Skip to main content

Assessing the Environmental Risks and Opportunities of Bioenergy Cropping

  • Chapter
  • First Online:
Sustainable Bioenergy and Bioproducts

Part of the book series: Green Energy and Technology ((GREEN))

  • 1885 Accesses

Abstract

All forms of cropping influence the environment, and bioenergy cropping is no exception. The main potential environmental benefit is the net reduction in greenhouse gas (GHG) emissions by the substitution of fossil fuels, while the main potential harm is increased pressure on land use, which can lead to competition for food production, loss of forests and the release of large amounts of carbon from soils and vegetation. The major approaches to environmental risk evaluation are experiments, environmental risk assessment, life cycle analysis, ecosystem services and post-market monitoring; while none are ideal, all these have a potential role in evaluating bioenergy cropping. Major environmental impacts vary greatly between crops, countries and management regimes. Bioenergy cropping has the most positive environmental impact when the crops are productive, have low water and nutrient requirements and can be grown on low-grade and abandoned agricultural land in arrangements that promote biodiversity. Such cropping may be able to supply around 8% of the global energy demand: bioenergy cropping should be seen as one element in a wider strategy for efficient use of land, energy, food and water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Several other environmental and sustainability analyses are similar to the ecosystems approach, in scope and intention, if not in method. The jargon can be quite confusing, not least because some words, e.g. sustainability, mean very different things to different people [33].

References

  1. Arnold JEM, Jongma J (1978) Fuelwood and charcoal in developing countries: an economic survey. Unasylva 29(118):2–9

    Google Scholar 

  2. Ladanai S, Vinterback J (2009) Global potential of sustainable biomass for energy. Report 013. Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  3. Sorda G, Banse M, Kemfert C (2010) An overview of biofuel policies across the world. Energy Policy 38(11):6977–6988. doi:10.1016/j.enpol.2010.06.066

    Article  Google Scholar 

  4. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. doi:10.1126/science.1185383

    Article  Google Scholar 

  5. Prochnow A, Heiermann M, Plochl M, Linke B, Idler C, Amon T, Hobbs PJ (2009) Bioenergy from permanent grassland - a review: 1. biogas. Bioresour Technol 100(21):4931–4944. doi:10.1016/j.biortech.2009.05.070

    Article  Google Scholar 

  6. Prochnow A, Heiermann M, Plochl M, Amon T, Hobbs PJ (2009) Bioenergy from permanent grassland - a review: 2. combustion. Bioresour Technol 100(21):4945–4954. doi:10.1016/j.biortech.2009.05.069

    Article  Google Scholar 

  7. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314(5805):1598–1600

    Article  Google Scholar 

  8. Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102(1):10–16. doi:10.1016/j.biortech.2010.06.032

    Article  Google Scholar 

  9. IEA (2010) World total primary energy supply. IEA Energy Statistics. http://www.iea.org/stats/pdf_graphs/29TPES.pdf

  10. Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM (1999) The second silent spring? Nature 400(6745):611–612

    Article  Google Scholar 

  11. Firbank LG, Heard MS, Woiwod IP, Hawes C, Haughton AJ, Champion GT, Scott RJ, Hill MO, Dewar AM, Squire GR, May MJ, Brooks DR, Bohan DA, Daniels RE, Osborne JL, Roy DB, Black HIJ, Rothery P, Perry JN (2003) An introduction to the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. J Appl Ecol 40(1):2–16

    Article  Google Scholar 

  12. Perry JN, Rothery P, Clark SJ, Heard MS, Hawes C (2003) Design, analysis and statistical power of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. J Appl Ecol 40(1):17–31

    Article  Google Scholar 

  13. Firbank LG (2008) Assessing the ecological impacts of bioenergy projects. Bioenerg Res 1(1):12–19

    Article  Google Scholar 

  14. Haughton AJ, Bond AJ, Lovett AA, Dockerty T, Sunnenberg G, Clark SJ, Bohan DA, Sage RB, Mallott MD, Mallott VE, Cunningham MD, Riche AB, Shield IF, Finch JW, Turner MM, Karp A (2009) A novel, integrated approach to assessing social, economic and environmental implications of changing rural land-use: a case study of perennial biomass crops. J Appl Ecol 46(2):315–322. doi:10.1111/j.1365-2664.2009.01623.x

    Article  Google Scholar 

  15. Firbank L, Lonsdale M, Poppy G (2005) Reassessing the environmental risks of GM crops. Nat Biotechnol 23(12):1475–1476

    Article  Google Scholar 

  16. Qi A, Perry JN, Pidgeon JD, Haylock LA, Brooks DR (2008) Cost-efficacy in measuring farmland biodiversity - lessons from the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Ann Appl Biol 152(1):93–101. doi:10.1111/j.1744-7348.2007.00193.x

    Article  Google Scholar 

  17. Clark SJ, Rothery P, Perry JN, Heard MS (2007) Farm Scale Evaluations of herbicide-tolerant crops: assessment of within-field variation and sampling methodology for arable weeds. Weed Res 47(2):157–163

    Article  Google Scholar 

  18. Wolt JD, Keese P, Raybould A, Fitzpatrick JW, Burachik M, Gray A, Olin SS, Schiemann J, Sears M, Wu F (2010) Problem formulation in the environmental risk assessment for genetically modified plants. Transgenic Res 19(3):425–436. doi:10.1007/s11248-009-9321-9

    Article  Google Scholar 

  19. Gibbons DW, Bohan DA, Rothery P, Stuart RC, Haughton AJ, Scott RJ, Wilson JD, Perry JN, Clark SJ, Dawson RJG, Firbank LG (2006) Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. Proc R Soc B Biol Sci 273(1596):1921–1928

    Article  Google Scholar 

  20. Butler SJ, Vickery JA, Norris K (2007) Farmland biodiversity and the footprint of agriculture. Science 315(5810):381–384

    Article  Google Scholar 

  21. Storkey J, Bohan DA, Haughton AJ, Champion GT, Perry JN, Poppy GM, Woiwod IP (2008) Providing the evidence base for environmental risk assessments of novel farm management practices. Environ Sci Policy 11(7):579–587. doi:10.1016/j.envsci.2008.06.001

    Article  Google Scholar 

  22. Pidgeon JD, May MJ, Perry JN, Poppy GM (2007) Mitigation of indirect environmental effects of GM crops. Proc R Soc B Biol Sci 274(1617):1475–1479. doi:10.1098/rspb.2007.0401

    Article  Google Scholar 

  23. Wilkinson MJ, Davenport IJ, Charters YM, Jones AE, Allainguillaume J, Butler HT, Mason DC, Raybould AF (2000) A direct regional scale estimate of transgene movement from genetically modified oilseed rape to its wild progenitors. Mol Ecol 9(7):983–991

    Article  Google Scholar 

  24. Sears MK, Hellmich RL, Stanley-Horn DE, Oberhauser KS, Pleasants JM, Mattila HR, Siegfried BD, Dively GP (2001) Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. Proc Natl Acad Sci U S A 98(21):11937–11942

    Article  Google Scholar 

  25. EU (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC European Union, Brussels

    Google Scholar 

  26. Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14(3):140–146. doi:10.1016/j.tplants.2008.12.006

    Article  Google Scholar 

  27. Zah R, Faist M, Reinhard J, Birchmeier D (2009) Standardized and simplified life-cycle assessment (LCA) as a driver for more sustainable biofuels. J Clean Prod 17:S102–S105. doi:10.1016/j.jclepro.2009.04.004

    Article  Google Scholar 

  28. Chiaramonti D, Recchia L (2010) Is life cycle assessment (LCA) a suitable method for quantitative CO2 saving estimations? the impact of field input on the LCA results for a pure vegetable oil chain. Biomass Bioenerg 34(5):787–797. doi:10.1016/j.biombioe.2010.01.022

    Article  Google Scholar 

  29. Rettenmaier N, Koppen S, Gartner SO, Reinhardt GA (2010) Life cycle assessment of selected future energy crops for Europe. Biofuels Bioprod Bioref 4(6):620–636. doi:10.1002/bbb.245

    Article  Google Scholar 

  30. Fisher B, Turner RK (2008) Ecosystem services: classification for valuation. Biol Conserv 141(5):1167–1169. doi:10.1016/j.biocon.2008.02.019

    Article  Google Scholar 

  31. Millennium Ecosystem Assessment (2005) Synthesis report. Island Press, Washington

    Google Scholar 

  32. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Oneill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260

    Article  Google Scholar 

  33. Buchholz T, Luzadis VA, Volk TA (2009) Sustainability criteria for bioenergy systems: results from an expert survey. J Clean Prod 17:S86–S98. doi:10.1016/j.jclepro.2009.04.015

    Article  Google Scholar 

  34. Kumar P (ed) (2010) The economics of ecosystems and biodiversity: ecological and economic foundations. Earthscan, London

    Google Scholar 

  35. Millennium Ecosystem Assessment (2003) Ecosystems and human well being: a framework for assessment. Island Press, Washington

    Google Scholar 

  36. Firbank LG, Bradbury RB, McCracken DI, Stoate C (2011) Enclosed farmland. In: UK National Ecosystem Assessment: technical report. UNEP- WCMC, Cambridge, pp 197--240

    Google Scholar 

  37. Chamberlain DE, Fuller RJ, Bunce RGH, Duckworth JC, Shrubb M (2000) Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J Appl Ecol 37(5):771–788

    Article  Google Scholar 

  38. Preston CD, Pearman DA, Dines TD (2002) New atlas of the British and Irish flora. Oxford University Press, Oxford

    Google Scholar 

  39. Firbank LG, Petit S, Smart S, Blain A, Fuller RJ (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philos Trans R Soc B Biol Sci 363(1492):777–787. doi:10.1098/rstb.2007.2183

    Article  Google Scholar 

  40. Lattimore B, Smith CT, Titus BD, Stupak I, Egnell G (2009) Environmental factors in woodfuel production: opportunities, risks, and criteria and indicators for sustainable practices. Biomass Bioenerg 33(10):1321–1342. doi:10.1016/j.biombioe.2009.06.005

    Article  Google Scholar 

  41. Johnston M, Foley JA, Holloway T, Kucharik C, Monfreda C (2009) Resetting global expectations from agricultural biofuels. Environ Res Lett 4(1):1–9. doi:01400410.1088/1748-9326/4/1/014004

    Google Scholar 

  42. Foresight (2011) The future of food and farming: challenges and choices for global sustainability. The Government Office for Science, London

    Google Scholar 

  43. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels-the food, energy, and environment trilemma. Science 325(5938):270–271. doi:10.1126/science.1177970

    Article  Google Scholar 

  44. Miller SA (2010) Minimizing land use and nitrogen intensity of bioenergy. Environ Sci Technol 44(10):3932–3939. doi:10.1021/es902405a

    Article  Google Scholar 

  45. Lovett AA, Sunnenberg GM, Richter GM, Dailey AG, Riche AB, Karp A (2009) Land use implications of increased biomass production identified by GIS-based suitability and yield mapping for Miscanthus in England. Bioenerg Res 2(1–2):17–28. doi:10.1007/s12155-008-9030-x

    Article  Google Scholar 

  46. Campbell JE, Lobell DB, Genova RC, Field CB (2008) The global potential of bioenergy on abandoned agriculture lands. Environ Sci Technol 42(15):5791–5794. doi:10.1021/es800052w

    Article  Google Scholar 

  47. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238. doi:10.1126/science.1152747

    Article  Google Scholar 

  48. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8(2):389–395

    Article  Google Scholar 

  49. Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17(3):675–691

    Article  Google Scholar 

  50. Goodlass G, Green M, Hilton B, McDonough S (2007) Nitrate leaching from short-rotation coppice. Soil Use Manag 23(2):178–184. doi:10.1111/j.1475-2743.2006.00080.x

    Article  Google Scholar 

  51. Momose A, Ohtake N, Sueyoshi K, Sato T, Nakanishi Y, Akao S, Ohyama T (2009) Nitrogen fixation and translocation in young sugarcane (Saccharum officinarum L.) plants associated with endophytic nitrogen-fixing bacteria. Microbes Environ 24(3):224–230. doi:10.1264/jsme2.ME09105

    Article  Google Scholar 

  52. Scarlat N, Martinov M, Dallemand J-F (2010) Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Manag 30(10):1889–1897. doi:10.1016/j.wasman.2010.04.016

    Article  Google Scholar 

  53. Hanjra MA, Qureshi ME (2010) Global water crisis and future food security in an era of climate change. Food Policy 35(5):365–377. doi:10.1016/j.foodpol.2010.05.006

    Article  Google Scholar 

  54. Gerbens-Leenes W, Hoekstra AY, van der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci U S A 106(25):10219–10223. doi:10.1073/pnas.0812619106

    Article  Google Scholar 

  55. Gerbens-Leenes PW, Hoekstra AY, van der Meer T (2009) The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol Econ 68(4):1052–1060. doi:10.1016/j.ecolecon.2008.07.013

    Article  Google Scholar 

  56. McIsaac GF, David MB, Mitchell CA (2010) Miscanthus and switchgrass production in central illinois: impacts on hydrology and inorganic nitrogen leaching. J Environ Qual 39(5):1790–1799. doi:10.2134/jeq2009.0497

    Article  Google Scholar 

  57. Dimitriou I, Busch G, Jacobs S, Schmidt-Walter P, Lamersdorf N (2009) A review of the impacts of short rotation coppice cultivation on water issues. Landbauforsch Volk 59(3):197–206

    Google Scholar 

  58. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792. doi:10.1126/science.1189268

    Article  Google Scholar 

  59. Dauber J, Jones MB, Stout JC (2010) The impact of biomass crop cultivation on temperate biodiversity. GCB Bioenerg 2(6):289–309. doi:10.1111/j.1757-1707.2010.01058.x

    Article  Google Scholar 

  60. Witt ABR (2010) Biofuels and invasive species from an African perspective - a review. GCB Bioenerg 2(6):321–329. doi:10.1111/j.1757-1707.2010.01063.x

    Article  Google Scholar 

  61. Sage R, Cunningham M, Boatman N (2006) Birds in willow short-rotation coppice compared to other arable crops in central England and a review of bird census data from energy crops in the UK. Ibis 148(s1):184–197

    Article  Google Scholar 

  62. Sage R, Cunningham M, Haughton AJ, Mallott MD, Bohan DA, Riche A, Karp A (2010) The environmental impacts of biomass crops: use by birds of Miscanthus in summer and winter in Southwestern England. Ibis 152(3):487–499

    Article  Google Scholar 

  63. Sotherton NW (1991) Conservation headlands: a practical combination of intensive cereal farming and conservation. In: Firbank LG, Carter N, Darbyshire JF, Potts GR (eds) The ecology of temperate cereal fields, 32nd symposium of the British Ecological Society. Blackwell Scientific Publications, Oxford, pp 373–397

    Google Scholar 

  64. Phalan B (2009) The social and environmental impacts of biofuels in Asia: an overview. Appl Energy 86:S21–S29. doi:10.1016/j.apenergy.2009.04.046

    Article  Google Scholar 

  65. Fitzherbert EB, Struebig MJ, Morel A, Danielsen F, Bruhl CA, Donald PF, Phalan B (2008) How will oil palm expansion affect biodiversity? Trends Ecol Evol 23(10):538–545. doi:10.1016/j.tree.2008.06.012

    Article  Google Scholar 

  66. Najera A, Simonetti JA (2010) Can oil palm plantations become bird friendly? Agrofor Syst 80(2):203–209. doi:10.1007/s10457-010-9278-y

    Article  Google Scholar 

  67. Edwards DP, Hodgson JA, Hamer KC, Mitchell SL, Ahmad AH, Cornell SJ, Wilcove DS (2010) Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conserv Lett 3(4):236–242. doi:10.1111/j.1755-263X.2010.00107.x

    Article  Google Scholar 

  68. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188

    Article  Google Scholar 

  69. Meehan TD, Hurlbert AH, Gratton C (2010) Bird communities in future bioenergy landscapes of the upper midwest. Proc Natl Acad Sci U S A 107(43):18533–18538. doi:10.1073/pnas.1008475107

    Article  Google Scholar 

  70. Struebig MJ (2010) Reassessing the “real scenario” regarding the environmental sustainability of palm oil. Renew Sustain Energy Rev 14(8):2443–2444. doi:10.1016/j.rser.2010.02.016

    Article  Google Scholar 

  71. Martinelli LA, Filoso S (2008) Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecol Appl 18(4):885–898

    Article  Google Scholar 

  72. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) (2007) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, 2007. Cambridge University Press, Cambridge

    Google Scholar 

  73. Milder JC, McNeely JA, Shames SA, Scherr SJ (2008) Biofuels and ecoagriculture: can bioenergy production enhance landscape-scale ecosystem conservation and rural livelihoods? Int J Agric Sustain 6(2):105–121. doi:10.3763/ijas.2008.0344

    Article  Google Scholar 

  74. Atwell RC, Schulte LA, Westphal LM (2010) How to build multifunctional agricultural landscapes in the US Corn Belt: add perennials and partnerships. Land Use Policy 27(4):1082–1090. doi:10.1016/j.landusepol.2010.02.004

    Article  Google Scholar 

  75. Bauen AW, Dunnett AJ, Richter GM, Dailey AG, Aylott M, Casella E, Taylor G (2010) Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK. Bioresour Technol 101(21):8132–8143. doi:10.1016/j.biortech.2010.05.002

    Article  Google Scholar 

  76. Bryan BA, King D, Wang EL (2010) Biofuels agriculture: landscape-scale trade-offs between fuel, economics, carbon, energy, food, and fiber. GCB Bioenerg 2(6):330–345. doi:10.1111/j.1757-1707.2010.01056.x

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank the Institute of Integrative and Comparative Biology for providing me the base for writing this chapter, and Evan DeLucia, Winnie Gerbens-Leenes and Jeff Wolt for permission to use figures from their publications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Les Firbank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Firbank, L. (2012). Assessing the Environmental Risks and Opportunities of Bioenergy Cropping. In: Gopalakrishnan, K., van Leeuwen, J., Brown, R. (eds) Sustainable Bioenergy and Bioproducts. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-2324-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2324-8_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2323-1

  • Online ISBN: 978-1-4471-2324-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics