Skip to main content

Equivalences of discrete-event systems and of hybrid systems

  • Chapter
Open Problems in Mathematical Systems and Control Theory

Part of the book series: Communications and Control Engineering ((CCE))

  • 876 Accesses

Abstract

The problem is to develop concepts and theorems for equivalences of discrete-event systems and of hybrid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126: 183–235, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge University Press, Cambridge, 1990.

    Book  Google Scholar 

  3. V. Blondel and J. Tsitsiklis. Complexity of stability and controllability of elementary hybrid systems. To appear in Automatica. Report LIDS- P 2388, LIDS, Massachusetts Institute of Technology, Cambridge, MA, 1997.

    Google Scholar 

  4. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation. Springer, New York, 1997.

    Book  MATH  Google Scholar 

  5. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers. Bull. Amer. Math. Soc., 21: 1–46, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Chomsky. Three models for the description of language. IRE Trans. Information Theory, 2: 113–124, 1956.

    Article  Google Scholar 

  7. A. Church. Logic, arithmetic, and automata. In Proc. 1962 Internat. Congress of Math., pages 15–22, X, 1963. Mittag-Leffler Inst.

    Google Scholar 

  8. B. Dasgupta and E.D. Sontag. A polynomial-time algorithm for an equivalence problem which arises in hybrid system theory. In Proceedings of the Conference on Decision and Control, page to appear, New York, 1998. IEEE Press.

    Google Scholar 

  9. R. David and H. Alia. Petri nets and grafcet. Prentice Hall, New York, 1992.

    MATH  Google Scholar 

  10. S. Eilenberg. Automata, languages, and machines (Volumes A and B). Academic Press, New York, 1974, 1976.

    Google Scholar 

  11. T.A. Henzinger. Hybrid automata with finite bisimulations. In Z. Fiilop and F. Géseg, editors, ICALP95: Automata, languages, and programming, pages 324–335, Berlin, 1995. Springer-Verlag.

    Google Scholar 

  12. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid automata. In X, editor, Proceedings of the 27th Annual Symposium on Theory of Computing, pages 373–382, X, 1995. ACM Press.

    Google Scholar 

  13. K. Krohn and J. Rhodes. Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines. Trans. Amer. Math. Soc., 116: 450–464, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Milner. Communication and concurrency. Prentice-Hall, Englewood Cliffs, NJ, 1989.

    MATH  Google Scholar 

  15. A. Overkamp. Supervisory control using failure semantics and partial specifications. IEEE Trans. Automatic Control, 42: 498–510, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  16. P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. Proc. IEEE, 77: 81–98, 1989.

    Article  Google Scholar 

  17. G. Rozenberg and A. Salomaa, editors. Handbook of formal languages, Volumes 1–3. Springer, Berlin, 1997.

    Google Scholar 

  18. M. Shayman and R. Kumar. Supervisory control of nondeterministic systems with driven events via prioritized synchronization and trajectory models. SIAM J. Control & Opt., 33: 469–497, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Sipser. Introduction to the theory of computation. PWS Publishing Company, Boston, 1997.

    MATH  Google Scholar 

  20. E.D. Sontag. On certain questions of rationality and decidability. J. Comp. Syst. Sci., 11: 375–381, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  21. E.D. Sontag. Controllability is harder to decide than accessibility. SIAM J. Control & Opt., 26: 1106–1118, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  22. E.D. Sontag. Mathematical control theory: Deterministic finite dimensional systems. Springer-Verlag, New York, 1990.

    MATH  Google Scholar 

  23. E.D. Sontag. From linear to nonlinear: Some complexity comparisons. In Proc. IEEE Conference on Decision and Control, pages 2916–2920, New York, 1995. IEEE Press.

    Google Scholar 

  24. L. Staiger. ω-languages. In G. Rozenberg and A. Salomaa, editors, Handbook of formal languages, pages 339–387. Springer, Berlin, 1997.

    Google Scholar 

  25. J.G. Thistle and W.M. Wonham. Control of infinite behavior of finite automata. SIAM J. Control & Opt., 32: 1075–1097, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of theoretical computer science, Volume B, pages 133–191. Elsevier Science Publishers B.V., Amsterdam, 1990.

    Google Scholar 

  27. J.N. Tsitsiklis. On the control of discrete-event systems. Math. Control Signals Systems, 2: 95–107, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.H. van Schuppen. A sufficient condition for controllability of a class of hybrid systems. In T.A. Henzinger and S. Sastry, editors, Hybrid systems: Computation and control, number 1386 in Lecture Notes in Computer Science, pages 374–383, Berlin, 1998. Springer.

    Google Scholar 

  29. K.C. Wong and W.M. Wonham. Hierarchical control of discrete-event systems. J. Discrete Event Dynamics Systems, 6: 241–273, 1996.

    Article  MATH  Google Scholar 

  30. Sheng Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of formal languages, Volume 1, pages 41–110. Springer, Berlin, 1997.

    Google Scholar 

  31. H. Zhong and W.M. Wonham. On the consistency of hierarchical supervisors in discrete-event systems. IEEE Trans. Automatic Control, 35: 1125–1134, 1990.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this chapter

Cite this chapter

van Schuppen, J.H. (1999). Equivalences of discrete-event systems and of hybrid systems. In: Blondel, V., Sontag, E.D., Vidyasagar, M., Willems, J.C. (eds) Open Problems in Mathematical Systems and Control Theory. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-0807-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0807-8_47

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1207-5

  • Online ISBN: 978-1-4471-0807-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics