Skip to main content

Transfer of Technology into Clinical Application

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Robots for neurorehabilitation have been designed to automate labor-intensive training techniques and to optimally support therapist and patients during different stages of training. Devices designed for body-weight-supported treadmill training, for example, have become a promising, task-oriented tool in order to restore gait function. At an early stage, these robots provide the ability to secure and stabilize the patient and guide trunk and legs through a normal gait trajectory with a high number of repetitions. At later stages, more sophisticated control strategies, virtual environment scenarios, or possibilities to exercise specific gait parameters and tasks extend their application to more experienced patients. Clinical evidence for feasibility and effectiveness of these devices exists; however, their advantages in comparison to conventional therapies are still under debate. This might be due to the fact that currently reliable parameters for appropriate selection of locomotor training parameters basing on functional impairments are lacking. Despite this fact, robotic devices are already successfully ­integrated into clinical settings with promising results. Appropriate use is dependent on the therapist’s knowledge about the value and limits of different devices as well as the ability to utilize the device’s technical means, thereby allowing patients to benefit from robot-aided gait training until they are able to perform safely and efficiently overground walking training. This chapter will provide an overview on the rationales of introducing robots into a clinical setting and discuss their value in different pathologies. In addition, recommendations for goal setting and practice of robot-assisted training based on disease-related symptoms and functional impairment are summarized together with reliable functional assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004;27:145–67.

    Article  PubMed  CAS  Google Scholar 

  2. Maier IC, Schwab ME. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans R Soc Lond B Biol Sci. 2006;361(1473):1611–34.

    Article  PubMed  CAS  Google Scholar 

  3. Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol. 2004;96(5):1954–60.

    Article  PubMed  CAS  Google Scholar 

  4. Kwakkel G, Wagenaar RC, Twisk JW, Lankhorst GJ, Koetsier JC. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet. 1999;354(9174):191–6.

    Article  PubMed  CAS  Google Scholar 

  5. Edgerton VR, de Leon RD, Tillakaratne N, Recktenwald MR, Hodgson JA, Roy RR. Use-dependent plasticity in spinal stepping and standing. Adv Neurol. 1997;72:233–47.

    PubMed  CAS  Google Scholar 

  6. Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ. Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J Rehabil Res Dev. 2006;43(5):619–30.

    Article  PubMed  Google Scholar 

  7. Reinkensmeyer DJ, Emken JL, Cramer SC. Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng. 2004;6:497–525.

    Article  PubMed  CAS  Google Scholar 

  8. Riener R. Robot-aided rehabilitation of neural function in the upper extremities. Acta Neurochir Suppl. 2007;97(Pt 1):465–71.

    PubMed  CAS  Google Scholar 

  9. Barbeau H, Ladouceur M, Norman KE, Pepin A, Leroux A. Walking after spinal cord injury: evaluation, treatment, and functional recovery. Arch Phys Med Rehabil. 1999;80(2):225–35.

    Article  PubMed  CAS  Google Scholar 

  10. Barbeau H, Rossignol S. Enhancement of locomotor recovery following spinal cord injury. Curr Opin Neurol. 1994;7(6):517–24.

    Article  PubMed  CAS  Google Scholar 

  11. Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther. 2000;80(7):688–700.

    PubMed  CAS  Google Scholar 

  12. Dietz V, Colombo G, Jensen L. Locomotor activity in spinal man. Lancet. 1994;344(8932):1260–3.

    Article  PubMed  CAS  Google Scholar 

  13. Dietz V, Colombo G, Jensen L, Baumgartner L. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol. 1995;37(5):574–82.

    Article  PubMed  CAS  Google Scholar 

  14. Field-Fote EC. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury. Phys Ther. 2000;80(5):477–84.

    PubMed  CAS  Google Scholar 

  15. Finch L, Barbeau H, Arsenault B. Influence of body weight support on normal human gait: development of a gait retraining strategy. Phys Ther. 1991;71(11):842–55; discussion 855–846.

    PubMed  CAS  Google Scholar 

  16. Wernig A, Muller S. Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia. 1992;30(4):229–38.

    Article  PubMed  CAS  Google Scholar 

  17. Teixeira da Cunha Filho I, Lim PA, Qureshy H, Henson H, Monga T, Protas EJ. A comparison of regular rehabilitation and regular rehabilitation with supported treadmill ambulation training for acute stroke patients. J Rehabil Res Dev. 2001;38(2):245–55.

    PubMed  CAS  Google Scholar 

  18. da Cunha Jr IT, Lim PA, Qureshy H, Henson H, Monga T, Protas EJ. Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: a randomized controlled pilot study. Arch Phys Med Rehabil. 2002;83(9):1258–65.

    Article  PubMed  Google Scholar 

  19. Hesse S, Bertelt C, Jahnke MT, et al. Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemi paretic patients. Stroke. 1995;26(6):976–81.

    Article  PubMed  CAS  Google Scholar 

  20. Laufer Y, Dickstein R, Chefez Y, Marcovitz E. The effect of treadmill training on the ambulation of stroke survivors in the early stages of rehabilitation: a randomized study. J Rehabil Res Dev. 2001;38(1):69–78.

    PubMed  CAS  Google Scholar 

  21. Pohl M, Mehrholz J, Ritschel C, Ruckriem S. Speed-dependent treadmill training in ambulatory hemi paretic stroke patients: a randomized controlled trial. Stroke. 2002;33(2):553–8.

    Article  PubMed  Google Scholar 

  22. Sullivan KJ, Knowlton BJ, Dobkin BH. Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil. 2002;83(5):683–91.

    Article  PubMed  Google Scholar 

  23. Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998;29(6):1122–8.

    Article  PubMed  CAS  Google Scholar 

  24. Freund JE, Stetts DM. Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design. Physiother Theory Pract. 2010;26(7):447–58.

    Article  PubMed  Google Scholar 

  25. Willoughby KL, Dodd KJ, Shields N. A systematic review of the effectiveness of treadmill training for children with cerebral palsy. Disabil Rehabil. 2009;31(24):1971–9.

    Article  PubMed  Google Scholar 

  26. Benedetti MG, Gasparroni V, Stecchi S, Zilioli R, Straudi R, Piperno R. Treadmill exercise in early multiple sclerosis: a case series study. Eur J Phys Rehabil Med. 2009;45(1):53–9.

    PubMed  CAS  Google Scholar 

  27. Giesser B, Beres-Jones J, Budovitch A, Herlihy E, Harkema S. Locomotor training using body weight support on a treadmill improves mobility in persons with multiple sclerosis: a pilot study. Mult Scler. 2007;13(2):224–31.

    Article  PubMed  Google Scholar 

  28. Newman MA, Dawes H, van den Berg M, Wade DT, Burridge J, Izadi H. Can aerobic treadmill training reduce the effort of walking and fatigue in people with multiple sclerosis: a pilot study. Mult Scler. 2007;13(1):113–9.

    Article  PubMed  CAS  Google Scholar 

  29. van den Berg M, Dawes H, Wade DT, et al. Treadmill training for individuals with multiple sclerosis: a pilot randomised trial. J Neurol Neurosurg Psychiatry. 2006;77(4):531–3.

    Article  PubMed  Google Scholar 

  30. Miyai I, Fujimoto Y, Ueda Y, et al. Treadmill training with body weight support: its effect on Parkinson’s disease. Arch Phys Med Rehabil. 2000;81(7):849–52.

    Article  PubMed  CAS  Google Scholar 

  31. Miyai I, Fujimoto Y, Yamamoto H, et al. Long-term effect of body weight-supported treadmill training in Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil. 2002;83(10):1370–3.

    Article  PubMed  Google Scholar 

  32. Pohl M, Rockstroh G, Ruckriem S, Mrass G, Mehrholz J. Immediate effects of speed-dependent treadmill training on gait parameters in early Parkinson’s disease. Arch Phys Med Rehabil. 2003;84(12):1760–6.

    Article  PubMed  Google Scholar 

  33. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.

    PubMed  CAS  Google Scholar 

  34. Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.

    Article  PubMed  Google Scholar 

  35. Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):2–8.

    Article  PubMed  Google Scholar 

  36. Mantone J. Getting a leg up? Rehab patients get an assist from devices such as HealthSouth’s AutoAmbulator, but the robots’ clinical benefits are still in doubt. Mod Healthc. 2006;36(7):58–60.

    PubMed  Google Scholar 

  37. Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 2000;37(6):701–8.

    PubMed  CAS  Google Scholar 

  38. Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;7:30.

    Article  PubMed  Google Scholar 

  39. Schmidt H, Hesse S, Bernhardt R, Krüger J. HapticWalker. A novel haptic foot device. ACM Trans Appl Percept. 2005;2(2):166–80.

    Article  Google Scholar 

  40. Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed “LokoHelp”-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 2008;22(7–8):625–32.

    Article  PubMed  Google Scholar 

  41. Hornby TG, Reinkensmeyer DJ, Chen D. Manually-assisted versus robotic-assisted body weight-supported treadmill training in spinal cord injury: what is the role of each? PM R. 2010;2(3):214–21.

    Article  PubMed  Google Scholar 

  42. Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):380–94.

    Article  PubMed  Google Scholar 

  43. Duschau-Wicke A, Caprez A, Riener R. Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J Neuroeng Rehabil. 2010;7(1):43.

    Article  PubMed  Google Scholar 

  44. Banz R, Bolliger M, Muller S, Santelli C, Riener R. A method of estimating the degree of active participation during stepping in a driven gait orthosis based on actuator force profile matching. IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):15–22.

    Article  PubMed  Google Scholar 

  45. Lunenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. J Neuroeng Rehabil. 2007;4:1.

    Article  PubMed  Google Scholar 

  46. Lunenburger L, Colombo G, Riener R, Dietz V. Biofeedback in gait training with the robotic orthosis Lokomat. Conf Proc IEEE Eng Med Biol Soc. 2004;7:4888–91.

    PubMed  CAS  Google Scholar 

  47. Brutsch S, Schuler T, Koenig A, et al. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil. 2010;7:15.

    Article  PubMed  Google Scholar 

  48. Koenig A, Wellner M, Koneke S, Meyer-Heim A, Lunenburger L, Riener R. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Stud Health Technol Inform. 2008;132:204–9.

    PubMed  Google Scholar 

  49. Lünenburger L, Wellner M, Banz R, Colombo G, Riener R. Combining immersive virtual environments with robot-aided gait training. In: 10th international conference on rehabilitation robotics (ICORR). Noordwijk; 2007.

    Google Scholar 

  50. Borggraefe I, Meyer-Heim A, Kumar A, Schaefer JS, Berweck S, Heinen F. Improved gait parameters after robotic-assisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy. Mov Disord. 2008;23(2):280–3.

    Article  PubMed  Google Scholar 

  51. Hesse S, Werner C, von Frankenberg S, Bardeleben A. Treadmill training with partial body weight support after stroke. Phys Med Rehabil Clin N Am. 2003;14(1 Suppl):S111–23.

    Article  PubMed  Google Scholar 

  52. Lo AC, Triche EW. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil Neural Repair. 2008;22(6):661–71.

    Article  PubMed  Google Scholar 

  53. Westlake KP, Patten C. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 2009;6(1):18.

    Article  PubMed  Google Scholar 

  54. Wirz M, Zemon DH, Rupp R, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80.

    Article  PubMed  Google Scholar 

  55. Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.

    PubMed  Google Scholar 

  56. Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemi paretic patients after stroke: a randomized controlled pilot study. Stroke. 2007;38(2):349–54.

    Article  PubMed  Google Scholar 

  57. Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307–14.

    Article  PubMed  Google Scholar 

  58. Schwartz I, Sajin A, Fisher I, et al. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. PM R. 2009;1(6):516–23.

    Article  PubMed  Google Scholar 

  59. Kwakkel G, Kollen BJ, Wagenaar RC. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry. 2002;72(4):473–9.

    PubMed  CAS  Google Scholar 

  60. Sunderland A, Tinson DJ, Bradley EL, Fletcher D, Langton Hewer R, Wade DT. Enhanced physical therapy improves recovery of arm function after stroke. A randomised controlled trial. J Neurol Neurosurg Psychiatry. 1992;55(7):530–5.

    Article  PubMed  CAS  Google Scholar 

  61. Dhamoon MS, Moon YP, Paik MC, et al. Long-term functional recovery after first ischemic stroke: the Northern Manhattan Study. Stroke. 2009;40(8):2805–11.

    Article  PubMed  Google Scholar 

  62. Johnston M, Pollard B, Morrison V, MacWalter R. Functional limitations and survival following stroke: psychological and clinical predictors of 3-year outcome. Int J Behav Med. 2004;11(4):187–96.

    Article  PubMed  Google Scholar 

  63. Jorgensen HS, Reith J, Nakayama H, Kammersgaard LP, Raaschou HO, Olsen TS. What determines good ­recovery in patients with the most severe strokes? The Copenhagen Stroke Study. Stroke. 1999;30(10):2008–12.

    Article  PubMed  CAS  Google Scholar 

  64. Kollen BJ, Lennon S, Lyons B, et al. The effectiveness of the Bobath concept in stroke rehabilitation: what is the evidence? Stroke. 2009;40(4):e89–97.

    Article  PubMed  Google Scholar 

  65. Pollock A, Baer G, Pomeroy V, Langhorne P. Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke. Cochrane Database Syst Rev. 2007(1):CD001920.

    Google Scholar 

  66. Bernhardt J, Dewey H, Thrift A, Collier J, Donnan G. A very early rehabilitation trial for stroke (AVERT): phase II safety and feasibility. Stroke. 2008;39(2):390–6.

    Article  PubMed  Google Scholar 

  67. Ferrarello F, Baccini M, Rinaldi LA, et al. Efficacy of physiotherapy interventions late after stroke: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82(2):136–43.

    Article  PubMed  Google Scholar 

  68. Divani AA, Vazquez G, Barrett AM, Asadollahi M, Luft AR. Risk factors associated with injury attributable to falling among elderly population with history of stroke. Stroke. 2009;40(10):3286–92.

    Article  PubMed  Google Scholar 

  69. Globas C, Macko RF, Luft AR. Role of walking-exercise therapy after stroke. Expert Rev Cardiovasc Ther. 2009;7(8):905–10.

    Article  PubMed  Google Scholar 

  70. Forrester LW, Wheaton LA, Luft AR. Exercise-mediated locomotor recovery and lower-limb neuroplasticity after stroke. J Rehabil Res Dev. 2008;45(2):205–20.

    Article  PubMed  Google Scholar 

  71. Consortium for Spinal Cord Medicine. Outcomes following traumatic spinal cord injury: clinical practice guidelines for health-care professionals. J Spinal Cord Med. 2000;23(4):289–316.

    Google Scholar 

  72. Furlan JC, Fehlings MG, Tator CH, Davis AM. Motor and sensory assessment of patients in clinical trials for pharmacological therapy of acute spinal cord injury: psychometric properties of the ASIA Standards. J Neurotrauma. 2008;25(11):1273–301.

    Article  PubMed  Google Scholar 

  73. McKinley W, Santos K, Meade M, Brooke K. Incidence and outcomes of spinal cord injury clinical syndromes. J Spinal Cord Med. 2007;30(3):215–24.

    PubMed  Google Scholar 

  74. Steeves JD, Kramer JK, Fawcett JW, et al. Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord. 2011;49(2):257–65.

    Article  PubMed  CAS  Google Scholar 

  75. Wirz M, van Hedel HJ, Rupp R, Curt A, Dietz V. Muscle force and gait performance: relationships after spinal cord injury. Arch Phys Med Rehabil. 2006;87(9):1218–22.

    Article  PubMed  Google Scholar 

  76. Spiess MR, Muller RM, Rupp R, Schuld C, van Hedel HJ. Conversion in ASIA impairment scale during the first year after traumatic spinal cord injury. J Neurotrauma. 2009;26(11):2027–36.

    Article  PubMed  Google Scholar 

  77. Borggraefe I, Schaefer JS, Klaiber M, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14(6):496–502.

    Article  PubMed  Google Scholar 

  78. Schmartz AC, Meyer-Heim AD, Muller R, Bolliger M. Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: a proof of concept. Disabil Rehabil Assist Technol. 2011;6(1):29–37.

    Article  PubMed  Google Scholar 

  79. Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–33.

    Article  PubMed  Google Scholar 

  80. Schuler T, Bruetsch K, Mueller R, van Hedel HJA, Meyer-Heim A. Virtual realities as motivational tools for robotic assisted gait training in children: a surface electromyography study. NeuroRehabilitation. 2011;28(4):401–11.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irin C. Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Maier, I.C. et al. (2012). Transfer of Technology into Clinical Application. In: Dietz, V., Nef, T., Rymer, W. (eds) Neurorehabilitation Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2277-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2277-7_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2276-0

  • Online ISBN: 978-1-4471-2277-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics