arachidonic acid, diacylglycerol, prostaglandins, and lipoxygenase reaction products in the brain during experimental epilepsy., Adv. Neurol. 44:879–902.

    PubMed  CAS  Google Scholar 

  • Bazan N. G., Colangelo V., and Lukiw W. J. (2002). Prostaglandins and other lipid mediators in Alzheimer’s disease, Prostaglandins Other Lipid Mediat. 68–69:197–210.

    Article  PubMed  Google Scholar 

  • Bazan N.G. (2009). Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prost. Leukot. Essent. Fatty Acids 81:205–211.

    Article  CAS  Google Scholar 

  • Behm D.J., Ogbonna A. Wu C., Burns-Kurtis C.L., and Douglas S.A. (2009). J Pharmacol Exp Ther. Epoxyeicosatrienoic acids function as selective, endogenous antagonists of native thromboxane receptors: identification of a novel mechanism of vasodilation. 328:231–239.

    Article  PubMed  CAS  Google Scholar 

  • Bendani, M. K., Palluy, O., Cook-Moreau, J., Beneytout, J. L., Rigaud, M., and Vallat, J. M. (1995). Localization of 12-lipoxygenase mRNA in cultured oligodendrocytes and astrocytes by in situ reverse transcriptase and polymerase chain reaction, Neurosci. Lett. 189:159–162.

    Article  PubMed  CAS  Google Scholar 

  • Berlett B. S. and Stadtman E. R. (1997). Protein oxidation in aging, disease, and oxidative stress, J. Biol. Chem., 272:20313–20316.

    Article  PubMed  CAS  Google Scholar 

  • Bharath S., Hsu M., Kaur D., Rajagopalan S., and Andersen J. K. (2002). Glutathione, iron and Parkinson’s disease, Biochem. Pharmacol., 64:1037–1048.

    Article  PubMed  CAS  Google Scholar 

  • Bosetti F. and Weerasinghe G. R. (2003). The expression of brain cyclooxygenase-2 is down-­regulated in the cytosolic phospholipase A2 knockout mouse. J. Neurochem. 87:1471–1477.

    Article  PubMed  CAS  Google Scholar 

  • Bosetti F., Langenbach R., and Weerasinghe G. R. (2004). Prostaglandin E-2 and microsomal prostaglandin E synthase-2 expression are decreased in the cyclooxygenase-2-deficient mouse brain despite compensatory induction of cyclooxygenase-1 and Ca2+- dependent phospholipase A2, J. Neurochem., 91:1389–1397.

    Article  PubMed  CAS  Google Scholar 

  • Boutand O., Andreasson K.I., Zagol-Ikapitte I., and Oates J.A. (2005). Cyclooxygenase-dependent lipid-modification of brain proteins. Brain Pathol. 15:139–142.

    Article  Google Scholar 

  • Brash A. R. (2001). Arachidonic acid as a bioactive molecule, J. Clin. Invest. 107:1339–1345.

    Article  PubMed  CAS  Google Scholar 

  • Breder C. D., Dewitt D., and Kraig R. P. (1995). Characterization of inducible cyclooxygenase in rat brain, J. Comp. Neurol. 355:296–315.

    Article  PubMed  CAS  Google Scholar 

  • Brown D. R. (1999). Prion protein peptide neurotoxicity can be mediated by astrocytes, J. Neurochem. 73:1105–1113.

    Article  PubMed  CAS  Google Scholar 

  • Calder P. C. and Grimble R. F. (2002). Polyunsaturated fatty acids, inflammation and immunity, Eur. J. Clin. Nutr., 56:S14–S19.

    Article  PubMed  CAS  Google Scholar 

  • Carrasco E., Casper D., and Werner P. (2005). Dopaminergic neurotoxicity by 6-OHDA and MPP+: differential requirement for neuronal cyclooxygenase activity, J. Neurosci. Res., 81:121–131.

    Article  PubMed  CAS  Google Scholar 

  • Cernak I., O’Connor C., and Vink R. (2001). Activation of cyclo-oxygenase-2 contributes to motor and cognitive dysfunction following diffuse traumatic brain injury in rats. Clin Exp Pharmacol Physiol. 28:922–925.

    Article  PubMed  CAS  Google Scholar 

  • Chabot C., Gagné J., Giguère C., Bernard J., Baudry M., and Massicotte G. (1998). Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus. 8:299–309.

    Article  PubMed  CAS  Google Scholar 

  • Chiang N., Arita M., and Serhan C. N. (2005). Anti-inflammatory circuitry: Lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot. Essent. Fatty Acids 73:163–177.

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty S., Kaushik D.K., Gupta M., and Basu A. (2010). Inflammasome signaling at the heart of central nervous system pathology. J. Neurosci. Res. 88:1615–1631.

    PubMed  CAS  Google Scholar 

  • Chandrasekharan N. V., Dai H., Roos K. L., Evanson N. K., Tomsik J., Elton T. S., and Simmons D. L. (2002). COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression, Proc. Natl. Acad. Sci. U. S. A. 99:13926–13931.

    Article  PubMed  CAS  Google Scholar 

  • Chen C., Magee J.C., and Bazan N.G. (2002). Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J. Neurophysiol. 87:2851–2857.

    PubMed  CAS  Google Scholar 

  • Chen J.K., Chen J., Imig J.D., Wei S., Hachey D.L., Guthi J.S., Falck J.R., Capdevila J.H., and Harris R.C. (2008). Identification of novel endogenous cytochrome p450 arachidonate metabolites with high affinity for cannabinoid receptors. J. Biol. Chem. 283:24514–24524.

    Article  PubMed  CAS  Google Scholar 

  • Cho W.H., Choi C.H., Rark J.Y., Kang S.K., and Kim Y.K. (2006). 15-deoxy-(Delta12,14)-­prostaglandin J2 (15d-PGJ2) induces cell death through caspase-independent mechanism in A172 human glioma cells. Neurochem. Res. 31:1247–1254.

    Article  PubMed  CAS  Google Scholar 

  • Cimino P.J., Keene C.D., Breyer R.M., Montine K.S., and Montine, T.J. (2008). Therapeutic targets in prostaglandin E2 signaling for neurologic disease. Curr. Med. Chem. 15:1863–1869.

    Article  PubMed  CAS  Google Scholar 

  • Clària J. and Serhan C.N. (1995). Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc. Natl. Acad. Sci. U. S. A. 92:9475–9479.

    Article  PubMed  Google Scholar 

  • Cowart L.A., Wei S., Hsu M.H., Johnson E.F., Krishna M.U., Falck J.R., and Capdevila J.H. (2002). The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. J. Biol. Chem. 277:35105–35112.

    Article  PubMed  CAS  Google Scholar 

  • Cui J.G., Kuroda H., Chandrasekharan N.V., Pelaez R.P., Simmons D.L., Bazan N.G., and Lukiw W.J. (2004). Cyclooxygenase-3 gene expression in Alzheimer hippocampus and in stressed human neural cells. Neurochem. Res. 29:1731–1737.

    Article  PubMed  CAS  Google Scholar 

  • Davies N. M., Good R. L., Roupe K. A., and Yanez J. A. (2004). Cyclooxygenase-3: axiom, dogma, anomaly, enigma or splice error?--Not as easy as 1, 2, 3. J. Pharm. Pharm. Sci., 7:217–226.

    PubMed  CAS  Google Scholar 

  • Deininger, M. H., Bekure-Nemariam, K., Trautmann, K., Morgalla, M., Meyermann, R., and Schluesener, H. J. (2003). Cyclooxygenase-1 and −2 in brains of patients who died with sporadic Creutzfeldt-Jakob disease, J. Mol. Neurosci. 20:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Deng Y., Theken K.N., and Lee C.R. (2010). Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. J. Mol. Cardiol. 48:331–341.

    Article  CAS  Google Scholar 

  • DeWitt D. L. and Smith W. L. (1988). Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence, Proc. Natl. Acad. Sci. U. S. A. 85:1412–1416.

    Article  PubMed  CAS  Google Scholar 

  • Dhillon H.S., Dose J.M., and Prasad M.R. (1996). Regional generation of leukotriene C4 after experimental brain injury in anesthetized rats. J. Neurotrauma. 13:781–789.

    Article  PubMed  CAS  Google Scholar 

  • Dixon R. A. F., Jones R. E., Diehl R. E., Bennett C. D., Kargman S., and Rouzer C. A. (1988). Cloning of the cDNA for human 5-lipoxygenase, Proc. Natl. Acad. Sci. U. S. A. 85:416–420.

    Article  PubMed  CAS  Google Scholar 

  • Elmquist J. K., Breder C. D., Sherin J. E., Scammell T. E., Hickey W. F., Dewitt D., and Saper C. B. (1997). Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages, J. Comp. Neurol. 381:119–129.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H., Schaur R. J., and Zollner H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes., Free Radic. Biol. Med. 11:81–128.

    Article  PubMed  CAS  Google Scholar 

  • Fang X, Hu S, Xu B, Snyder GD, Harmon S, Modrick ML, Hu S, Moore SA., Falck JR, Weintraub NL., Spector AA (2006). 14, 15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-alpha. Am. J.Physiol. Heart and Cir. Physiol. 290:H55–H63.

    Article  CAS  Google Scholar 

  • Farias S., Frey L.C., Murphy R.C., and Heidenreich K.A. (2009). Injury-related production of cysteinyl leukotrienes contributes to brain damage following experimental traumatic brain injury. J. Neurotrauma. 26:1977–1986.

    Article  PubMed  Google Scholar 

  • Farooqui, A. A., Ong, W. Y., Horrocks, L. A., and Farooqui, T. (2000a). Brain cytosolic phospholipase A2: Localization, role, and involvement in neurological diseases, Neuroscientist 6:169–180.

    Article  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Deacylation and reacylation of neural membrane glycerophospholipids, J. Mol. Neurosci. 14:123–135.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res. 29:1961–1977.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacologic effects and therapeutic importance for the treatment of neurologic disorders, Pharm. Rev. 58:591–620.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A. and Horrocks L.A. (2007). Glycerophospholipids in Brain. Springer, New York.

    Book  Google Scholar 

  • Farooqui A.A., Horrocks L.A., and Farooqui T. (2007a). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Horrocks L.A., and Farooqui T. (2007b). Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. J. Neurosci Res. 85:1834–1850.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Farooqui T., and Horrocks L.A. (2008). Metabolism and Functions of Bioactive Ether Lipids in Brain. Springer, New York.

    Book  Google Scholar 

  • Farooqui A.A. (2009). Hot Topics in Neural Membrane Lipidology. Springer, New York.

    Google Scholar 

  • Farooqui T. and Farooqui A.A. (2009). Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mechanism Aging Dev. 130:203–215.

    Article  CAS  Google Scholar 

  • Farooqui A.A. (2010a). Studies on plasmalogen-selective PLA2 in Brain. Mol. Neurobiol. 41:267–273.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A. (2010b). Future Perspective: Directions for Future Development on Various Aspects of Neurodegeneration and Neuroprotection in Neurological Disorders Molecular Aspects of Neurodegeneration and Neuroprotection (Farooqui A.A. and Farooqui T. eds). Bentham Science Publishers Ltd (In Press).

    Google Scholar 

  • Farooqui A.A. (2010c). Neurochemical Aspects of Neurotraumatic and Neurodegenerative diseases. Springer New York.

    Book  Google Scholar 

  • Firuzi O., Zhuo J., Chinnici C.M., Wisnieski T., and Pratio D. (2008). 5-Lipoxygenase gene disruption reduces amyloid-beta pathology in a mouse model of Alzheimer’s disease. FASEB J. 22:169–178.

    Google Scholar 

  • Forman B.M., Tontonoz P., Chen J., Brun R.P., Spiegelman B.M., and Evans R.M. (1995). 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 83:803–812.

    Article  PubMed  CAS  Google Scholar 

  • Funk C. D. (1996). The molecular biology of mammalian lipoxygenases and the quest for eicosanoid functions using lipoxygenase-deficient mice, Biochim. Biophys. Acta Lipids Lipid Metab. 1304:65–84.

    Article  Google Scholar 

  • Furuyashiki T. and Narumiya S. (2009). Roles of prostaglandin E receptors in stress responses. Curr. Opin. Pharmacol. 9:31–38.

    Article  PubMed  CAS  Google Scholar 

  • Gasparini, L., Ongini, E., and Wenk, G. (2004). Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action, J. Neurochem. 91: 521–536.

    Article  PubMed  CAS  Google Scholar 

  • Gaudet R. J., Alam I., and Levine L. (1980). Accumulation of cyclooxygenase products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid artery occlusion, J. Neurochem. 35:653–658.

    Article  PubMed  CAS  Google Scholar 

  • Gayarre J., Avellano M.I., Sanchez-Gomez F.J., Carrasco M.J., Canada F.J., and Perez-Sala D. (2007). Modification of proteins by cyclopentenone prostaglandins is differentially modulated by GSH in vitro. Ann. N.Y.Acad. Sci. 1096:78–85.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D., Corpuz M., Richmond B., Wendt E., and Hall E. R. (1996). Activated microglia are the principal glial source of thromboxane in the central nervous system, Neurochem. Int. 29:65–76.

    Article  PubMed  CAS  Google Scholar 

  • Graeber M.B. and Moran L.B. (2002). Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol. 12:385–390.

    Article  PubMed  Google Scholar 

  • Griffin D.E., Wesselingh S.L., and McArthur J.C. (1994). Elevated central nervous system prostaglandins in human immunodeficiency virus-associated dementia. Ann. Neurol. 35:592–597.

    Article  PubMed  CAS  Google Scholar 

  • Harada N., Taoka Y., and Okajima K. (2006). Role of prostacyclin in the development of compression trauma-induced spinal cord injury in rats. J. Neurotrauma 23:1739–1749.

    Article  PubMed  Google Scholar 

  • Hardy K.D., Cox B.E., Milne G.L., Yin H., and Roberts L.J 2nd. (2010). Nonenzymatic Free Radical-catalyzed Generation of 15-Deoxy-δ12,14-Prostaglandin J2-like Compounds (Deoxy-J2-Isoprostanes) in Vivo. J Lipid Res. 52:113–124.

    Article  PubMed  CAS  Google Scholar 

  • Hayes K. C., Hull T. C., Delaney G. A., Potter P. J., Sequeira K. A., Campbell K., and Popovich P. G. 2002. Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J. Neurotrauma 19:753–761.

    Article  PubMed  CAS  Google Scholar 

  • Hercule H.C., Schunck W.H., Gross V., Seringer J., Leung F.P., Weldon S.M., da Costa Goncalves ACh, Huang Y., Luft F.C., and Gollasch M. (2009). Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol. 29:54–60.

    Article  PubMed  CAS  Google Scholar 

  • Hirashima Y., Farooqui A. A., Mills J. S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol, J. Neurochem. 59:708–714.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, C. (2000). COX-2 in brain and spinal cord implications for therapeutic use, Curr. Med. Chem. 7:1113–1120.

    PubMed  CAS  Google Scholar 

  • Hong S., Gronert K., Devchand P. R., Moussignac R. L., and Serhan C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells - Autacoids in anti-inflammation, J. Biol. Chem. 278: 14677–14687.

    Article  PubMed  CAS  Google Scholar 

  • Hortelano S., Castrillo A., Alvarez A. M. and Bosca L. (2000) Contribution of cyclopentenone prostaglandins to the resolution of inflammation through the potentiation of apoptosis in activated macrophages. J. Immunol. 165:6525–6531.

    Google Scholar 

  • Hoozemans J.J. and O’Banion M.K. (2005). The role of COX-1 and COX-2 in Alzheimer’s disease pathology and the therapeutic potentials of non-steroidal anti-inflammatory drugs. Curr. Drug Targets CNS Neurol. Disord. 4:307–315.

    Article  PubMed  CAS  Google Scholar 

  • Hoozemans J.J., Rozemuller J.M., van Haastert E.S., Veerhuis R., and Eikelenboom P. (2008). Cyclooxygenase-1 and -2 in the different stages of Alzheimer’s disease pathology. Curr. Pharm. Des. 14:1419–1427.

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T., Namba T., Takehara M., Nakaya T., Sugimoto Y., Araki W., Narumiya S., Suzuki T., and Mizushima T. (2009). Prostaglandin E2 stimulates the production of amyloid-beta peptides through internalization of the EP4 receptor. J. Biol. Chem. 284:18493–18502.

    Article  PubMed  CAS  Google Scholar 

  • Huang J.S., Ramamurthy S.K., Lin X., and Le Breton G.C. (2004). Cell signalling through thromboxane A2 receptors. Cell Signal 16:521–533.

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C., Forster C., Nogawa S., Clark H.B., and Ross M.E. (1999). Cyclooxygenase-2 immunoreactivity in the human brain following cerebral ischemia. Acta Neuropath. 98:9–14.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomovic M.D., Abrahamson E.E., Uz T., Manev H., and Dekosky S.T. (2008). Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer’s disease. J. Histochem. Cytochem. 56:1065–10673.

    Article  PubMed  CAS  Google Scholar 

  • IIiff J.J., Close L.N., Selden N.R., and Alkayed N.J. (2007). A novel role for P450 eicosanoids in the neurogenic control of cerebral blood flow in the rat. Exp. Physiol. 92:653–658.

    Google Scholar 

  • IIliff J.J. and Alkayed N.J. (2009). Soluble Epoxide Hydrolase Inhibition: Targeting Multiple Mechanisms of Ischemic Brain Injury with a Single Agent. Future Neurol. 4:179–199.

    Article  Google Scholar 

  • Iliff J.J., Jia J., Nelson J., Goyagi T., Klaus J., and Alkayed N.J. (2010). Epoxyeicosanoid signaling in CNS function and disease. Prostaglandins Other Lipid Mediat. 91:68–84.

    Article  PubMed  CAS  Google Scholar 

  • Itoh K., Mochizuki M., Ishii Y., Ishii T., Shibata T., Kawamoto Y., Kelly V., Sekizawa K., Uchida K., and Yamamoto M. (2004). Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Delta(12,14)-prostaglandin J2. Mol Cell Biol. 24:36–45.

    Article  PubMed  CAS  Google Scholar 

  • James M. J., Gibson R. A., and Cleland L. G. (2000). Dietary polyunsaturated fatty acids and inflammatory mediator production, Am. J. Clin. Nutr., 71:343 S–348 S.

    PubMed  CAS  Google Scholar 

  • Jenner P., and Olanow C.W. (2006). The pathogenesis of cell death in Parkinson’s disease. Neurology. 66(10 Suppl 4):S24–S36.

    PubMed  Google Scholar 

  • Jiang J. F., Borisenko G. G., Osipov A., Martin I., Chen R. W., Shvedova A. A., Sorokin A., Tyurina Y. Y., Potapovich A., Tyurin V. A., Graham S. H., and Kagan V. E. (2004). Arachidonic acid-induced carbon-centered radicals and phospholipid peroxidation in cyclo-oxygenase-2-transfected PC12 cells, J. Neurochem. 90:1036–1049.

    Article  PubMed  CAS  Google Scholar 

  • Kansanen E., Kivela A.M., and Levonen A.L. (2009). Regulation of Nrf2-dependent gene expression by 15-deoxy-Delta12,14-prostaglandin J2. Free Rad. Biol. Med. 47:1310–1317.

    Article  PubMed  CAS  Google Scholar 

  • Kantarci A., Oyaizu K., and Van Dyke T.E. (2003). Neutrophil-mediated tissue injury in periodontal disease pathogenesis: findings from localized aggressive periodontitis. J. Periodontol. 74:66–75.

    Article  PubMed  CAS  Google Scholar 

  • Kaspera R., and Totah R.A. (2009). Epoxyeicosatrienoic acids: formation, metabolism and potential role in tissue physiology and pathophysiology. Expert. Opin. Drug Metab. Toxicol. 5:757–771.

    Article  PubMed  CAS  Google Scholar 

  • Kim J.I., Jin J.K., Choi E.K., Spinner D., Rubenstein R., Carp R.I., and Kim Y.S. (2007). Increased expression and localization of cyclooxygenase-2 in astrocytes of scrapie-infected mice. J Neuroimmunol. 187:74–82.

    Article  PubMed  CAS  Google Scholar 

  • Kim C., Kim J.Y., and Kim J.H. (2008). Cytosolic phospholipase A2, lipoxygenase metabolites, and reactive oxygen species. BMB Rep. 41:555–559.

    Article  PubMed  CAS  Google Scholar 

  • Kis B., Snipes A., Bari F., and Busija D. W. (2004). Regional distribution of cyclooxygenase-3 mRNA in the rat central nervous system, Brain Res. Mol. Brain Res. 126: 78–80.

    Article  PubMed  CAS  Google Scholar 

  • Kis B., Snipes J. A., Isse T., Nagy K., and Busija D. W. (2003). Putative cyclooxygenase-3 expression in rat brain cells, J. Cereb. Blood Flow Metab. 23:1287–1292.

    Article  PubMed  CAS  Google Scholar 

  • Kis B., Snipes J.A., Gaspar T., Lenzser G., Tulbert C.D., and Busija D.W., (2006). Cloning of cyclooxygenase-1b (putative COX-3) in mouse. Inflam. Res. 55:274–278.

    Article  CAS  Google Scholar 

  • Klussmann S., and Martin-Villalba A. (2005). Molecular targets in spinal cord injury. J. Mol. Med. 83:657–671.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn H. and O’Donnell V.B. (2006). Inflammation and immune regulation by 12/15-lipoxygenases. Prog. Lipid Res. 45:334–356.

    Article  PubMed  CAS  Google Scholar 

  • Kunz T., Marklund N., Hillered L., and Oliw E.H. (2002). Cyclooxygenase-2, prostaglandin synthases, and prostaglandin H2 metabolism in traumatic brain injury in the rat. J. Neurotrauma. 19:1051–1064.

    Article  PubMed  Google Scholar 

  • Kurumbail R. G., Stevens A. M., Gierse J. K., McDonald, J. J., Stegeman R. A., Pak J. Y., Gildehaus D., Miyashiro J. M., Penning T. D., Seibert K., Isakson P. C., and Stallings W. C. (1996). Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents, Nature. 384:644–648.

    Article  PubMed  CAS  Google Scholar 

  • Kwon K. J., Jung Y. S., Lee S. H., Moon C. H., and Baik E. J. (2005). Arachidonic acid induces neuronal death through lipoxygenase and cytochrome P450 rather than cyclooxygenase, J. Neurosci. Res. 81:73–84.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence T and Gilroy D.W. (2007). Chronic inflammation: a failure of resolution? Int. J. Exp. Path. 88:85–94.

    Article  CAS  Google Scholar 

  • Lee H., Villacreses N. E., Rapoport S. I., and Rosenberger T. A. (2004). In vivo imaging detects a transient increase in brain arachidonic acid metabolism: a potential marker of neuroinflammation, J. Neurochem. 91:936–945.

    Article  PubMed  CAS  Google Scholar 

  • Lepley R. A., Muskardin D. T., and Fitzpatrick F. A. (1996). Tyrosine kinase activity modulates catalysis and translocation of cellular 5-lipoxygenase, J. Biol. Chem. 271:6179–6184.

    Article  PubMed  CAS  Google Scholar 

  • Li Y., Maher P., and Schubert D. (1997). A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron. 19:453–463.

    Article  PubMed  CAS  Google Scholar 

  • Liang X., Wang Q., Shi J., Lokteva L., Breyer R.M., Montine T.J., and Andreasson K. (2008). The prostaglandin E2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Ann. Neurol. 64:304–314.

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M., Melino G., and Finazzi-Agro A. (2001). Lipoxygenases and their involvement in programmed cell death, Cell Death. Differ. 8:776–784.

    Article  PubMed  CAS  Google Scholar 

  • Maderna P., and Godson C. (2009). Lipoxins: resolutionary road. Br. J. Pharmacol. 158:947–959.

    Article  PubMed  CAS  Google Scholar 

  • Manev R. and Manev H. (2004). 5-Lipoxygenase as a putative link between cardiovascular and psychiatric disorders. Crit Rev Neurobiol. 2004;16(1–2):181–186.

    Google Scholar 

  • Manev, H., Uz, T., and Qu, T. Y. (2000a). 5-Lipoxygenase and cyclooxygenase mRNA expression in rat hippocampus: early response to glutamate receptor activation by kainate, Exp. Gerontol. 35:1201–1209.

    Article  PubMed  CAS  Google Scholar 

  • Manev H., Uz T., Sugaya K., and Qu T. Y. (2000b). Putative role of neuronal 5-lipoxygenase in an aging brain, FASEB J., 14:1464–1469.

    Article  PubMed  CAS  Google Scholar 

  • Marcheselli V. L. and Bazan N. G. (1996). Sustained induction of prostaglandin endoperoxide synthase-2 by seizures in hippocampus - Inhibition by a platelet-activating factor antagonist, J. Biol. Chem., 271:24794–24799.

    Article  PubMed  CAS  Google Scholar 

  • Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J. M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression, J. Biol. Chem. 278:43807–43817.

    Article  PubMed  CAS  Google Scholar 

  • Marcus A.J. (1986). Transcellular metabolism of eicosanoids. Prog. Hemost. Thromb. 8, 127–142.

    PubMed  CAS  Google Scholar 

  • Matsumoto T., Funk C. D., Radmark O., Hoog J. O., Jornvall H., and Samuelsson B. (1988). Molecular cloning and amino acid sequence of human 5-lipoxygenase, Proc. Natl. Acad. Sci. U. S. A. 85:26–30.

    Article  PubMed  CAS  Google Scholar 

  • Mbonye U. R., Wada M., Rieke C. J., Tang H. Y., Dewitt D. L. and Smith W. L. (2006). The 19-amino acid cassette of cyclooxygenase-2 mediates entry of the protein into the endoplasmic reticulum-associated degradation system. J. Biol. Chem. 281:35770–35778.

    Article  PubMed  CAS  Google Scholar 

  • Mbonye U.R., Yuan C., Harris C.E., Sidhu R.S., Song I., Arakawa T., and Smith W.L. (2008). Two distinct pathways for cyclooxygenase-2 protein degradation. J. Biol. Chem. 283:8611–8623.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh T.K., Saatman K.E., Raghupathi R., Graham D.I., Smith D.H., Lee V.M., and Trojanowski J.Q. (1998). The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol. Appl. Neurobiol. 24:251–267.

    Article  PubMed  CAS  Google Scholar 

  • Ménard C., Valastro B., Martel M.A., Chartier E., Marineau A., Baudry M., and Massicotte G. (2005). AMPA receptor phosphorylation is selectively regulated by constitutive phospholipase A2 and 5-lipoxygenase activities. Hippocampus. 15:370–380.

    Article  PubMed  CAS  Google Scholar 

  • Minghetti L. and Levi G. (1998). Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide, Prog. Neurobiol. 54: 99–125.

    Article  PubMed  CAS  Google Scholar 

  • Minghetti L., Cardone F., Greco A., Puopolo M., Levi G., Green A. J., Knight R., and Pocchiari M. (2002). Increased CSF levels of prostaglandin E2 in variant Creutzfeldt-Jakob disease, Neurology 58:127–129.

    PubMed  CAS  Google Scholar 

  • Minghetti L., Greco A., Cardone F., Puopolo M., Ladogana A., Almonti S., Cunningham C., Perry V. H., Pocchiari M., and Levi G. (2000). Increased brain synthesis of prostaglandin E2 and F2-isoprostane in human and experimental transmissible spongiform encephalopathies, J. Neuropathol. Exp. Neurol. 59:866–871.

    PubMed  CAS  Google Scholar 

  • Minghetti, L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases, J. Neuropathol. Exp. Neurol. 63:901–910.

    PubMed  CAS  Google Scholar 

  • Minghetti L. (2005). Role of inflammation in neurodegenerative diseases. Curr. Opin. Neurol. 18:315–321.

    Article  PubMed  CAS  Google Scholar 

  • Minghetti L, and Pocchiari M. (2007). Cyclooxygenase-2, prostaglandin E2, and microglial activation in prion diseases. Int Rev Neurobiol. 82:265–75.

    Article  PubMed  CAS  Google Scholar 

  • Miranda H.V, and Outeiro T.F. (2010). The sour side of neurodegenerative disorders: the effects of protein glycation. J Pathol. 221:13–25.

    Article  CAS  Google Scholar 

  • Miwa Y., Sasaguri T., Inoue H., Taba Y., Ishida A., and Abumiya T. (2000). 15-Deoxy-Delta(12,14)-prostaglandin J2 induces G1 arrest and differentiation marker expression in vascular smooth muscle cells. Mol Pharmacol. 58:837–844.

    PubMed  CAS  Google Scholar 

  • Moskowitz M. A., Kiwak K. J., Hekimian K., and Levine, L. (1984). Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion, Science, 224:886–889.

    Article  PubMed  CAS  Google Scholar 

  • Munger KA, Montero A, Fukunaga M, Uda S, Yura T, Imai E, Kaneda Y, Valdivielso JM, and Badr KF (1999). Transfection of rat kidney with human 15-lipoxygenase suppresses inflammation and preserves function in experimental glomerulonephritis. Proc. Natl. Acad. Sci. USA 96:13375–13380.

    Article  PubMed  CAS  Google Scholar 

  • Murakami M., Austen K.F., Bingham C.O. 3 rd, Friend D.S., Penrose J.F., and Arm J.P. (1995). Interleukin-3 regulates development of the 5-lipoxygenase/leukotriene C4 synthase pathway in mouse mast cells. J. Biol. Chem. 270:22653–22656.

    Article  PubMed  CAS  Google Scholar 

  • Murakami M. and Kudo I. (2004). Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway, Prog. Lipid Res. 43:3–35.

    Article  PubMed  CAS  Google Scholar 

  • Murphy R.C. and Gijon M.A. (2007). Biosynthesis and metabolism of leukotrienes. Biochem. J. 405:379–395.

    Article  PubMed  CAS  Google Scholar 

  • Mustafa S., Sharma V., and McNeill J.H. (2009). Insulin resistance and endothelial dysfunction: Are epoxyeicosatrienoic acids the link? Exp Clin Cardiol. 14:e41–e50.

    PubMed  Google Scholar 

  • Nakahata N. (2008). Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol. Ther. 118:18–35.

    Article  PubMed  CAS  Google Scholar 

  • Nakano S., Kogure K., Abe K., and Yae T. (1990). Ischemia-induced alterations in lipid metabolism of the gerbil cerebral cortex: I. Changes in free fatty acid liberation, J. Neurochem., 54:1911–1916.

    Article  PubMed  CAS  Google Scholar 

  • Narumiya S., Sugimoto Y., and Ushikubi F. (1999). Prostanoid receptors: structures, properties, and functions. Physiol Rev 79:1193–226.

    PubMed  CAS  Google Scholar 

  • Ng V.Y., Huang Y., Reddy L.M., Falck J.R., Lin E.T., and Kroetz D.L. (2007). Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor alpha. Drug Metab. Dispos. 35:1126–1134.

    Article  PubMed  CAS  Google Scholar 

  • Nigam S., Zafiriou M.P., Deva R., Ciccoli R., Roux-Van der Merwe R. (2007). Structure, biochemistry and biology of hepoxilins: an update. FEBS J. 274:3503–3512.

    Article  PubMed  CAS  Google Scholar 

  • Nogawa S, Zhang FY, Ross ME, Iadecola C (1997). Cyclo-oxygenase-2 gene expression in ­neurons contributes to ischemic brain damage, J. Neurosci., 17: 2746–2755.

    PubMed  CAS  Google Scholar 

  • O’Banion M. K. (1999). Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology, Crit Rev. Neurobiol., 13:45–82.

    PubMed  Google Scholar 

  • O’Banion M. K. and Olschowka J. A. (1999). Localization and distribution of cyclooxygenase-2 in brain tissue by immunohistochemistry, Methods Mol. Biol. 120:55–66.

    PubMed  Google Scholar 

  • Ochi T. and Goto T. (2002). Differential effect of FR122047, a selective cyclo-oxygenase-1 inhibitor, in rat chronic models of arthritis. Br J Pharmacol. 135:782–788.

    Article  PubMed  CAS  Google Scholar 

  • Okada, K., Yuhi, T., Tsuji, S., and Yamashita, U. (2001). Cyclooxygenase-2 expression in the hippocampus of genetically epilepsy susceptible El mice was increased after seizure, Brain Res. 894:332–335.

    Article  PubMed  CAS  Google Scholar 

  • Okubo M., Yamanaka H., Kobayashi K., and Noguchi K. (2010). Leukotriene synthases and the receptors induced by peripheral nerve injury in the spinal cord contribute to the generation of neuropathic pain. Glia 58:599–610.

    PubMed  Google Scholar 

  • Parente L. and Perretti M (2003). Advances in the pathophysiology of constitutive and inducible cyclooxygenases: two enzymes in the spotlight. Biochem Pharmacol 65:153–159.

    Article  PubMed  CAS  Google Scholar 

  • Pasinetti, G. M. and Aisen, P. S., (1998). Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain, Neuroscience, 87:319–324.

    Article  PubMed  CAS  Google Scholar 

  • Peng H.L., Zhang G.S., Liu J.H., Gong F.J., and Li R.J. (2008). Dup-697, a specific COX-2 inhibitor, suppresses growth and induces apoptosis on K562 leukemia cells by cell-cycle arrest and caspase-8 activation. Ann Hematol. 87:121–129.

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Sala D., Cernuda-Morollón E., Pineda-Molina E., Cañada F.J. (2002). Contribution of covalent protein modification to the antiinflammatory effects of cyclopentenone prostaglandins. Ann N Y Acad Sci. 973:533–536.

    Article  PubMed  Google Scholar 

  • Pfister S.L., Spitzbarth N., Nithipatikom K., Falck J.R., and Campbell W.B. (2003). Metabolism of 12-hydroperoxyeicosatetraenoic acid to vasodilatory trioxilin C3 by rabbit aorta. Biochim Biophys Acta. 1622:6–13.

    PubMed  CAS  Google Scholar 

  • Pierre S.R., Lemmens M.A., and Figueiredo-Pereira M.E. (2009). Subchronic infusion of the product of inflammation prostaglandin J2 models sporadic Parkinson’s disease in mice. J. Neuroinflammation 6:18.

    Article  PubMed  CAS  Google Scholar 

  • Piomelli, D. (1994). Eicosanoids in synaptic transmission. Critical Reviews in Neurobiology 8:65–83.

    PubMed  CAS  Google Scholar 

  • Phillis J.W., Horrocks L.A., and Farooqui A.A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    Article  PubMed  CAS  Google Scholar 

  • Pompl P.N., Ho L., Bianchi M., McManus T., Qin W., and Pasinetti G.M. (2003). A therapeutic role for cyclooxygenase-2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. FASEB J. 17:725–727.

    PubMed  CAS  Google Scholar 

  • Powell W. S. and Rokach J. (2005). Biochemistry, biology and chemistry of the 5-lipoxygenase product 5-oxo-ETE, Prog. Lipid Res., 44:154–183.

    Article  PubMed  CAS  Google Scholar 

  • Prusiner S. B. (2001). Shattuck lecture - Neurodegenerative diseases and prions, New Eng. J. Med., 344:1516–1526.

    Article  PubMed  CAS  Google Scholar 

  • Przybyłkowski A., Kurkowska-Jastrzebska I., Joniec I., Ciesielska A., Członkowska A., and Członkowski A. (2004). Cyclooxygenases mRNA and protein expression in striata in the experimental mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration to mouse. Brain Res. 1019:144–1451.

    Article  PubMed  CAS  Google Scholar 

  • Qin, W. P., Ho, L., Pompl, P. N., Peng, Y. Z., Zhao, Z., Xiang, Z. M., Robakis, N. K., Shioi, J., Suh, J., and Pasinetti, G. M. (2003). Cyclooxygenase (COX)-2 and COX-1 potentiate β-amyloid peptide generation through mechanisms that involve γ-secretase activity, J. Biol. Chem. 278:50970–50977.

    Article  PubMed  CAS  Google Scholar 

  • Rådmark O. and Samuelsson B. (2009). 5-Lipoxygenase: mechanisms of regulation. J. Lipid Res. 50 Suppl:S40–S45.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S. L. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling, Neurochem. Res. 24:1403–1415.

    Article  PubMed  CAS  Google Scholar 

  • Resnick D.K., Graham S.H., Dixon C.E., and Marion D.W. (1998). Role of cyclooxygenase 2 in acute spinal cord injury. J. Neurotrauma 15:1005–1013.

    Article  PubMed  CAS  Google Scholar 

  • Roberts L. J., II, Montine T. J., Markesbery W. R., Tapper A. R., Hardy P., Chemtob S., Dettbarn W. D., and Morrow J. D. (1998). Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid, J. Biol. Chem. 273:3605–13612.

    Article  Google Scholar 

  • Rodgers K., McMahon B., Mitchell D., Sadlier D., and Godson C. (2005). Lipoxin A4 modifies platelet-derived growth factor-induced pro-fibrotic gene expression in human renal mesangial cells. Am. J. Pathol. 167:683–694.

    Article  PubMed  CAS  Google Scholar 

  • Romano M., Recchia I., and Recchiuti A. (2007). Lipoxin receptors. ScientificWorld Journal 7:1393–1412.

    Article  PubMed  CAS  Google Scholar 

  • Romano M. (2010). Lipoxins and aspirin-triggered lipoxins. TheScientificWorldJOURNAL 10:1048–1064.

    PubMed  CAS  Google Scholar 

  • Rouzer C.A. and Marnett L.J. (2009). Cyclooxygenases: structural and functional insights. J Lipid Res. 50 Suppl:S29–S34.

    Article  PubMed  CAS  Google Scholar 

  • Sampson A.P. (2009). FLAP inhibitors for the treatment of inflammatory diseases. Curr. Opin. Investig. Drugs 10:1163–1172.

    PubMed  CAS  Google Scholar 

  • Sastry P.S. and Subba Rao K. (2000) Apoptosis and the nervous system. J. Neurochem. 74:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Schaad N. C., Magestretti P. J., and Schorderet M. (1991). Prostanoids and their role in cell-cell interactions in the central nervous system, Neurochem. Int., 18:303–322.

    Article  PubMed  CAS  Google Scholar 

  • Schuhmann M.U., Mokhtarzadeh M., Stichtenoth D.O., Skardelly M., Klinge P.M., Gutzki F.M., Samii M., and Brinker T. (2003). Temporal profiles of cerebrospinal fluid leukotrienes, brain edema and inflammatory response following experimental brain injury. Neurol. Res. 25:481–491.

    Article  PubMed  CAS  Google Scholar 

  • Schwab J.M., Seid K., and Schluesener H.J. (2001). Traumatic brain injury induces prolonged accumulation of cyclooxygenase-1 expressing microglia/brain macrophages in rats. J. Neurotrauma. 18:881–890.

    Article  PubMed  CAS  Google Scholar 

  • Schwab J.M., Beschorner R., Meyermann R., Gözalan F., and Schluesener H.J. (2002). Persistent accumulation of cyclooxygenase-1-expressing microglial cells and macrophages and transient upregulation by endothelium in human brain injury. J. Neurosurg. 96:892–899.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C.N. and Sheppard K.A. (1990) Lipoxin formation during human neutrophil-platelet interactions. Evidence for the transformation of leukotriene A4 by platelet 12-lipoxygenase in vitro. J. Clin. Invest. 85:772–780.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C.N. and Romano, M. (1995). Lipoxin biosynthesis and actions: role of the human platelet LX-synthase. J. Lipid Mediat. Cell Signal. 12:293–306.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005). Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot. Essent. Fatty Acids 73:141–162.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N. and Levy B. (2003). Novel pathways and endogenous mediators in anti-inflammation and resolution. Chem. Immunol. Allergy 83:115–145.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N., Arita M., Hong S., and Gotlinger K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers, Lipids. 39:1125–1132.

    Article  PubMed  CAS  Google Scholar 

  • Shinohara H., Balboa M. A., Johnson C. A., Balsinde J., and Dennis E. A. (1999). Regulation of delayed prostaglandin production in activated P388D1 macrophages by group IV cytosolic and group V secretory phospholipase A2s, J. Biol. Chem. 274: 12263–12268.

    Article  PubMed  CAS  Google Scholar 

  • Shiraki T., Kamiya N., Shiki S., Kodama T.S., Kakizuka A., and Jingami H. (2005). Alpha,beta-unsaturated ketone is a core moiety of natural ligands for covalent binding to peroxisome proliferator-activated receptor gamma. J Biol Chem. 280:14145–14153.

    Article  PubMed  CAS  Google Scholar 

  • Simmet T., Seregi A., and Hertting G. (1988). Characterization of seizure-induced cysteinyl-­leukotriene formation in brain tissue of convulsion-prone gerbils, J. Neurochem., 50:1738–1742.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. L., DeWitt, D. L., and Garavito, R. M. (2000). Cyclooxygenases: structural, cellular, and molecular biology, Annu. Rev. Biochem., 69:145–182.

    Article  PubMed  CAS  Google Scholar 

  • Smith W. L., and Song I. (2002). The enzymology of prostaglandin endoperoxide H synthases-1 and −2, Prostaglandins Other Lipid Mediat., 68–69:115–128.

    Article  PubMed  Google Scholar 

  • Simmons D. L., Botting R. M., and Hla T. (2004). Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition, Pharmacol. Rev. 56:387–437.

    Article  PubMed  CAS  Google Scholar 

  • Snider N.T., Nast J.A., Tesmer L.A., and Hollenberg P.F. (2009). A cytochrome P450-derived epoxygenated metabolite of anandamide is a potent cannabinoid receptor 2-selective agonist. Mol. Pharmacol. 75:965–972.

    Article  PubMed  CAS  Google Scholar 

  • Snipes J. A., Kis B., Shelness G. S., Hewett J. A., and Busija D. W. (2005). Cloning and characterization of cyclooxygenase-1b (putative cyclooxygenase-3) in rat, J. Pharmacol. Exp. Ther., 313:668–676.

    Article  PubMed  CAS  Google Scholar 

  • Soto C., and Estrada L.D. (2008). Protein misfolding and neurodegeneration. Arch. Neurol. 65:184–189.

    Article  PubMed  Google Scholar 

  • Spector A.A. (2009). Arachidonic acid cytochrome P450 epoxygenase pathway. J. Lipid Res. 50:Suppl S52–S56.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, L. R., White, A. R., Jobling, M. F., Needham, B. E., Maher, F., Thyer, J., Beyreuther, K., Masters, C. L., Collins, S. J., and Cappai, R. (2001). Involvement of the 5-lipoxygenase pathway in the neurotoxicity of the prion peptide PrP106-126, J. Neurosci. Res., 65:565–572.

    Article  PubMed  CAS  Google Scholar 

  • Straus D.S., and Glass C.K. (2001). Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med. Res. Rev. 21:185–210.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto Y. and Narumiya S. (2007). Prostaglandin E receptors. J. Biol. Chem. 282:11613–11617.

    Article  PubMed  CAS  Google Scholar 

  • Sundström E. and Mo L. L. (2002). Mechanisms of glutamate release in the rat spinal cord slices during metabolic inhibition. J. Neurotrauma 19:257–266.

    Article  PubMed  Google Scholar 

  • Svensson C. I., and Yaksh T. L. (2002). The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing, Annu. Rev. Pharmacol. Toxicol. 42:553–583.

    Article  PubMed  CAS  Google Scholar 

  • Tanioka T., Nakatani Y., Semmyo N., Murakami M., and Kudo I. (2000). Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis, J. Biol. Chem. 275:32775–32782.

    Article  PubMed  CAS  Google Scholar 

  • Taiwo Y. O., and Levine J. D. (1990). Effects of cyclooxygenase products of arachidonic acid metabolism on cutaneous nociceptive threshold in the rat. Brain Res. 537:372–374.

    Article  PubMed  CAS  Google Scholar 

  • Thompson J. D., Higgins D. G., Gibson, T. J., and Clustal W. (1994). Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.

    Google Scholar 

  • Toda N. and Okamura T. (1993). Cerebral vasoconstrictor mediators, Pharmacol. Ther., 57:359–375.

    Article  PubMed  CAS  Google Scholar 

  • Tomimoto H., Akiguchi I., Wakita H., Lin J. X., and Budka H. (2000). Cyclooxygenase-2 is induced in microglia during chronic cerebral ischemia in humans, Acta Neuropathol. (Berl)) 99:26–30.

    Article  CAS  Google Scholar 

  • Tomimoto H., Shibata M., Ihara M., Akiguchi I., Ohtani R., and Budka H. (2002). A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans. Acta Neuropathol. 104:601–607.

    PubMed  CAS  Google Scholar 

  • Ueno N., Murakami M., Tanioka T., Fujimori K., Tanabe T., Urade Y., and Kudo I. (2001). Coupling between cyclooxygenase, terminal prostanoid synthase, and phospholipase A2, J. Biol. Chem. 276:34918–34927.

    Article  PubMed  CAS  Google Scholar 

  • Vane J. R., Bakhle Y. S., and Botting R. M. (1998). Cyclooxygenases 1 and 2, Annu. Rev. Pharmacol. Toxicol. 38:97–120.

    Article  PubMed  CAS  Google Scholar 

  • Vila, L. (2004). Cyclooxygenase and 5-lipoxygenase pathways in the vessel wall: role in atherosclerosis, Med. Res. Rev. 24:399–424.

    Article  PubMed  CAS  Google Scholar 

  • Wada M., DeLong C. J., Hong Y. H., Rieke C. J., Song I., Sidhu R. S., Yuan C., Warnock M., Schmaier A. H., Yokoyama C., Smyth E. M., Wilson S. J., Fitzgerald G. A., Garavito R. M., Sui D. X., Regan J. W., and Smith W. L. (2007). Enzymes and receptors of prostaglandin pathway with arachidonic acid- vs eicosapentaenoic acid-derived substrates and products. J. Biol. Chem. 282:22254–22266.

    Google Scholar 

  • Wada M., Saunders T.L., Morrow J., Milne G.L., Walker K.P., Dey S.K., Brock T.G., Opp M.R., Aronoff D.M., and Smith W.L. (2009). Two pathways for cyclooxygenase-2 protein degradation in vivo. J. Biol. Chem. 284:30742–30753.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y., Wei X., Xiao X., Hui R., Card J. W., Carey M. A., Wang D. W., and Zeldin D. C. (2005). Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. J. Pharmacol. Exp. Ther. 314:522–532.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T., Medina J. F., Haeggstrom J. Z., Radmark O., and Samuelsson B. (1993). Molecular cloning of a 12-lipoxygenase cDNA from rat brain. Eur. J. Biochem. 212:605–612.

    Article  PubMed  CAS  Google Scholar 

  • Werz O. (2002). 5-lipoxygenase: cellular biology and molecular pharmacology. Curr. Drug Targets. Inflamm. Allergy 1:23–44.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe L. S. and Horrocks L. A., Eicosanoids (1994). In Basic Neurochemistry, Siegel G.J., Agranoff B.W., Albers R.W., Molinoff P.B. (Eds.), Raven Press, New York, pp. 475–490.

    Google Scholar 

  • Wu K. K. (1995). Inducible cyclooxygenase and nitric oxide synthase, Adv. Pharmacol. 33:179–207.

    Article  PubMed  CAS  Google Scholar 

  • Wu B., and Ren X. (2009). Promoting axonal myelination for improving neurological recovery in spinal cord injury. J. Neurotrauma 26:1847–1856.

    Article  PubMed  Google Scholar 

  • Xiang Z., Ho, L., Valdellon J., Borchelt D., Kelley K., Spielman L., Aisen P. S., and Pasinetti G. M. (2002). Cyclooxygenase (COX)-2 and cell cycle activity in a transgenic mouse model of Alzheimer’s disease neuropathology. Neurobiol. Aging. 23:327–334.

    Article  PubMed  CAS  Google Scholar 

  • Yacoubian S., and Serhan C.N. (2007). New endogenous anti-inflammatory and proresolving lipid mediators: implications for rheumatic diseases. Nature Clinical Practice Rheumatology 3:570–579.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata K., Andreasson K. I., Kaufmann W. E., Barnes C. A., and Worley P. F. (1993). Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron. 11:371–386.

    Article  PubMed  CAS  Google Scholar 

  • Yan X. D., Kumar B., Nahreini P., Hanson A. J., Prasad J. E., and Prasad K. N. (2005). Prostaglandin-induced neurodegeneration is associated with increased levels of oxidative markers and reduced by a mixture of antioxidants. J. Neurosci. Res. 81:85–90.

    Article  PubMed  CAS  Google Scholar 

  • Yasojima K., Tourtellotte W. W., McGeer E. G., and McGeer P. L. (2001). Marked increase in cyclooxygenase-2 in ALS spinal cord: implications for therapy. Neurology 57:952–956.

    PubMed  CAS  Google Scholar 

  • Yokoyama C., and Tanabe T. (1989). Cloning of human gene encoding prostaglandin endoperoxide synthase and primary structure of the enzyme. Biochem. Biophys. Res. Commun. 165:888–894.

    Article  PubMed  CAS  Google Scholar 

  • Zeldin D. C. (2001). Epoxygenase pathways of arachidonic acid metabolism. J. Biol. Chem. 276:36059–36062.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2011). Metabolism and Roles of Eicosanoids in Brain. In: Lipid Mediators and Their Metabolism in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9940-5_1

Download citation

Publish with us

Policies and ethics