Skip to main content

Altered Histone Modifications in Cancer

  • Chapter
  • First Online:
Epigenetic Alterations in Oncogenesis

Part of the book series: Advances in Experimental Medicine and Biology ((volume 754))

Abstract

In human health and disease the choreographed actions of a wide armory of transcription factors govern the regulated expression of coding and nonprotein coding genes. These actions are central to human health and are evidently aberrant in cancer. Central components of regulated gene expression are a variety of epigenetic mechanisms that include histone modifications. The post-translational modifications of histones are widespread and diverse, and appear to be spatial-­temporally regulated in a highly intricate manner. The true functional consequences of these patterns of regulation are still emerging. Correlative evidence supports the idea that these patterns are distorted in malignancy on both a genome-wide and a discrete gene loci level. These patterns of distortion also often reflect the altered expression of the enzymes that control these histone states. Similarly gene expression patterns also appear to reflect a correlation with altered histone modifications at both the candidate loci and genome-wide level. Clarity is emerging in resolving these relationships between histone modification status and gene expression ­patterns. For example, altered transcription factor interactions with the key co-activator and co-repressors, which in turn marshal many of the histone-modifying enzymes, may distort regulation of histone modifications at specific gene loci. In turn these aberrant transcriptional processes can trigger other altered epigenetic events such as DNA methylation and underline the aberrant and specific gene expression patterns in cancer. Considered in this manner, altered expression and recruitment of histone-modifying enzymes may underline the distortion to transcriptional responsiveness observed in malignancy. Insight from understanding these processes addresses the challenge of targeted epigenetic therapies in cancer.

Chromatin-modifying enzymes: The nomenclature for enzymes involved in protein methylation, demethylation, and acetylation has recently been rationalized (Allis CD et al (2007) New nomenclature for chromatin-modifying enzymes. Cell 131:633–636). In this review, we use the new nomenclature for lysine methyltransferases (KMT), lysine demethylases (KDM), and lysine acetyltransferases (KAT). Histone deacetylases (HDACs) have retained their original nomenclature. To maintain a link between the new nomenclature and the literature, we use both the new designation and the original published designation(s), e.g., KDM5A/JARID1A/RBP2.

Histone modifications: We use the Brno nomenclature for histone modifications (Turner BM (2005) Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol 12:110–112). For example, histone H3 tri-methylated at lysine 4 is shown as H3K4me3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AR:

Androgen receptor

ChIP:

Chromatin immunoprecipitation

CoA:

Co-activator complex

E2 :

Estradiol

ERα:

Estrogen receptor alpha

ES:

Embryonic stem cell

HDAC:

Histone deacetylase

JMJD:

Jumonji domain containing protein

JARID:

Jumonji AT-rich interactive domain

KAT:

Lysine acetyltransferase

KDM:

Lysine demethylase

KMT:

Lysine methyltransferase

LSD1:

Lysine-specific demethylase 1

NCOR:

Nuclear co-repressor

NR:

Nuclear receptor

PSA:

Prostate-specific antigen

SET:

Su(var), enhancer of zeste and trithorax

TF:

Transcription factor

TSA:

Trichostatin A

TSS:

Transcription start site

References

  1. Allis CD et al (2007) New nomenclature for chromatin-modifying enzymes. Cell 131: 633–636

    PubMed  CAS  Google Scholar 

  2. Turner BM (2005) Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol 12:110–112

    PubMed  CAS  Google Scholar 

  3. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    PubMed  CAS  Google Scholar 

  4. Flaus A, Owen-Hughes T (2011) Mechanisms for ATP-dependent chromatin remodelling: the means to the end. FEBS J 278:3579–3595

    PubMed  Google Scholar 

  5. Recouvreux P et al (2011) Linker histones incorporation maintains chromatin fiber plasticity. Biophys J 100:2726–2735

    PubMed  CAS  Google Scholar 

  6. Talbert PB, Henikoff S (2010) Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275

    PubMed  CAS  Google Scholar 

  7. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    PubMed  CAS  Google Scholar 

  8. Ngara R, Ndimba R, Borch-Jensen J, Jensen ON, Ndimba B (2012) Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. J Proteomics 75: 4139–4150

    Google Scholar 

  9. Zhang S, Roche K, Nasheuer HP, Lowndes NF (2011) Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J Biol Chem 286:37483–37495

    PubMed  CAS  Google Scholar 

  10. Tan M et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028

    PubMed  CAS  Google Scholar 

  11. Cosgrove MS (2007) Histone proteomics and the epigenetic regulation of nucleosome mobility. Expert Rev Proteomics 4:465–478

    PubMed  CAS  Google Scholar 

  12. Hyland EM et al (2005) Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 25:10060–10070

    PubMed  CAS  Google Scholar 

  13. Xu F, Zhang K, Grunstein M (2005) Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121:375–385

    PubMed  CAS  Google Scholar 

  14. Masumoto H, Hawke D, Kobayashi R, Verreault A (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436:294–298

    PubMed  CAS  Google Scholar 

  15. Vempati RK (2012) DNA damage in the presence of chemical genotoxic agents induce acetylation of H3K56 and H4K16 but not H3K9 in mammalian cells. Mol Biol Rep 39:303–308

    PubMed  CAS  Google Scholar 

  16. Clemente-Ruiz M, Gonzalez-Prieto R, Prado F (2011) Histone H3K56 acetylation, CAF1, and Rtt106 coordinate nucleosome assembly and stability of advancing replication forks. PLoS Genet 7:e1002376

    PubMed  CAS  Google Scholar 

  17. Watanabe S et al (2010) Structural characterization of H3K56Q nucleosomes and nucleosomal arrays. Biochim Biophys Acta 1799:480–486

    PubMed  CAS  Google Scholar 

  18. Xie W et al (2009) Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. Mol Cell 33:417–427

    PubMed  CAS  Google Scholar 

  19. Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8:140–146

    PubMed  CAS  Google Scholar 

  20. Ferreira H, Somers J, Webster R, Flaus A, Owen-Hughes T (2007) Histone tails and the H3 alphaN helix regulate nucleosome mobility and stability. Mol Cell Biol 27:4037–4048

    PubMed  CAS  Google Scholar 

  21. Lenfant F, Mann RK, Thomsen B, Ling X, Grunstein M (1996) All four core histone N-termini contain sequences required for the repression of basal transcription in yeast. EMBO J 15:3974–3985

    PubMed  CAS  Google Scholar 

  22. Ling X, Harkness TA, Schultz MC, Fisher-Adams G, Grunstein M (1996) Yeast histone H3 and H4 amino termini are important for nucleosome assembly in vivo and in vitro: redundant and position-independent functions in assembly but not in gene regulation. Genes Dev 10:686–699

    PubMed  CAS  Google Scholar 

  23. Dion MF, Altschuler SJ, Wu LF, Rando OJ (2005) Genomic characterization reveals a simple histone H4 acetylation code. Proc Natl Acad Sci USA 102:5501–5506

    PubMed  CAS  Google Scholar 

  24. Turner BM (1993) Decoding the nucleosome. Cell 75:5–8

    PubMed  CAS  Google Scholar 

  25. Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384

    PubMed  CAS  Google Scholar 

  26. Kutateladze TG (2011) SnapShot: histone readers. Cell 146:842–842.e1

    PubMed  CAS  Google Scholar 

  27. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040

    PubMed  CAS  Google Scholar 

  28. Liu Z et al (2010) Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis. J Biol Chem 285:2758–2770

    PubMed  CAS  Google Scholar 

  29. Canzio D et al (2011) Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol Cell 41:67–81

    PubMed  CAS  Google Scholar 

  30. Kolasinska-Zwierz P et al (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41:376–381

    PubMed  CAS  Google Scholar 

  31. Kourmouli N et al (2004) Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J Cell Sci 117:2491–2501

    PubMed  CAS  Google Scholar 

  32. Ringrose L, Paro R (2007) Polycomb/trithorax response elements and epigenetic memory of cell identity. Development 134:223–232

    PubMed  CAS  Google Scholar 

  33. Mateescu B, England P, Halgand F, Yaniv M, Muchardt C (2004) Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep 5:490–496

    PubMed  CAS  Google Scholar 

  34. Ernst J et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49

    PubMed  CAS  Google Scholar 

  35. Kharchenko PV et al (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471:480–485

    PubMed  CAS  Google Scholar 

  36. Rada-Iglesias A et al (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283

    PubMed  CAS  Google Scholar 

  37. Korolev N, Lyubartsev AP, Nordenskiold L (2006) Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails. Biophys J 90: 4305–4316

    PubMed  CAS  Google Scholar 

  38. Perico A, La Penna G, Arcesi L (2006) Electrostatic interactions with histone tails may bend linker DNA in chromatin. Biopolymers 81:20–28

    PubMed  CAS  Google Scholar 

  39. Takahashi YH et al (2011) Dot1 and histone H3K79 methylation in natural telomeric and HM silencing. Mol Cell 42:118–126

    PubMed  CAS  Google Scholar 

  40. Jones B et al (2008) The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4:e1000190

    PubMed  Google Scholar 

  41. Lee MG et al (2007) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318:447–450

    PubMed  CAS  Google Scholar 

  42. Agger K et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734

    PubMed  CAS  Google Scholar 

  43. Pekowska A et al (2011) H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J 30:4198–4210

    PubMed  CAS  Google Scholar 

  44. Robertson AG et al (2008) Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res 18:1906–1917

    PubMed  CAS  Google Scholar 

  45. Zeissig S et al (2007) Butyrate induces intestinal sodium absorption via Sp3-mediated transcriptional up-regulation of epithelial sodium channels. Gastroenterology 132:236–248

    PubMed  CAS  Google Scholar 

  46. Augenlicht LH et al (2002) Short chain fatty acids and colon cancer. J Nutr 132: 3804S–3808S

    PubMed  Google Scholar 

  47. Tanaka Y, Bush KK, Klauck TM, Higgins PJ (1989) Enhancement of butyrate-induced differentiation of HT-29 human colon carcinoma cells by 1,25-dihydroxyvitamin D3. Biochem Pharmacol 38:3859–3865

    PubMed  CAS  Google Scholar 

  48. Cuezva JM et al (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62:6674–6681

    PubMed  CAS  Google Scholar 

  49. Racker E, Spector M (1981) Warburg effect revisited: merger of biochemistry and molecular biology. Science 213:303–307

    PubMed  CAS  Google Scholar 

  50. Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707

    PubMed  CAS  Google Scholar 

  51. Cavill R et al (2011) Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells. PLoS Comput Biol 7:e1001113

    PubMed  CAS  Google Scholar 

  52. Su G, Burant CF, Beecher CW, Athey BD, Meng F (2011) Integrated metabolome and transcriptome analysis of the NCI60 dataset. BMC Bioinformatics 12(Suppl 1):S36

    PubMed  Google Scholar 

  53. Sharon D, Chen R, Snyder M (2010) Systems biology approaches to disease marker discovery. Dis Markers 28:209–224

    PubMed  CAS  Google Scholar 

  54. Misteli T, Soutoglou E (2009) The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10:243–254

    PubMed  CAS  Google Scholar 

  55. Seligson DB et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266

    PubMed  CAS  Google Scholar 

  56. Kurdistani SK (2007) Histone modifications as markers of cancer prognosis: a cellular view. Br J Cancer 97:1–5

    PubMed  CAS  Google Scholar 

  57. He LR et al (2009) Prognostic impact of H3K27me3 expression on locoregional progression after chemoradiotherapy in esophageal squamous cell carcinoma. BMC Cancer 9:461

    PubMed  Google Scholar 

  58. Tzao C et al (2009) Prognostic significance of global histone modifications in resected squamous cell carcinoma of the esophagus. Mod Pathol 22:252–260

    PubMed  CAS  Google Scholar 

  59. Yu J et al (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663

    PubMed  CAS  Google Scholar 

  60. Wei Y et al (2008) Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog 47:701–706

    PubMed  CAS  Google Scholar 

  61. Hansen KH et al (2008) A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10:1291–1300

    PubMed  CAS  Google Scholar 

  62. Fraga MF et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    PubMed  CAS  Google Scholar 

  63. Tryndyak VP, Kovalchuk O, Pogribny IP (2006) Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4-20h2 histone methyltransferase and methyl-binding proteins. Cancer Biol Ther 5:65–70

    PubMed  CAS  Google Scholar 

  64. Pfister S et al (2008) The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer 122:1207–1213

    PubMed  CAS  Google Scholar 

  65. Bosch-Presegue L, Vaquero A (2011) The dual role of sirtuins in cancer. Genes Cancer 2:648–662

    PubMed  CAS  Google Scholar 

  66. Rius M, Lyko F (2011) Epigenetic cancer therapy: rationales, targets and drugs. Oncogene Dec 19. doi:10.1038/onc.2011.601

    Google Scholar 

  67. Pogribny IP et al (2006) Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 27:1180–1186

    PubMed  CAS  Google Scholar 

  68. Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR (2010) Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene 29:576–588

    PubMed  CAS  Google Scholar 

  69. Das C, Lucia MS, Hansen KC, Tyler JK (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459:113–117

    PubMed  CAS  Google Scholar 

  70. Williams SK, Truong D, Tyler JK (2008) Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. Proc Natl Acad Sci USA 105:9000–9005

    PubMed  CAS  Google Scholar 

  71. Adkins MW, Williams SK, Linger J, Tyler JK (2007) Chromatin disassembly from the PHO5 promoter is essential for the recruitment of the general transcription machinery and coactivators. Mol Cell Biol 27:6372–6382

    PubMed  CAS  Google Scholar 

  72. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546

    PubMed  CAS  Google Scholar 

  73. Spivakov M, Fisher AG (2007) Epigenetic signatures of stem-cell identity. Nat Rev Genet 8:263–271

    PubMed  CAS  Google Scholar 

  74. Meshorer E, Gruenbaum Y (2008) Gone with the Wnt/Notch: stem cells in laminopathies, progeria, and aging. J Cell Biol 181:9–13

    PubMed  CAS  Google Scholar 

  75. Loh YH, Zhang W, Chen X, George J, Ng HH (2007) Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev 21:2545–2557

    PubMed  CAS  Google Scholar 

  76. Jepsen K et al (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450:415–419

    PubMed  CAS  Google Scholar 

  77. Frye M, Fisher AG, Watt FM (2007) Epidermal stem cells are defined by global histone modifications that are altered by Myc-induced differentiation. PLoS One 2:e763

    PubMed  Google Scholar 

  78. Ozdag H et al (2006) Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics 7:90

    PubMed  Google Scholar 

  79. Watanabe H et al (2008) Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell Int 8:15

    PubMed  Google Scholar 

  80. Wang JK et al (2010) The histone demethylase UTX enables RB-dependent cell fate control. Genes Dev 24:327–332

    PubMed  Google Scholar 

  81. van Haaften G et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41:521–523

    PubMed  Google Scholar 

  82. Cherrier T et al (2009) p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene 28:3380–3389

    PubMed  CAS  Google Scholar 

  83. Pollard PJ et al (2008) Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 416:387–394

    PubMed  CAS  Google Scholar 

  84. Scharer CD et al (2009) Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res 69:709–717

    PubMed  CAS  Google Scholar 

  85. Varambally S et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    PubMed  CAS  Google Scholar 

  86. Kondo Y et al (2008) Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40:741–750

    PubMed  CAS  Google Scholar 

  87. Min J et al (2010) An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 16:286–294

    PubMed  CAS  Google Scholar 

  88. Shi Y et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    PubMed  CAS  Google Scholar 

  89. Wissmann M et al (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9:347–353

    PubMed  CAS  Google Scholar 

  90. Metzger E et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    PubMed  CAS  Google Scholar 

  91. Metzger E et al (2010) Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464:792–796

    PubMed  CAS  Google Scholar 

  92. Shi Y (2007) Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet 8:829–833

    PubMed  CAS  Google Scholar 

  93. Shi L et al (2011) Histone demethylase JMJD2B coordinates H3K4/H3K9 methylation and promotes hormonally responsive breast carcinogenesis. Proc Natl Acad Sci USA 108:7541–7546

    PubMed  CAS  Google Scholar 

  94. Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437:432–435

    PubMed  CAS  Google Scholar 

  95. Shi YJ et al (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19:857–864

    PubMed  CAS  Google Scholar 

  96. Forneris F, Binda C, Vanoni MA, Battaglioli E, Mattevi A (2005) Human histone demethylase LSD1 reads the histone code. J Biol Chem 280:41360–41365

    PubMed  CAS  Google Scholar 

  97. Forneris F et al (2006) A highly specific mechanism of histone H3-K4 recognition by histone demethylase LSD1. J Biol Chem 281:35289–35295

    PubMed  CAS  Google Scholar 

  98. Cai C et al (2011) Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20:457–471

    PubMed  CAS  Google Scholar 

  99. Yosef N, Regev A (2011) Impulse control: temporal dynamics in gene transcription. Cell 144:886–896

    PubMed  CAS  Google Scholar 

  100. Alenghat T et al (2008) Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456(7224):997–1000

    PubMed  CAS  Google Scholar 

  101. Mohn F, Schubeler D (2009) Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet 25:129–136

    PubMed  CAS  Google Scholar 

  102. De Santa F et al (2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130:1083–1094

    PubMed  Google Scholar 

  103. Cui Q et al (2007) A map of human cancer signaling. Mol Syst Biol 3:152

    PubMed  Google Scholar 

  104. Dobrzynski M, Bruggeman FJ (2009) Elongation dynamics shape bursty transcription and translation. Proc Natl Acad Sci USA 106(8):2583–2588

    PubMed  CAS  Google Scholar 

  105. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    PubMed  CAS  Google Scholar 

  106. Le May N et al (2010) NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol Cell 38:54–66

    PubMed  Google Scholar 

  107. Metivier R et al (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50

    PubMed  CAS  Google Scholar 

  108. Kangaspeska S et al (2008) Transient cyclical methylation of promoter DNA. Nature 452:112–115

    PubMed  CAS  Google Scholar 

  109. Wang Q et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256

    PubMed  CAS  Google Scholar 

  110. Hu M et al (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37:899–905

    PubMed  CAS  Google Scholar 

  111. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601

    PubMed  CAS  Google Scholar 

  112. Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66:4553–4557

    PubMed  CAS  Google Scholar 

  113. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    PubMed  CAS  Google Scholar 

  114. Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16:318–330

    PubMed  CAS  Google Scholar 

  115. Fernandez PC et al (2003) Genomic targets of the human c-Myc protein. Genes Dev 17:1115–1129

    PubMed  CAS  Google Scholar 

  116. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645

    PubMed  CAS  Google Scholar 

  117. Guccione E et al (2006) Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 8:764–770

    PubMed  CAS  Google Scholar 

  118. Bernstein BE et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    PubMed  CAS  Google Scholar 

  119. Secombe J, Li L, Carlos L, Eisenman RN (2007) The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev 21:537–551

    PubMed  CAS  Google Scholar 

  120. Secombe J, Eisenman RN (2007) The function and regulation of the JARID1 family of histone H3 lysine 4 demethylases: the Myc connection. Cell Cycle 6:1324–1328

    PubMed  CAS  Google Scholar 

  121. Suzuki C et al (2007) Identification of Myc-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer. Mol Cancer Ther 6:542–551

    PubMed  CAS  Google Scholar 

  122. Ogasawara S et al (2010) Accelerated expression of a Myc target gene Mina53 in aggressive hepatocellular carcinoma. Hepatol Res 40:330–336

    PubMed  CAS  Google Scholar 

  123. Komiya K et al (2010) Mina53, a novel c-Myc target gene, is frequently expressed in lung cancers and exerts oncogenic property in NIH/3T3 cells. J Cancer Res Clin Oncol 136:465–473

    PubMed  CAS  Google Scholar 

  124. Watt FM, Frye M, Benitah SA (2008) MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nat Rev Cancer 8:234–242

    PubMed  CAS  Google Scholar 

  125. Li H, Kim JH, Koh SS, Stallcup MR (2004) Synergistic effects of coactivators GRIP1 and beta-catenin on gene activation: cross-talk between androgen receptor and Wnt signaling pathways. J Biol Chem 279:4212–4220

    PubMed  CAS  Google Scholar 

  126. Yang X et al (2006) Complex regulation of human androgen receptor expression by Wnt signaling in prostate cancer cells. Oncogene 25(24):3436–3444

    PubMed  CAS  Google Scholar 

  127. Campbell MJ, Elstner E, Holden S, Uskokovic M, Koeffler HP (1997) Inhibition of proliferation of prostate cancer cells by a 19-nor-hexafluoride vitamin D3 analogue involves the induction of p21waf1, p27kip1 and E-cadherin. J Mol Endocrinol 19:15–27

    PubMed  CAS  Google Scholar 

  128. Degenhardt T, Matilainen M, Herzig KH, Dunlop TW, Carlberg C (2006) The insulin-like growth factor binding protein 1 gene is a primary target of peroxisome proliferator-activated receptors. J Biol Chem 281(51):39607–39619

    PubMed  CAS  Google Scholar 

  129. Khanim FL et al (2004) Altered SMRT levels disrupt vitamin D(3) receptor signalling in prostate cancer cells. Oncogene 23:6712–6725

    PubMed  CAS  Google Scholar 

  130. Kubota T et al (1998) 19-nor-26,27-bishomo-vitamin D3 analogs: a unique class of potent inhibitors of proliferation of prostate, breast, and hematopoietic cancer cells. Cancer Res 58:3370–3375

    PubMed  CAS  Google Scholar 

  131. Liu M, Lee MH, Cohen M, Bommakanti M, Freedman LP (1996) Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev 10:142–153

    PubMed  CAS  Google Scholar 

  132. Palmer HG et al (2004) The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nat Med 10:917–919

    PubMed  CAS  Google Scholar 

  133. Saramaki A, Banwell CM, Campbell MJ, Carlberg C (2006) Regulation of the human p21(waf1/cip1) gene promoter via multiple binding sites for p53 and the vitamin D3 receptor. Nucleic Acids Res 34:543–554

    PubMed  Google Scholar 

  134. Thorne J, Campbell MJ (2008) The vitamin D receptor in cancer. Proc Nutr Soc 67:115–127

    PubMed  CAS  Google Scholar 

  135. Hendriksen PJ et al (2006) Evolution of the androgen receptor pathway during progression of prostate cancer. Cancer Res 66:5012–5020

    PubMed  CAS  Google Scholar 

  136. Taneja SS et al (2004) ART-27, an androgen receptor coactivator regulated in prostate development and cancer. J Biol Chem 279:13944–13952

    PubMed  CAS  Google Scholar 

  137. Ross-Innes CS et al (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481(7381):389–393

    PubMed  CAS  Google Scholar 

  138. Ceschin DG et al (2011) Methylation specifies distinct estrogen-induced binding site repertoires of CBP to chromatin. Genes Dev 25:1132–1146

    PubMed  CAS  Google Scholar 

  139. Welboren WJ et al (2009) ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. EMBO J 28:1418–1428

    PubMed  CAS  Google Scholar 

  140. Rashid SF et al (2001) Synergistic growth inhibition of prostate cancer cells by 1 alpha,25 Dihydroxyvitamin D(3) and its 19-nor-hexafluoride analogs in combination with either sodium butyrate or trichostatin A. Oncogene 20:1860–1872

    PubMed  CAS  Google Scholar 

  141. Abedin SA et al (2009) Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells. Carcinogenesis 30(3):449–456

    PubMed  CAS  Google Scholar 

  142. Lin RJ et al (1998) Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391:811–814

    PubMed  CAS  Google Scholar 

  143. Banwell CM et al (2006) Altered nuclear receptor corepressor expression attenuates vitamin D receptor signaling in breast cancer cells. Clin Cancer Res 12:2004–2013

    PubMed  CAS  Google Scholar 

  144. Ting HJ, Bao BY, Reeder JE, Messing EM, Lee YF (2007) Increased expression of corepressors in aggressive androgen-independent prostate cancer cells results in loss of 1alpha,25-dihydroxyvitamin D3 responsiveness. Mol Cancer Res 5:967–980

    PubMed  CAS  Google Scholar 

  145. Tomlins SA et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    PubMed  CAS  Google Scholar 

  146. Anderson SP et al (2004) Overlapping transcriptional programs regulated by the nuclear receptors peroxisome proliferator-activated receptor {alpha}, retinoid X receptor and liver X receptor in mouse liver. Mol Pharmacol 66(6):1440–1452

    PubMed  CAS  Google Scholar 

  147. Bookout AL et al (2006) Anatomical profiling of nuclear receptor expression reveals a ­hierarchical transcriptional network. Cell 126:789–799

    PubMed  CAS  Google Scholar 

  148. Handschin C, Meyer UA (2005) Regulatory network of lipid-sensing nuclear receptors: roles for CAR, PXR, LXR, and FXR. Arch Biochem Biophys 433:387–396

    PubMed  CAS  Google Scholar 

  149. Xia X et al (2009) Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA 106:4260–4265

    PubMed  CAS  Google Scholar 

  150. Malik S, Roeder RG (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11:761–772

    PubMed  CAS  Google Scholar 

  151. Xu J, Wu RC, O’Malley BW (2009) Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 9:615–630

    PubMed  CAS  Google Scholar 

  152. Taatjes DJ, Marr MT, Tjian R (2004) Regulatory diversity among metazoan co-activator complexes. Nat Rev Mol Cell Biol 5:403–410

    PubMed  CAS  Google Scholar 

  153. Perissi V, Jepsen K, Glass CK, Rosenfeld MG (2010) Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 11:109–123

    PubMed  CAS  Google Scholar 

  154. Battaglia S, Maguire O, Campbell MJ (2010) Transcription factor co-repressors in cancer biology: roles and targeting. Int J Cancer 126:2511–2519

    PubMed  CAS  Google Scholar 

  155. Anzick SL et al (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968

    PubMed  CAS  Google Scholar 

  156. Demarest SJ et al (2002) Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415:549–553

    PubMed  CAS  Google Scholar 

  157. Zhao C et al (2003) Elevated expression levels of NCOA3, TOP1, and TFAP2C in breast tumors as predictors of poor prognosis. Cancer 98:18–23

    PubMed  CAS  Google Scholar 

  158. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508

    PubMed  CAS  Google Scholar 

  159. Esteyries S et al (2008) NCOA3, a new fusion partner for MOZ/MYST3 in M5 acute myeloid leukemia. Leukemia 22:663–665

    PubMed  CAS  Google Scholar 

  160. Horlein AJ et al (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404

    PubMed  CAS  Google Scholar 

  161. Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457

    PubMed  CAS  Google Scholar 

  162. Li J et al (2000) Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J 19:4342–4350

    PubMed  CAS  Google Scholar 

  163. Yu C et al (2005) The nuclear receptor corepressors NCoR and SMRT decrease PPARgamma transcriptional activity and repress 3T3-L1 adipogenesis. J. Biol, Chem

    Google Scholar 

  164. Jepsen K, Gleiberman AS, Shi C, Simon DI, Rosenfeld MG (2008) Cooperative regulation in development by SMRT and FOXP1. Genes Dev 22:740–745

    PubMed  CAS  Google Scholar 

  165. Tiefenbach J et al (2006) SUMOylation of the corepressor N-CoR modulates its capacity to repress transcription. Mol Biol Cell 17:1643–1651

    PubMed  CAS  Google Scholar 

  166. Surjit M et al (2011) Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 145:224–241

    PubMed  CAS  Google Scholar 

  167. Heikkinen S et al (2011) Nuclear hormone 1{alpha},25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res 39(21):9181–9193

    PubMed  CAS  Google Scholar 

  168. Muller-Tidow C et al (2010) Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood 116:3564–3571

    PubMed  Google Scholar 

  169. Hoemme C et al (2008) Chromatin modifications induced by PML-RARalpha repress critical targets in leukemogenesis as analyzed by ChIP-Chip. Blood 111:2887–2895

    PubMed  CAS  Google Scholar 

  170. Minucci S et al (2000) Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell 5:811–820

    PubMed  CAS  Google Scholar 

  171. Girault I et al (2003) Expression analysis of estrogen receptor alpha coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin Cancer Res 9:1259–1266

    PubMed  CAS  Google Scholar 

  172. Zhang Z et al (2005) NCOR1 mRNA is an independent prognostic factor for breast cancer. Cancer Lett 237(1):123–129

    PubMed  Google Scholar 

  173. Kim JY, Son YL, Lee YC (2009) Involvement of SMRT corepressor in transcriptional ­repression by the vitamin D receptor. Mol Endocrinol 23:251–264

    PubMed  CAS  Google Scholar 

  174. Chang TH, Szabo E (2002) Enhanced growth inhibition by combination differentiation therapy with ligands of peroxisome proliferator-activated receptor-gamma and inhibitors of histone deacetylase in adenocarcinoma of the lung. Clin Cancer Res 8:1206–1212

    PubMed  CAS  Google Scholar 

  175. Battaglia S et al (2010) Elevated NCOR1 disrupts PPAR signaling in prostate cancer and forms a targetable epigenetic lesion. Carcinogenesis 31(9):1650–1660

    PubMed  CAS  Google Scholar 

  176. Bau D et al (2011) The three-dimensional folding of the alpha-globin gene domain reveals formation of chromatin globules. Nat Struct Mol Biol 18:107–114

    PubMed  CAS  Google Scholar 

  177. Li Q, Barkess G, Qian H (2006) Chromatin looping and the probability of transcription. Trends Genet 22:197–202

    PubMed  Google Scholar 

  178. Eskiw CH, Rapp A, Carter DR, Cook PR (2008) RNA polymerase II activity is located on the surface of protein-rich transcription factories. J Cell Sci 121:1999–2007

    PubMed  CAS  Google Scholar 

  179. Mitchell JA, Fraser P (2008) Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev 22:20–25

    PubMed  CAS  Google Scholar 

  180. Hu Q et al (2008) Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci USA 105:19199–19204

    PubMed  CAS  Google Scholar 

  181. Yoon HG, Chan DW, Reynolds AB, Qin J, Wong J (2003) N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 12:723–734

    PubMed  CAS  Google Scholar 

  182. Yegnasubramanian S et al (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64:1975–1986

    PubMed  CAS  Google Scholar 

  183. Asatiani E et al (2005) Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Cancer Res 65:1164–1173

    PubMed  CAS  Google Scholar 

  184. Fujita N et al (2003) Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem 278:24132–24138

    PubMed  CAS  Google Scholar 

  185. Esteve PO et al (2006) Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20:3089–3103

    PubMed  CAS  Google Scholar 

  186. Cheng X, Blumenthal RM (2010) Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 49:2999–3008

    PubMed  CAS  Google Scholar 

  187. Freitag M, Hickey PC, Khlafallah TK, Read ND, Selker EU (2004) HP1 is essential for DNA methylation in Neurospora. Mol Cell 13:427–434

    PubMed  CAS  Google Scholar 

  188. Birney E et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    PubMed  CAS  Google Scholar 

  189. Schulte JH et al (2009) Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 69:2065–2071

    PubMed  CAS  Google Scholar 

  190. Graham JS, Kaye SB, Brown R (2009) The promises and pitfalls of epigenetic therapies in solid tumours. Eur J Cancer 45:1129–1136

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moray J. Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Campbell, M.J., Turner, B.M. (2013). Altered Histone Modifications in Cancer. In: Karpf, A. (eds) Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology, vol 754. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9967-2_4

Download citation

Publish with us

Policies and ethics