Skip to main content

Cellular Calcium: Action of Hormones

  • Chapter
Calcium in Human Biology

Part of the book series: ILSI Human Nutrition Reviews ((ILSI HUMAN))

Abstract

An appreciation of the indispensability of the calcium ion in physiological systems began with the experiments of Sydney Ringer, who, in the 1880s, noted that calcium was required to maintain the contractility of the frog heart, essential to the development of fertilized eggs and tadpoles and important in cell adhesion (Campbell 1983). Subsequent studies by Locke, Loeb, Loewi and others in the early 1900s demonstrated that calcium was required for the action of hormones such as adrenaline. That calcium was necessary for the survival of cells in culture and for the maintenance of colonies of cells in tissues and organs became known in later years. More recently, it has become widely recognized that the actions of various hormones and other agonists involve changes in intracellular calcium levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif A A (1986) Calcium-mobilizing receptors, polyphosphoinositides and the generation of second messengers. Pharmacol Rev 38:227–272

    PubMed  CAS  Google Scholar 

  • Anderson WB, Salomon DS (1985) Calcium, phospholipid dependent protein kinase C as a cellular receptor for phorbol ester tumor promotors: possible role in modulating cell growth and tumor promotion. In: Kuo JF (ed) Phospholipids and cellular regulation, vol 2. CRC Press, Boca Raton, Florida, pp 127–170

    Google Scholar 

  • Authi KS, Crawford N (1985) Inositol 1,4,5-trisphosphate-induced release of sequestered Ca2+ from highly purified human platelet intracellular membranes. Biochem J 230:247–253

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1984a) Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1984b) Oncogenes, inositol lipids and cellular proliferation. Biotechnology 2:541–546

    CAS  Google Scholar 

  • Berridge MJ (1985) Calcium-mobilizing receptors: membrane phosphoinositides and signal transduction. In: Rubin RP, Weiss GB, Putney JW Jr (eds) Calcium in biological systems. Plenum Press, New York, pp 37–44

    Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    PubMed  CAS  Google Scholar 

  • Billah MM, Lapetina EG, Cuatrecasas P (1979) Phosphatidylinositol-specific phospholipase-C of platelets: association with 1,2-diacylglycerol-kinase and inhibition by cyclic AMP. Biochem Biophys Res Comm 90:92–98

    PubMed  CAS  Google Scholar 

  • Bourdeaux MK, Dodds J, Slauson DO, Catalfamo JL (1986) Impaired cAMP metabolism associated with abnormal function of thrombopathic canine platelets. Biochem Biophys Res Comm 140:595–601

    Google Scholar 

  • Bourne HR (1986) GTP-binding proteins: one molecular machine can transduce diverse signals. Nature 321:814–816

    PubMed  CAS  Google Scholar 

  • Burgess WH, Jemiolo DK, Kretsinger RH (1980) Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim Biophys Acta 623:257–270

    PubMed  CAS  Google Scholar 

  • Campbell AK (1983) Intracellular calcium, its universal role as regulator. John Wiley, New York

    Google Scholar 

  • Chan K-FJ, Graves DJ (1984) Molecular properties of phosphorylase kinase. In: Cheung WY (ed) Calcium and cell function, vol 5. Academic Press, New York, pp 1–31

    Google Scholar 

  • Chase HS Jr, Al-Awqai Q (1983) Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. Studies using a fast-reaction apparatus. J Gen Physiol 81:643–665

    PubMed  CAS  Google Scholar 

  • Cheung WY (1970) Cyclic 3′,5′-nucleotide phosphodiesterase: demonstration of an activator. Biochem Biophys Res Comm 38:533–538

    PubMed  CAS  Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27

    PubMed  CAS  Google Scholar 

  • Chou PY, Fasman GD (1979) Prediction of beta-turns. Biophys J 26:367–373

    PubMed  CAS  Google Scholar 

  • Cohen P (1983) The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature 296:613–620

    Google Scholar 

  • Daniel JL (1985) Protein phosphorylation and calcium as mediator in human platelets. In: Rubin RP, Weiss GB, Putney JW Jr (eds) Calcium in biological systems. Plenum Press, New York, pp 165–171

    Google Scholar 

  • Darnell J, Lodish H, Baltimore D (1986) Molecular cell biology. Scientific American Books, New York

    Google Scholar 

  • Demaille JG (1982) Calmodulin and calcium-binding protein: evolutionary diversification of structure and function. In: Cheung WY (ed) Calcium and cell function, vol 2. Academic Press, New York, pp 111–144

    Google Scholar 

  • Devine CE, Somlyo AV, Somlyo AP (1971) Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscle. J Cell Biol 52:690–718 (Cited by JW Putney Jr, et al. (1986) Fed Proc 45:2634–2638)

    Google Scholar 

  • Donowitz M (1983) Ca2+ in the control of active intestinal Na and Cl transport: involvement in neurohumoral action. Am J Physiol 245:G165–177

    PubMed  CAS  Google Scholar 

  • Donowitz M, Welsh MJ (1986) Ca2+ and cyclic AMP in regulation of intestinal Na, K and Cl transport. Annu Rev Physiol 48:135–150

    PubMed  CAS  Google Scholar 

  • Donowitz M, Cohen ME, Gudewich R, Taylor L, Sharp GWG (1984) Ca2+-calmodulin, cyclic AMP-and cyclic GMP-induced phosphorylation of proteins in purified microvillus membranes of rabbit ileum. Biochem J 219:573–581

    PubMed  CAS  Google Scholar 

  • Exton JH (1984) Mechanisms involved in the actions of calcium dependent hormone in liver. In: Ebashi S, Endo M, Imahori K, Kakiuchi S, Hishizuka Y (eds) Calcium regulation in biological systems. Academic Press, Tokyo, pp 141–156

    Google Scholar 

  • Fan C-C, Powell DW (1983) Calcium/calmodulin inhibition of coupled NaCl transport in membrane vesicles from rabbit ileal brush border. Proc Natl Acad Sci USA 80:5248–5252

    PubMed  CAS  Google Scholar 

  • Fan C-C, Faust RG, Powell DW (1983) Coupled sodium-chloride transport by rabbit ileal brush border membrane vesicles. Am J Physiol 244:G375–385

    PubMed  CAS  Google Scholar 

  • Fishman PH (1980) Mechanism of action of cholera toxin: events on the cell surface. In: Fordtran JS, Schulz SG (eds) Secretory diarrhoea. American Physiological Society, Bethesda, pp 86–106

    Google Scholar 

  • Gill DL (1985) Receptors coupled to calcium mobilization. In: Cooper DMF, Seamon KB (eds) Advances in cyclic nucleotide and protein phosphorylation research, vol 19. Raven Press, New York, pp 307–324

    Google Scholar 

  • Grand RJ, Shenolikar S, Cohen P (1981) The amino acid sequence of the delta subunit (calmodulin) of rabbit skeletal muscle phosphorylase kinase. Eur J Biochem 113:359–367

    PubMed  CAS  Google Scholar 

  • Head JF, Masure HR, Kaminer B (1982) Identification and purification of a phenothiazine binding fragment from bovine brain calmodulin. FEBS Lett 137:71–74

    PubMed  CAS  Google Scholar 

  • Hirata M, Sasaguri T, Hamachi T, Hashimoto T, Kukita M, Koga T (1985) Irreversible inhibition of Ca2+ release in saponin-treated macrophages by a photoaffinity derivative of inositol-1,4,5-trisphosphate. Nature 317:723–725

    PubMed  CAS  Google Scholar 

  • Hokin LE (1985) Receptors and phosphoinositide-generated second messengers. Annu Rev Biochem 54:205–235

    PubMed  CAS  Google Scholar 

  • Hokin LE, Hokin MR (1955) Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim Biophys Acta 18:102–110

    PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of 32P into phospholipids of pancreatic slices. J Biol Chem 203:967–977

    PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE (1954) Effects of acetylcholine and phospholipids in the pancreas. J Biol Chem 209:549–559

    PubMed  CAS  Google Scholar 

  • Hokin-Neaverson M (1974) Acetylcholine causes a net decrease in phosphatidylinositol and a net increase in phosphatidic acid in mouse pancreas. Biochem Biophys Res Comm 58:763–768

    PubMed  CAS  Google Scholar 

  • Holmes RP, Yoss NL (1983) Failure of phosphatidic acid to translocate Ca2+ across phosphatidylcholine membranes. Nature 305:637–638

    PubMed  CAS  Google Scholar 

  • Hughes BP, Milton SE, Barritt GJ, Auld AM (1986) Studies with verapamil and nifedipine provide evidence for the presence in the liver cell plasma membrane of two types of Ca2+ inflow transporter which are dissimilar to potential-operated Ca2+ channels. Biochem Pharmacol 35:3045–3052

    PubMed  CAS  Google Scholar 

  • Hurwitz L (1986) Pharmacology of calcium channels and smooth muscle. Annu Rev Pharmacol Toxicol 26:225–258

    PubMed  CAS  Google Scholar 

  • Ikuri M, Hiraoki T, Hikichi K, Mikuni T, Yazawa M, Yagi K (1983) Nuclear magnetic resonance studies of calmodulin: calcium-induced conformational change. Biochemistry 22:2573–2579

    Google Scholar 

  • Joseph SK (1985) Receptor-stimulated phosphoinositide metabolism: a role for GTP-binding protein. Trends Biochem Sci 10:297–298

    CAS  Google Scholar 

  • Kee SM, Graves DJ (1986) Isolation and properties of the active gamma subunit of phosphorylase kinase. J Biol Chem 261:4732–4737

    PubMed  CAS  Google Scholar 

  • Kikkawa U, Kaibuchi K, Takai Y, Nishizuka Y (1985) Phospholipid turnover in signal transduction: protein kinase C and calcium ion as two synergistic mediators. In: Kuo JF (ed) Phospholipids and cellular regulation, vol 2. CRC Press, Boca Raton, Florida, pp 111–126

    Google Scholar 

  • Kikkawa Y, Nishizuka Y (1986) The role of protein kinase C in transmembrane signalling. Annu Rev Cell Biol 2:149–178

    PubMed  CAS  Google Scholar 

  • Kishimoto A, Takai Y, Nishizuka Y (1977) Activation of glycogenphosphorylase kinase by a calcium-activated, cyclic nucleotide-independent protein kinase system. J Biol Chem 252:7449–7452

    PubMed  CAS  Google Scholar 

  • Klee CB, Haiech J (1980) Concerted role of calmodulin and calcineurin in calcium regulation. Ann NY Acad Sci 356:43–54

    PubMed  CAS  Google Scholar 

  • Kojima I, Kojima K, Kreutter D, Rasmussen H (1984) The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways. J Biol Chem 259:14448–14457

    PubMed  CAS  Google Scholar 

  • Krebs J, Carofoli E (1982) Influence of Ca2+ and trifluoperazine on the structure of calmodulin: a H-nuclear magnetic resonance study. Eur J Biochem 124:619–627

    PubMed  CAS  Google Scholar 

  • Kretsinger RH (1980) Structure and evolution of calcium-modulated proteins. CRC Crit Rev Biochem 8:119–174

    PubMed  CAS  Google Scholar 

  • Lin S-H, Wallace MA, Fain JN (1983) Regulation of Ca2+-Mg2+-ATPase activity in hepatocyte plasma of membranes by vasopressin and phenylephrine. Endocrinology 113:2268–2275

    PubMed  CAS  Google Scholar 

  • Macara IG (1985) Oncogenes, ions and phospholipids. Am J Physiol 248:C3–11

    PubMed  CAS  Google Scholar 

  • MacManus JP (1979) Occurrence of a low-molecular-weight calcium-binding protein in neoplastic liver. Cancer Res 39:3000–3005

    PubMed  CAS  Google Scholar 

  • MacManus JP, Whitfield JF (1983) Oncomodulin: a calcium-binding protein from hepatoma. In: Cheung WY (ed) Calcium and cell function. Academic Press, New York, Chapter 11

    Google Scholar 

  • Majerus PW, Wilson DB, Connally TM, Boss TE, Neufeld EJ (1985) Phosphoinositide turnover provides a look at stimulus-response coupling. Trends Biochem Sci 10:168–171

    CAS  Google Scholar 

  • Manalan AS, Klee CB (1984) Calmodulin. In: Greengard P, Robison GA (eds) Advances in cyclic nucleotides and protein phosphorylation, vol 18. Raven Press, New York, pp 227–278

    Google Scholar 

  • Marcum JM, Dedman JR, Brinkley BR, Means AR (1978) Control of microtubule assembly-disassembly by calcium-dependent regular protein. Proc Natl Acad Sci USA 75:3771–3775

    PubMed  CAS  Google Scholar 

  • Mauger J-P, Poggioli J, Guesdon F, Claret M (1984) Noradrenaline, vasopressin and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells. Biochem J 221:121–127

    PubMed  CAS  Google Scholar 

  • Means AR (1982) Calmodulin: an intracellular calcium receptor involved in regulation of cell proliferation. In: Corradino RA (ed) Functional regulation at the cellular and molecular levels. Elsevier/North-Holland, New York, pp 47–68

    Google Scholar 

  • Means AR, Dedman (1980) Calmodulin: an intracellular receptor. Nature 285:73–77

    PubMed  CAS  Google Scholar 

  • Means AR, Lagace L, Guerriero V Jr, Chafouleas JG (1982) Calmodulin as a mediator of hormone action and cell regulation. J Cell Biochem 20:317–330

    PubMed  CAS  Google Scholar 

  • Merritt JE, Taylor CW, Rubin RP, Putney JW Jr (1986) Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem J 236:337–343

    PubMed  CAS  Google Scholar 

  • Michell B, Kirk C (1986) G-protein control of inositol phosphate hydrolysis. Nature 323:112–113

    PubMed  CAS  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    PubMed  CAS  Google Scholar 

  • Muallem S, Schoeffield M, Pandol S, Sachs G (1985) Inositol trisphosphate modification of ion transport in rough endoplasmic reticulum. Proc Natl Acad Sci USA 82:4433–4437

    PubMed  CAS  Google Scholar 

  • Nakamura T, Ui M (1985) Simultaneous inhibitions of inositol phospholipid breakdown, arachidonic release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin. J Biol Chem 260:3584–3593

    PubMed  CAS  Google Scholar 

  • Nishida E, Kumagai H, Ohtsuki I, Sakai H (1979) The interactions between calcium-dependent regulator protein of cyclic nucleotide phosphodiesterase and microtubule proteins. I. Effect of calcium-dependent regular protein on the calcium sensitivity of microtubule assembly. J Biochem (Tokyo) 85:1257–1266

    CAS  Google Scholar 

  • Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233:305–312

    PubMed  CAS  Google Scholar 

  • Nishizuka Y, Takai Y, Kishumoto A, Kikkawa U, Kaibuchi K (1984) Phospholipid turnover in hormone action. Recent Prog Hormone Res 40:301–345

    CAS  Google Scholar 

  • Poggioli J, Mauger J-P, Guesdon F, Claret M (1985) A regulatory calcium-binding site for calcium channel on isolated rat hepatocytes. J Biol Chem 260:3289–3294

    PubMed  CAS  Google Scholar 

  • Putkey JA, Ts’iu KF, Tanaka T et al. (1983) Chicken calmodulin genes: a species comparison of cDNA sequences and isolation of a genomic clone. J Biol Chem 258:11864–11870

    PubMed  CAS  Google Scholar 

  • Putney JW Jr (1986) A model for receptor regulated calcium entry. Cell Calcium 7:1–12

    PubMed  CAS  Google Scholar 

  • Rasmussen H (1986) The calcium messenger system. N Engl J Med 314:1094–1101, 1164-1170

    PubMed  CAS  Google Scholar 

  • Rasmussen H, Kojima I, Kojima K, Zawalich W, Apfeldorf W (1984) Calcium as intracellular messenger: sensitivity modulation, C-kinase pathway and sustained cellular response. In: Greengard P, Robison GA (eds) Advances in cyclic nucleotide and protein phosphorylation research, vol 18. Raven Press, New York, pp 159–193

    Google Scholar 

  • Ratan RR, Shelanski ML (1986) Calcium and the regulation of mitotic events. Trends Biochem Sci II:456–459

    Google Scholar 

  • Rink TJ, Tsien RY, Sanchez A, Hallam TJ (1985) Calcium and diacylglycerol: separable and interacting intracellular activators in human platelets. In: Rubin RP, Weiss GB, Putney JW Jr (eds) Calcium in biological systems. Plenum Press, New York, pp 153–164

    Google Scholar 

  • Rittenhouse-Simmons S, Russell FA, Deykin D (1977) Mobilization of arachidonic acid in human platelets: kinetics and Ca2+ dependency. Biochim Biophys Acta 488:370–380

    PubMed  CAS  Google Scholar 

  • Rose B, Lowenstein WR (1975) Permeability of cell junction depends on local cytoplasmic calcium activity. Nature 254:250–252

    PubMed  CAS  Google Scholar 

  • Rubin RP (1982) Calcium and cellular secretion. Plenum Press, New York, pp 93–98

    Google Scholar 

  • Sasagawa T, Ericsson LH, Walsh KA, Schreiber WE, Fischer EH, Titani K (1982) Complete amino acid sequence of human brain calmodulin. Biochemistry 21:2565–2569

    PubMed  CAS  Google Scholar 

  • Sekar MC, Hokin LE (1986) The role of phosphoinositides in signal transduction. J Membr Biol 89:193–210

    PubMed  CAS  Google Scholar 

  • Smith JB, Smith L, Higgins BL (1985) Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells. J Biol Chem 260:14413–14416

    PubMed  CAS  Google Scholar 

  • Sobue K, Tanaka T, Ashino N, Kakiuchi S (1985) Ca2+ and calmodulin regulate microtubule-associated protein-actin filament interaction in a flip-flop switch. Biochim Biophys Acta 845:366–372

    PubMed  CAS  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a non-mitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69

    PubMed  CAS  Google Scholar 

  • Streb H, Bayerdorffer E, Hoase W, Irvine RF, Schulz I (1984) Effects of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J Membr Biol 81:241–253

    PubMed  CAS  Google Scholar 

  • Stryer L, Bourne HR (1986) G Proteins: a family of signal transducers. Annu Rev Cell Biol 2:391–419

    PubMed  CAS  Google Scholar 

  • Suematsu E, Hirata M, Hashimoto T, Kuriyama H (1984) Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Comm 120:481–485

    PubMed  CAS  Google Scholar 

  • Takai Y, Kikkawa U, Kaibuchi K, Nishizuka Y (1984) Membrane phospholipid metabolism and signal transduction for protein phosphorylation. In: Greengard P, Robison GA (eds) Advances in cyclic nucleotide and protein phosphorylation research, vol 18. Raven Press, New York, pp 119–158

    Google Scholar 

  • Taylor A, Windhager EE (1979) Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am J Physiol 236:F505–512

    PubMed  CAS  Google Scholar 

  • Taylor CW, Merritt JE (1986) Receptor coupling to polyphosphoinositide turnover: a parallel with the adenylate cyclase system. Trends Pharmacol Res 7:238–242

    CAS  Google Scholar 

  • Thomas AP, Alexander J, Williamson JR (1984) Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes. J Biol Chem 259:5574–5584

    PubMed  CAS  Google Scholar 

  • Turner RS, Kuo JF (1985) Phospholipid-sensitive Ca2+-dependent protein kinase (protein kinase C): the enzyme, substrates and regulation. In: Kuo JF (ed) Phospholipids and cellular regulation, vol 2. CRC Press Inc, Boca Raton, Florida, pp 75–110

    Google Scholar 

  • Ueda T, Chueh SH, Noel MW, Gill DL (1986) Influence of inositol-1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line. J Biol Chem 261:3184–3192

    PubMed  CAS  Google Scholar 

  • Vicentini LM, Villereal ML (1986) Inositol phosphates turnover, cytosolic Ca++ and pH: putative signals for the control of cell growth. Life Sci 38:2269–2276

    PubMed  CAS  Google Scholar 

  • Wakelam MJO, Davies SA, Houslay MD, McKay I, Marshall CJ, Hall A (1986) Normal p21 (N-ras) couples bombesin and other growth factor receptors to inositol phosphate production. Nature 323:173–176

    PubMed  CAS  Google Scholar 

  • Watterson DM, Sharief F, Vanaman TC (1980) The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J Biol Chem 255:962–975

    PubMed  CAS  Google Scholar 

  • Weiss B, Prozialeck W, Cimino M, Barnette MS, Wallace TL (1980) Pharmacological regulation of calmodulin. Ann NY Acad Sci 356:319–345

    PubMed  CAS  Google Scholar 

  • Whitfield JF, MacManus JP, Boynton AL, Durkin J, Jones A (1982) Futures of calcium, calcium-binding proteins, cyclic AMP and protein kinases in the quest for an understanding of cell proliferation and cancer. In: Corradino RA (ed) Functional regulation at the cellular and molecular levels. Elsevier/North-Holland, New York, pp 59–87

    Google Scholar 

  • Williamson JR (1986) Role of inositol lipid breakdown in the generation of intracellular signals. Hypertension 8:11140–156

    Google Scholar 

  • Williamson JR, Cooper RH, Joseph SK, Thomas AP (1985) Inositol trisphosphate and diacyl-glycerol as intracellular second messengers in liver. Am J Physiol 248:C203–216

    PubMed  CAS  Google Scholar 

  • Williamson JR, Joseph SK, Coll KE, Thomas AP, Verhowen A, Prentki M (1986) Hormone-induced inositol lipid breakdown and calcium-mediated cellular responses in liver. In: Poste G, Crooke ST (eds) New insights into cell and membrane transport process. Plenum Press, New York, pp 217–247

    Google Scholar 

  • Windhager EE, Taylor A (1983) Regulatory role of intracellular calcium ions in epithelial Na transport. Annu Rev Physiol 45:519–532

    PubMed  CAS  Google Scholar 

  • Wojcikiewicz RJ, Kent PA, Fain JA (1986) Evidence that thyrotropin-releasing hormone-induced increases in GTPase activity and phosphoinositide metabolism in GH3 cells are mediated by a guanine nucleotide-binding protein other than Gs or Gi. Biochem Biophys Res Comm 138:1383–1389

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Fukunaga K, Tanaka E, Miyamoto E (1983) Ca2+-and calmodulin-dependent phosphorylation of microtubule-associated protein-2 and tau factor, and inhibition of microtubule assembly. Neurochemistry 41:1119–1125

    CAS  Google Scholar 

  • Yanase M, Handler JS (1986) Activators of protein kinase C inhibit sodium transport in A6 epithelia. Am J Physiol 250:C517–522

    PubMed  CAS  Google Scholar 

  • Zawalich W, Zawalich K, Rasmussen H (1984) Insulin secretion: combined tolbutamide, forskolin and TPA mimic action of glucose. Cell Calcium 5:551–558

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wasserman, R.H. (1988). Cellular Calcium: Action of Hormones. In: Nordin, B.E.C. (eds) Calcium in Human Biology. ILSI Human Nutrition Reviews. Springer, London. https://doi.org/10.1007/978-1-4471-1437-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1437-6_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1439-0

  • Online ISBN: 978-1-4471-1437-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics