Skip to main content

He II Heat and Mass Transfer

  • Chapter
  • First Online:
Helium Cryogenics

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

Chapter 6 emphasized the physics of He II including heat transport in the laminar flow and the turbulent mutual friction regimes. These mechanisms are fundamental to the behavior of He II, although that discussion mostly described idealized behavior. In the present chapter we will build on the fundamental understanding of He II to treat practical heat and mass transfer problems that may occur in He II systems. In doing so, the concepts already developed must be extended into regimes that are more usable in engineering calculations. To be more specific, the emphasis of Chap. 6 has been to understand the interactive mechanisms and the two fluid nature of He II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. F. Vinen, Mutual Friction in a Heat Current in Liquid Helium II. I. Experiments on Steady State Heat Currents, Proc. R. Soc. London A240, 114 (1957).

    Google Scholar 

  2. V. Arp, Heat Transport through Helium II, Cryogenics 10, 96 (1970).

    Article  Google Scholar 

  3. C. E. Chase, Thermal Conduction in Liquid Helium II I: Temperature Dependence, Phys. Rev. Vol. 127, 361 (1962).

    Article  Google Scholar 

  4. S. W. Van Sciver, Kapitza Conductance of Aluminum and Heat Transport through Sub-cooled He II, Cryogenics 18, 521 (1978).

    Article  Google Scholar 

  5. G. Bon Mardion, et al, Steady State Heat Transport in Superfluid Helium at 1 Bar, Proc. 20th Intern. Cryog. Engn. Conf., IPC Technology Press, London (1978) pp. 214–222.

    Google Scholar 

  6. W. F. Vinen, Mutual Friction in a Heat Current in Liquid Helium II. III. Theory of Mutual Friction, Proc. R. Soc. London A242, 493 (1957).

    Google Scholar 

  7. A. Sato, et al, Normalized Representation for Steady State Heat Transport in a Channel Containing He II Covering Pressure Range up to 1.5 MPa, Proc. 7th Intern. Cryog. Engn. Conf., Beijing, China (2004) pp. 849–52.

    Google Scholar 

  8. A. Sato, et al, Steady State Heat Transport in a Channel Containing He II at High Pressures up to 1.5 MPa, Adv. Cryog. Engn. Vol. 49, 999 (2004).

    Google Scholar 

  9. A. Sato, et al, Temperature Dependence of the Gorter-Mellink Exponent m Measured in a Channel Containing He II, Adv. Cryog. Engn. Vol. 51A, 387 (2006).

    Google Scholar 

  10. M. Maeda, et al, Heat Transport Near the Lambda Line in a Channel Containing He II, Adv. Cryog. Engn. Vol. 51A, 379 (2006).

    Google Scholar 

  11. P. Seyfert, Practical Results on Heat Transfer to Superfluid Helium, in Stability of Superconductors, pp. 53–62, International Institute of Refrigeration Commission A 1/2, Saclay, France, 1981.

    Google Scholar 

  12. C. Linnet and T. H. K. Frederking, Thermal Conditions at the Gorter-Mellink Counterflow Limit between 0.01 and 3 Bar, J. Low Temp. Phys. Vol. 21, 447 (1975).

    Article  Google Scholar 

  13. S. R. Breon and S. W. Van Sciver, Boiling in Subcooled and Saturated He II, Advances in Cryogenic Engineering 31, 465 (1986) and Boiling Phenomena in Pressurized He II Confined to a Channel, Cryogenics 26, 682 (1986).

    Article  Google Scholar 

  14. A. C. Leonard and M. A. Clermont, Correlation of the Vaporization Onset Heat Flux for Cylinders in Saturated Liquid Helium II, in Proc. 4th Intern. Cryog. Engn. Conf., IPC Science and Technology Press, London, 1972, pp. 301–306.

    Google Scholar 

  15. J. S. Goodlang and R. K. Irey, Nonboiling and Film Boiling Heat Transfer to a Saturated Bath of Liquid Helium, Adv. Cryog. Eng. 14, 159 (1969).

    Google Scholar 

  16. T. H. K. Frederking and R. L. Haben, Maximum Low Temperature Dissipation Rates of Single Horizontal Cylinders in Liquid Helium II, Cryogenics 8, 32 (1968).

    Article  Google Scholar 

  17. S. W. Van Sciver and R. L. Lee, Heat Transfer to He II in Cylindrical Geometries, Adv. Cryog. Eng. 25, 363 (1980).

    Google Scholar 

  18. S. W. Van Sciver and R. L. Lee, Heat Transfer from Circular Cylinders in He II, in Cryogenic Processes and Equipment in Energy Systems, ASME Publication No. H00164, 1981, pp. 147–154.

    Google Scholar 

  19. S.W. Van Sciver, Heat Transfer through Extended Surfaces Containing He II, ASME Journal of Heat Transfer Vol. 121, 142 (1999).

    Article  Google Scholar 

  20. A. Bezaguet, J. Casas-Cubillos, P. Lebrun, M. Marquet, L. Tavian, and R. van Weelderen, The superfluid helium model cryoloop for the CERN Large Hadron Collider, Adv. Cryog. Engr. Vol. 39, 649 (1994).

    Article  Google Scholar 

  21. G. Horlitz, T. Peterson and D. Trines, A 2 Kelvin Helium II Distributed Cooling System for the 2x250 Gev e + e- Linear Collider TESLA, Cryogenics Vol. 34 (Supplement), 131 (1994).

    Article  Google Scholar 

  22. S. W. Van Sciver, Heat and Mass Transfer Processes in Two Phase He II/Vapor, Cryogenics Vol. 39, 1039 (1999).

    Article  Google Scholar 

  23. Y. Xiang, B. Peterson, S. Wolff, S. W. Van Sciver, and J. G. Weisend II, Numerical Study of Two-Phase Helium II Stratified Channel Flow with Inclination, IEEE Trans. On Applied Superconductivity Vol. 10, 1530 (2000) and Y. Xiang, N. N. Filina, S. W. Van Sciver, J. G. Weisend II and S. Wolff, Numerical Study of Two-Phase He II Stratified Channel Flow, Adv. Cryog. Engn. Vol. 45B, 1001 (2000).

    Article  Google Scholar 

  24. Ph. Lebrun, L. Serio, L. Tavian and R. van Weelderen, Cooling Strings of Superconducting Devices Below 2 K: the Helium II Bayonet Heat Exchanger, Adv. Cryog. Engn. Vol. 43A, 419 (1998).

    Google Scholar 

  25. B. Rousset, L. Grimaud, A. Gauthier, Stratified Two-Phase Superfluid Helium Flow: ICryogenics Vol. 37, 733 (1997) and L. Grimaud, A. Gauthier, B. Rousset, J. M. Delhaye, Stratified Two-Phase Superfluid Helium Flow: II, Cryogenics Vol. 37, 739 (1997).

    Article  Google Scholar 

  26. L. Dresner, Transient Heat Transfer in Superfluid Helium, Adv. Cryog. Eng. 27, 411 (1982).

    Google Scholar 

  27. L. Dresner, Transient Heat Transfer in Superfluid Helium-Part II, Adv. Cryog. Eng. 29, 323 (1984).

    Article  Google Scholar 

  28. L. Dresner, Similarity Solution of Non-Linear Partial Differential Equations, Pitman Publishing, Boston, MA, 1983.

    Google Scholar 

  29. S. W. Van Sciver, Transient Heat Transport in He II, Cryogenics 19, 385 (1979).

    Article  Google Scholar 

  30. P. Seyfert, J. Lafferranderie, and G. Claudet, Time Dependent Heat Transport in Subcooled Superfluid Helium, Cryogenics 22, 401 (1982).

    Article  Google Scholar 

  31. S. W. Van Sciver, Heat Transport in Forced Flow He II: Analytic Solution, Adv. Cryog. Eng. 29, 315 (1984).

    Article  Google Scholar 

  32. R. Srinvasan and A. Hofmann, Investigations on Cooling with Forced Flow of He II, Cryogenics 25, 641 (1985).

    Article  Google Scholar 

  33. A. Kashani and S. W. Van Sciver, Steady State Forced Convection Heat Transfer in He II, Adv. Cryog. Eng. 31, (1986).

    Google Scholar 

  34. W. W. Johnson and M. C. Jones, Measurements of Axial Heat Transport in Helium II with Forced Convection, Adv. Cryog. Eng. 23, 363 (1978).

    Article  Google Scholar 

  35. S. Fuzier and S. W. Van Sciver, Steady-State Pressure Drop and Heat Transfer in He II Forced Flow at High Reynolds Number, Cryogenics 41, 453 (2001) and S. Fuzier, S. Maier and S. W. Van Sciver, Pressure Drop in Forced Flow He II at High Reynolds Numbers, in Proc. 19th Intern. Cryog. Engn. Conf., Grenoble, France July, 15, 2002, pp. 755–8.

    Article  Google Scholar 

  36. P.L. Walstrom, J.G. Weisend II, J.R. Maddocks, and S.W. Van Sciver, Turbulent Flow Pressure Drop in Various He II Transfer System Components, Cryogenics Vol. 28, 101 (1988).

    Article  Google Scholar 

  37. M.A. Daughterty and S.W. Van Sciver, Pressure Drop Measurements on Cable-in-Conduit Conductors of Various Geometries, IEEE Trans. on Magnetics 27, 2108 (1991).

    Article  Google Scholar 

  38. A. Hofmann, A. Khalil and H.P. Kramer, Operational Characteristics of Loops, Adv. Cryog. Engn. 33, 471 (1988).

    Google Scholar 

  39. B. Rousset, G. Claudet, A. Gauthier, P. Seyfert, P. Lebrun, M. Marquet, R. Van Weelderen and J. Duchateau, Operation of a Forced Flow Superfluid Helium Test Facility and First Results, Cryogenics (Supplement) Vol. 3, 134 (1992).

    Article  Google Scholar 

  40. P. L. Walstrom, Joule-Thomson Effect and Internal Convection Heat Transfer in Turbulent He II Flow, Cryogenics Vol. 28, 151 (1988).

    Article  Google Scholar 

  41. A. Kashani, S.W. Van Sciver, and J.C. Strikwerda, Numerical Solution of Forced Convection Heat Transfer in He II, J. Num Heat Transfer, Part A, Vol. 16, 213 (1989).

    Article  Google Scholar 

  42. L. Bottura and C. Rosso, Finite Element Simulation of Steady-State and Transient Forced Convection in Superfluid Helium, Intern. J. Numerical Methods in Fluids, Vol. 30, 1091 (1999).

    Article  MATH  Google Scholar 

  43. Rousset B., Claudet G., Gauthier A., Seyfert P., Martinez A., Lebrun P., Marquet M. and Van Weelderen R., Pressure Drop and Transient Heat Transport in Forced Flow Single Phase Helium II at High Reynolds Numbers, Cryogenics (Supplement) Vol. 34, 317 (1994).

    Article  Google Scholar 

  44. S. Fuzier and S. W. Van Sciver, Experimental Measurements and Modeling of Transient Heat Transfer in Forced Flow He II at High Velocities, Cryogenics Vol. 48, 130 (2008).

    Article  Google Scholar 

  45. R. Maekawa and B. Baudouy, Heat Transfer through Porous Media in the Counterflow Regime, Adv. Cryog. Engn. Vol. 41, 983 (2004).

    Google Scholar 

  46. M. Dalban-Canassy and S. W. Van Sciver, Steady Counterflow He II Heat Transfer Through Porous Media, Adv. Cryog. Engn. Vol. 55, 1327 (2010).

    Google Scholar 

  47. B. Baudouy, et al, Heat Transfer through Porous Media in Static Superfluid Helium, Adv. Cryog. Engn. Vol. 51, 409 (2006).

    Google Scholar 

  48. B. Maytal, J. A. Nissen and S. W. Van Sciver, Iso-chemical Trajectories in the P-T Plane for He II, Cryogenics Vol. 30, 730 (1990).

    Article  Google Scholar 

  49. P. Kittel, Losses in Fountain Effect Pumps, in Proc. 11th Intern. Cryog. Engn. Conf., Butterworth, UK (1986) pp. 317–322.

    Google Scholar 

  50. A.R. Urbach, J. Vorreiter and P. Mason, Design of a Superfluid Helium Dewar for the IRAS Telescope, in Proc. 7th Intern. Cryog. Engn. Conf., IPC Science and Technology Press, UK (1978) pp. 126–133.

    Google Scholar 

  51. D. Petrac and P. V. Mason, Evaluation of Porous-Plug Liquid Separators for Space Helium Systems, in Proc. 7th Intern. Cryog. Engn. Conf., IPC Science and Technology Press, UK (1978) pp. 120–5.

    Google Scholar 

  52. P. L. Kapitza, The Study of Heat Transfer on Helium II, J. Phys. (USSR) 4, 181 (1941).

    Google Scholar 

  53. T. H. K. Frederking, Thermal Transport Phenomena at Liquid Helium II Temperatures, Adv. Cryog. Heat Transfer 64, 21 (1968).

    Google Scholar 

  54. N. S. Snyder, Heat Transport through Helium II: Kapitza Conductance, Cryogenics Vol. 10, 89 (1970).

    Article  Google Scholar 

  55. L. J. Challis, Experimental Evidence for a Dependence of the Kapitza Conductance on the Debye Temperature of a Solid, Phys. Lett. 26A, 105 (1968).

    Google Scholar 

  56. M. Khalatnikov, Introduction to the Theory of Superfluidity, Chap. 111, W. A. Benjamin, New York, 1965.

    Google Scholar 

  57. R. E. Peterson and A. C. Anderson, The Kapitza Thermal Boundary Resistance, J. Low Temp. Phys. 11, 639 (1973).

    Article  Google Scholar 

  58. L. J. Challis, K. Dransfeld, and J. Wilks, Heat Transfer Between Solids and Liquid Helium II, Proc. R. Soc. London A260, 31 (1961).

    Google Scholar 

  59. D. Cheeke and H. Ettinger, Macroscopic Calculation of the Kapitza Resistance Between Solids and Liquid 4He, Phys. Rev. Lett. 37, 1625 (1976).

    Article  Google Scholar 

  60. P. H. E. Meijer and J. S. R. Pert, New Kapitza Heat Transfer Model for Liquid 4He, Phys. Rev. B 22, 195 (1980).

    Article  Google Scholar 

  61. J. Wilks, The Properties of Liquid and Solid Helium, Chap. 14, Clarendon Press, Oxford, 1967.

    Google Scholar 

  62. B. W. Clement and T. H. K. Frederking, Thermal Boundary Resistance and Related Peak Flux During Supercritical Heat Transport from a Horizontal Surface Through a Short Tube to a Saturated Bath of Liquid Helium II, Liquid Helium Technology, Proceedings of the International Institute of Refrigeration, Commission I, Boulder, CO, Pergamon Press, Oxford, 1966, pp. 49–59 (see also Ref. 29).

    Google Scholar 

  63. K. Mittag, Kapitza Conductance and Thermal Conductivity of Copper, Niobium, and Aluminum in the Range from 1.3 to 2.1 K, Cryogenics 13, 94 (1973).

    Article  Google Scholar 

  64. S. W. Van Sciver, Kapitza Conductance of Aluminum and Heat Transport from a Flat Surface through a Large Diameter Tube to Saturated He II, Adv. Cryog. Eng. 23, 340 (1977).

    Google Scholar 

  65. G. Claudet and P. Seyfert, Bath Cooling with Subcooled Superfluid Helium, Adv. Cryog. Eng. 27, 441 (1981).

    Google Scholar 

  66. S. W. Van Sciver, Developments in He II Heat Transfer and Applications to Superconducting Magnets, Adv. Cryog. Eng. 27, 375 (1981).

    Google Scholar 

  67. A. Kashani and S. W. Van Sciver, Kapitza Conductance of Technical Copper with Several Different Surface Preparations, Cryogenics 25, 238 (1985).

    Article  Google Scholar 

  68. H. P. Kramer, Heat Transfer to Forced Flow Helium II, in Proc. 12 th Intern. Cryog. Engn. Conf., Southampton, UK, Butterworth, UK, 1988, pp. 299–304.

    Google Scholar 

  69. J. G. Weisend II and S. W. Van Sciver, Surface Heat Transfer Measurements in Forced Flow He II, in Superfluid Helium Heat Transfer, ASME HTD-Vol. 134 ed. J. P. Kelly and W. J Schneider, 1990, pp 1–7.

    Google Scholar 

  70. A. C. Leonard, Helium I Noise Film Boiling and Silent Film Boiling Heat Transfer Coefficient Values, in Proc. 3rd Intern. Cryog. Engn. Conf., pp. 109–114, ILIFFE Science and Tech. Publications, Guilderford, Surrey, U.K., 1970.

    Google Scholar 

  71. R. K. Irey, Heat Transport in Liquid Helium II, in Heat Transfer at Low Temperatures, W. Frost (Ed.), Plenum Press, New York, 1975.

    Google Scholar 

  72. K. R. Betts and A. C. Leonard, Free Convection Film Boiling from a Flat, Horizontal Surface in Saturated He II, Adv. Cryog. Eng. 21, 282 (1975).

    Google Scholar 

  73. J. S. Goodling and R. K. Irey, Non-Boiling and Film Boiling Heat Transfer to a Saturated Bath of Liquid Helium, Adv. Cryog. Eng. 14, 159 (1969).

    Google Scholar 

  74. R. C. Steed and R. K. Irey, Correlation of the Depth Effect on Film Boiling Heat Transfer in Liquid Helium I, Adv. Cryog. Eng. 15, 299 (1970).

    Google Scholar 

  75. R. M. Holdredge and P. W. McFadden, Boiling Heat Transfer from Cylinders in Super-fluid Liquid Helium II Bath, Adv. Cryog. Eng. 11, 507 (1966).

    Google Scholar 

  76. M. Nozawa, N. Kimura, M. Murakami and S. Takada, Thermo-fluid Dynamics of Several Film Boiling Modes in He II in the Pressure Range between Atmospheric Pressure and Saturated Vapor Pressure, Cryogenics Vol. 49, 583 (209).

    Google Scholar 

  77. S. Takada, M. Murakami, and N. Kimura, Heat Transfer Characteristics of Four Film Boiling Modes Around a Horizontal Cylindrical Heater in He II, Adv. Cryog. Engn. Vol. 55A, 1355 (2010).

    Google Scholar 

  78. W. J. Rivers and P. W. McFadden, Film-Free Convection in Helium II, Trans. ASME, J. Heat Transfer, 88C, 343 (1966).

    Article  Google Scholar 

  79. D. A. Labuntzov and Ye. V. Ametistov, Analysis of Helium II Film Boiling, Cryogenics 19, 401 (1979).

    Article  Google Scholar 

  80. P. L. Bhatnager, E. P. Gross, and M. Krook, A Model for Collision Processes in Gases. I. Small-Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. 94, 511 (1954).

    Article  Google Scholar 

  81. A. P. Kryukov and S. W. Van Sciver, Calculation of the Recovery Heat Flux from Film Boiling in Superfluid Helium, Cryogenics 21, 525 (1981).

    Article  Google Scholar 

  82. G. D. Lemieux and A. C. Leonard, Maximum and Minimum Heat Flux in Helium II for a 76.2 μm Diameter Horizontal Wire at Depths of Immersion Up to 70 cm, Adv. Cryog. Eng. 13, 624 (1968).

    Google Scholar 

  83. S. W. Van Sciver, Correlation of Time Dependent Recovery from Film Boiling Heat Transfer in He II, Cryogenics 21, 529 (1981).

    Article  Google Scholar 

Further Readings

  • F. P. Incropera and D. P. Dewitt, Fundamentals of Heat Transfer, Wiley, New York, 1981.

    Google Scholar 

  • G. E. Myers, Analytical Methods in Conduction Heat Transfer, McGraw-Hill, New York, 1971.

    Google Scholar 

  • S. W. Van Sciver, He II (Superfluid Helium), Chapter 10 in Handbook of Cryogenic Engineering, ed. J. G. Weisend II, Taylor & Francis, Washington, DC (1998), pp. 445–483.

    Google Scholar 

  • J. Wilks, The Properties of Liquid and Solid Helium, Chap. 14, Clarendon Press, Oxford, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Van Sciver .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Van Sciver, S.W. (2012). He II Heat and Mass Transfer. In: Helium Cryogenics. International Cryogenics Monograph Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9979-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9979-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9978-8

  • Online ISBN: 978-1-4419-9979-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics