Skip to main content

Smart Materials in Active Vibration Control

  • Chapter
  • First Online:
Model Predictive Vibration Control

Abstract

The mechanical behavior of classical materials can be described by their elastic constant, which relates stress to strain. In advanced engineering materials that are often referred to as smart or intelligent materials, the mechanical behavior is also influenced by other fields; such as magnetic, electric charge, temperature, light and chemical composition. This is also reflected in the underlying constitutive equations, which couple two or more of these fields to describe the physical behavior of the material. These aforementioned materials have desirable properties when it comes to their use in active vibration control (AVC), since they may be readily integrated within the controlled structure and do not alter the mass of the mechanical system significantly. The aim of this chapter is thus to give a review of advanced engineering materials used in active and semi-active vibration control. The chapter covers the shape memory and superelastic property of shape memory alloys (SMA) and their current use in vibration control. Magnetostrictive and electrostrictive (MS, ES) materials are less commonly utilized in vibration control, however due to their engineering potential we will give a concise account of these materials and the underlying physical principles. The advantages of magnetorheological (MR) fluid based dampers with adjustable properties have become increasingly recognized in the engineering community, thus the discussion of magnetorheological and the related electrorheological (ER) fluids is provided here as well. Piezoelectric materials such as piezoceramics are probably the most commonly used smart materials in AVC. Here, we introduce the direct and converse piezoelectric effect, a short review on the application of transducers in vibration damping and some notes on the mathematical modeling of their dynamics. The chapter is finished by the emerging electrochemical materials or electroactive polymers (EAP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Courtesy of NASA.

  2. 2.

    However, these are also based on the piezoelectric effect and use piezoelectric materials [46].

  3. 3.

    Courtesy of NASA.

  4. 4.

    This nickel and titanium alloy was discovered and developed by Buechler et al. in 1963 at the U.S. Naval Ordnance Laboratory, thus the name NiTiNOL.

  5. 5.

    Courtesy of NASA.

  6. 6.

    Similar to nitinol, it has been invented at the United States Naval Ordnance Laboratory (NOL). Terfenol-D stands for Terbium Ferrum NOL Dysprosium; with the chemical composition \(Tb_xDy_{1-x}Fe_2.\)

  7. 7.

    Courtesy of the CEDRAT Group.

  8. 8.

    Courtesy of NASA.

  9. 9.

    Courtesy of NASA.

  10. 10.

    Due to the inherent similarities with piezoceramic materials, sometimes polyvinylidene fluoride (PVDF) is regarded to be a piezoelectric material. The piezoelectric effect is reversible, however the actuating effect in PVDF is only one way.

  11. 11.

    Courtesy of Bishakh Bhattacharya.

  12. 12.

    As some researchers have pointed out through experimental tests, models could be linearized as EAP behaves linearly under certain conditions [8, 84].

References

  1. Active Materials Laboratory, UCLA (2010) Magnetostriction and magnetostrictive materials. Online, http://aml.seas.ucla.edu/research/areas/magnetostrictive/mag-composites%20/Magnetostriction%20and%20Magnetostrictive%20Materials.htm

  2. Albizuri J, Fernandes M, Garitaonandia I, Sabalza X, Uribe-Etxeberria R, Hernández J (2007) An active system of reduction of vibrations in a centerless grinding machine using piezoelectric actuators. Int J Mach Tools Manuf 47(10):1607–1614. doi:10.1016/j.ijmachtools.2006.11.004, http://www.sciencedirect.com/science/article/B6V4B-4MR1K43-1/2/aa1014dd203b27a44c75cef37a2adf09

    Google Scholar 

  3. Ansys Inc (2009) Release 12.1 Documentation for ANSYS. Ansys Inc. / SAS IP Inc., Canonsburg

    Google Scholar 

  4. Asahi Glass (2010) Flemion: a fluoropolymer ion-exchange membrane which protects global environment through outstanding technologies. Tokyo. Online, http://www.agc.com/english/csr/environment/products/positive_seihin5.html

  5. Aslam M, Xiong-Liang Y, Zhong-Chao D (2006) Review of magnetorheological (MR) fluids and its applications in vibration control. J Marine Sci Appl 5(3):17–29

    Article  Google Scholar 

  6. Bae JS, Kwak MK, Inman DJ (2005) Vibration suppression of a cantilever beam using eddy current damper. J Sound Vib 284(3–5):805–824. doi: 10.1016/j.jsv.2004.07.031, http://www.sciencedirect.com/science/article/B6WM3-4F1J8KP-D/2/f6ceedf67a74bb2aadd57e99f8bea787

    Google Scholar 

  7. Bandopadhya D, Bhogadi D, Bhattacharya B, Dutta A (2006) Active vibration suppression of a flexible link using ionic polymer metal composite. In: 2006 IEEE conference on robotics, automation and mechatronics, pp 1–6. doi:10.1109/RAMECH.2006.252638

  8. Bandopadhya D, Bhattacharya B, Dutta A (2007) An active vibration control strategy for a flexible link using distributed ionic polymer metal composites. Smart Mater Struct 16(3):617. http://stacks.iop.org/0964-1726/16/i=3/a=008

  9. Bandyopadhyay B, Manjunath T, Umapathy M (2007) Modeling, control and implementation of smart structures: A FEM-State Space Approach, 1st edn. Springer, Berlin

    MATH  Google Scholar 

  10. Bar-Cohen Y (2000) Electroactive polymers as artificial muscles —capabilities, potentials and challenges, 1st edn, NTS Inc., Chap 8.11, pp 936–950. Handbook on Biomimetics

    Google Scholar 

  11. Bar-Cohen Y (2002) Electro-active polymers: current capabilities and challenges. In: Proceedings of the SPIE smart structures and materials symposium, San Diego, pp 4695–4702

    Google Scholar 

  12. Bar-Cohen Y, Sheritt S, Lih SS (2001) Electro-active polymers: current capabilities and challenges. In: Proceedings SPIE 8th annual international symposium on smart structures and materials, Newport, pp 4329–4343

    Google Scholar 

  13. Bars R, Colaneri P, de~Souza CE, Dugard L, Allgöwer F, Kleimenov A, Scherer C (2006) Theory, algorithms and technology in the design of control systems. Annu Rev Control 30(1):19–30. doi:10.1016/j.arcontrol.2006.01.006, http://www.sciencedirect.com/science/article/B6V0H-4K7WTXH-1/2/705feea29964327e5fd83768ae0f99e2, 2005 IFAC Milestone Reports

  14. Bartlett P, Eaton S, Gore J, Metheringham W, Jenner A (2001) High-power, low frequency magnetostrictive actuation for anti-vibration applications. Sens Actuators A 91(1–2):133–136. doi:10.1016/S0924-4247(01)00475-7, http://www.sciencedirect.com/science/article/B6THG-4313YT1-14/2/851ac15043a568a17313eef3042d685f, Third European Conference on Magnetic Sensors & Actuators.

  15. Baz A, Imam K, McCoy J (1990) Active vibration control of flexible beams using shape memory actuators. J Sound Vib 140(3):437–456. doi:10.1016/0022-460X(90)90760-W, http://www.sciencedirect.com/science/article/B6WM3-494TCC5-NS/2/7f451727d377dc9c69f873e2c0d85665

    Google Scholar 

  16. Birman V, Adali S (1996) Vibration damping using piezoelectric stiffener-actuators with application to orthotropic plates. Compos Struct 35(3):251–261, doi:10.1016/0263-8223(96)00011-6. http://www.sciencedirect.com/science/article/B6TWP-3VS925W-1/2/a20cdc4439f3d1f8f958988ad0b645f3

  17. Bouzidane A, Thomas M (2008) An electrorheological hydrostatic journal bearing for controlling rotor vibration. Comput Struct 86(3–5):463–472. doi:10.1016/j.compstruc.2007.02.006, http://www.sciencedirect.com/science/article/B6V28-4NDVGTG-1/2/32b829850e8db109469179cdb7d7d4f6, Smart Structures

    Google Scholar 

  18. Braghin F, Cinquemani S, Resta F (2010) A model of magnetostrictive actuators for active vibration control. Sens Actuators A (in press) Corrected Proof:–, doi:10.1016/j.sna.2010.10.019, http://www.sciencedirect.com/science/article/B6THG-51F25N5-4/2/f5cf46980d38877c74a3c4d34fbd894d

  19. Calvert P, O’Kelly J, Souvignier C (1998) Solid freeform fabrication of organic-inorganic hybrid materials. Mater Sci Eng C 6(2–3):167–174. doi:10.1016/S0928-4931(98)00046-0, http://www.sciencedirect.com/science/article/B6TXG-3W0G7X7-B/2/6975c02114a4ef48788129ec9b336c73

    Google Scholar 

  20. CEDRAT Group (2009) Magnetostrictive actuator prototypes and FEM simulation. Meylan Cedex. Online, http://www.cedrat.com/en/technologies/actuators/magnetic-actuators-moto rs.html

  21. Changhai R, Lining S (2005) Hysteresis and creep compensation for piezoelectric actuator in open-loop operation. Sens Actuators A 122(1):124–130. doi:10.1016/j.sna.2005.03.056, http://www.sciencedirect.com/science/article/pii/S0924424705001512, sSSAMW 04 - Special Section of the Micromechanics Section of Sensors and Actuators based on contributions revised from the Technical Digest of the 2004 Solid-State Sensor, Actuator and Microsystems Workshop

  22. Chen Q, Levy C (1999) Vibration analysis of flexible beam by using smart damping structures. Composites Part B: Eng 30:395–406

    Article  Google Scholar 

  23. Choi SB, Hwang JH (2000) Structural vibration control using shape memory actuators. J Sound Vib 231(4):1168–1174. doi:10.1006/jsvi.1999.2637, http://www.sciencedirect.com/science/article/B6WM3-45CWW19-HC/2/a61f7091ea2a3e8325d72991c1da1b04

    Google Scholar 

  24. Choi SB, Han YM, Kim JH, Cheong CC (2001) Force tracking control of a flexible gripper featuring shape memory alloy actuators. Mechatronics 11(6):677–690, doi:10.1016/S0957-4158(00)00034-9, http://www.sciencedirect.com/science/article/B6V43-43MMSYG-6/2/cec92f6a51314ef45e91c5caf9e5859e

    Google Scholar 

  25. Choi SB, Hong SR, Sung KG, Sohn JW (2008) Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount. Int J Mech Sci 50(3):559–568. doi:10.1016/j.ijmecsci.2007.08.001, http://www.sciencedirect.com/science/article/B6V49-4PD4XHC-1/2/c491dc4a4a881e38b0e20ceef7206dec

    Google Scholar 

  26. Choy S, Jiang X, Kwok K, Chan H (2010) Piezoelectric and dielectric characteristics of lead-free BNKLBT ceramic thick film and multilayered piezoelectric actuators. Ceram Int 36(8):2345–2350. doi:10.1016/j.ceramint.2010.07.030, http://www.sciencedirect.com/science/article/B6TWH-50P9H3H-T/2/b62d4dee5b14f6a8678c3fc747ae42e8

    Google Scholar 

  27. Clark A, Savage H, Spano M (1984) Effect of stress on the magnetostriction and magnetization of single crystal Tb.27Dy.73Fe2. IEEE Trans Magn 20(5):1443–1445. doi:10.1109/TMAG.1984.1063469

    Article  Google Scholar 

  28. Corbi O (2003) Shape memory alloys and their application in structural oscillations attenuation. Simul Modell Pract Theory 11(5–6):387–402. doi:10.1016/S1569-190X(03)00057-1, http://www.sciencedirect.com/science/article/B6X3C-49097BD-1/2/70ef399b2b05b43d6182b568e028b58c, Modeling and Simulation of Advanced Problems and Smart Systems in Civil Engineering

  29. Cunningham M, Jenkins D, Clegg W, Bakush M (1995) Active vibration control and actuation of a small cantilever for applications in scanning probe instruments. Sens Actuators A 50(1–2):147–150. doi:10.1016/0924-4247(96)80099-9, http://www.sciencedirect.com/science/article/B6THG-3YVM62R-15/2/ea100dfeea242e7471472799494a5b93

  30. Dadfarnia M, Jalili N, Liu Z, Dawson DM (2004) An observer-based piezoelectric control of flexible cartesian robot arms: theory and experiment. Control Eng Pract 12(8):1041–1053. doi:10.1016/j.conengprac.2003.09.003, http://www.sciencedirect.com/science/article/B6V2H-49WMRJ4-4/2/eb147ee81930b34eb0aba81e90b3a711, Special Section on Emerging Technologies for Active Noise and Vibration Control Systems

  31. DuPont (2010) Nafion membranes. Wilmington. Online, http://www2.dupont.com/Automotive/en_US/products_services/fuelCell/nafion.html

  32. Fuller C (1990) Active control of sound transmission/radiation from elastic plates by vibration inputs: I. analysis. J Sound Vib 136(1):1–15. doi:10.1016/0022-460X(90)90933-Q, http://www.sciencedirect.com/science/article/pii/0022460X9090933Q

    Google Scholar 

  33. Fuller CR, Elliott SJ, Nelson PA (1996) Active Control of Vibration, 1st edn. Academic Press, San Francisco

    Google Scholar 

  34. Fung RF, Liu YT, Wang CC (2005) Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass. J Sound Vib 288(4–5):957–980. doi:10.1016/j.jsv.2005.01.046, http://www.sciencedirect.com/science/article/B6WM3-4G4N5VD-1/2/fc3710f0625ef69f19d16c8778a63e58

  35. Ganilova O, Cartmell M (2010) An analytical model for the vibration of a composite plate containing an embedded periodic shape memory alloy structure. Compos Struct 92(1):39–47. doi:10.1016/j.compstruct.2009.06.008, http://www.sciencedirect.com/science/article/B6TWP-4WMDHPH-1/2/5c0b8fba0f2e05dad5142ddfcbc48f32

  36. Gaudenzi P, Carbonaro R, Benzi E (2000) Control of beam vibrations by means of piezoelectric devices: theory and experiments. Compos Struct 50:373–379

    Article  Google Scholar 

  37. Gaul L, Becker J (2009) Model-based piezoelectric hysteresis and creep compensation for highly-dynamic feedforward rest-to-rest motion control of piezoelectrically actuated flexible structures. Int J Eng Sci 47(11–12):1193–1207. doi:10.1016/j.ijengsci.2009.07.006, http://www.sciencedirect.com/science/article/pii/S0020722509001219, Mechanics, Mathematics and Materials a Special Issue in memory of A.J.M. Spencer FRS—In Memory of Professor A.J.M. Spencer FRS

  38. Giannopoulos G, Santafe F, Vantomme J, Buysschaert F, Hendrick P (2006) Smart helicopter blade using piezoelectric actuators for both cyclic and collective pitch control. Multifunctional Structures / Integration of Sensors and Antennas 11(1)

    Google Scholar 

  39. Gospodaric B, Voncina D, Bucar B (2007) Active electromagnetic damping of laterally vibrating ferromagnetic cantilever beam. Mechatronics 17(6):291–298. doi:10.1016/j.mechatronics.2007.04.002, http://www.sciencedirect.com/science/article/B6V43-4NVSWV6-1/2/5c4672945cfa9b81238f0b1cb8a8eb13

    Google Scholar 

  40. Guan YH, Lim TC, Shepard WS (2005) Experimental study on active vibration control of a gearbox system. J Sound Vib 282(3–5):713–733. doi: 10.1016/j.jsv.2004.03.043, http://www.sciencedirect.com/science/article/B6WM3-4DHXFPJ-4/2/e98625c6c04fd1f5bb5712eb31806f54

  41. Hong S, Choi S, Lee D (2006) Comparison of vibration control performance between flow and squeeze mode ER mounts: experimental work. J Sound Vib 291(3–5):740–748, doi:10.1016/j.jsv.2005.06.037, http://www.sciencedirect.com/science/article/B6WM3-4H16P3S-C/ 2/f98734a231c88a1ec1b43024a2a32f2e

  42. Hong SR, Choi SB, Han MS (2002) Vibration control of a frame structure using electro-rheological fluid mounts. Int J Mech Sci 44(10):2027–2045. doi:10.1016/S0020-7403(02)00172-8, http://www.sciencedirect.com/science/article/B6V49-47BX3RX-4/2/53a10ce8cbf8dfa679c34e04beb688e4

  43. Ibrahim R (2008) Recent advances in nonlinear passive vibration isolators. J Sound Vib 314(3–5):371–452. doi:10.1016/j.jsv.2008.01.014, http://www.sciencedirect.com/science/article/B6WM3-4S0R6TJ-3/ 2/8168db91488e18ca41869d56de24ca53

    Google Scholar 

  44. Efunda Inc (2007) Constitutive transforms of piezo materials. Sunnyvale. Website, available: http://www.efunda.com/materials/piezo/piezo_math/

  45. Inman DJ (2006) Vibration with control. Wiley, Chichester

    Book  Google Scholar 

  46. Inman DJ (2007) Engineering Vibrations, 3rd edn. Pearson International Education (Prentice Hall), Upper Saddle River

    Google Scholar 

  47. Janke L, Czaderski C, Motavalli M, Ruth J (2005) Applications of shape memory alloys in civil engineering structures: overview, limits and new ideas. Mater Struct 38:578–592. doi:10.1007/BF02479550

    Google Scholar 

  48. Janocha H, Kuhnen K (2000) Real-time compensation of hysteresis and creep in piezoelectric actuators. Sens Actuators A 79(2):83–89. doi:10.1016/S0924-4247(99)00215-0, http://www.sciencedirect.com/science/article/pii/S0924424799002150

  49. John S, Hariri M (2008) Effect of shape memory alloy actuation on the dynamic response of polymeric composite plates. Composites Part A 39(5):769–776. doi:10.1016/j.compositesa.2008.02.005, http://www.sciencedirect.com/science/article/B6TWN-4RV7YMP-1/2/a8402bbfb476e507253cf32aea87cfb8

  50. Jung WJ, Jeong WB, Hong SR, Choi SB (2004) Vibration control of a flexible beam structure using squeeze-mode ER mount. J Sound Vib 273(1–2):185–199. doi:10.1016/S0022-460X(03)00478-4, http://www.sciencedirect.com/science/article/B6WM3-49DFFMM-1/ 2/1255ad59eca53b0c021632de61aef0b8

    Google Scholar 

  51. Knight GPM, UCLA Active Materials Lab (2011) Magnetostrictive materials background. Available http://aml.seas.ucla.edu/research/areas/magnetostrictive/overview.htm

  52. Kozek M, Benatzky C, Schirrer A, Stribersky A (2011) Vibration damping of a flexible car body structure using piezo-stack actuators. Control Eng Pract 19(3):298–310. doi:10.1016/j.conengprac.2009.08.001, http://www.sciencedirect.com/science/article/B6V2H-4X3MR4Y-2/ 2/3ef1d868e70c2b6f10fd9412f9c8c1de, Special Section: IFAC World Congress Application Paper Prize Papers

  53. Krishen K (2009) Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles. Acta Astronautica 64(11–12):1160–1166. doi:10.1016/j.actaastro.2009.01.008, http://www.sciencedirect.com/science/article/B6V1N-4VM2K65-3/ 2/f8b0b2d64f274154a5eb59da52fbf524

    Google Scholar 

  54. Lau K, Zhou L, Tao X (2002) Control of natural frequencies of a clamped-clamped composite beam with embedded shape memory alloy wires. Compos Struct 58(1):39–47. doi:10.1016/S0263-8223(02)00042-9, http://www.sciencedirect.com/science/article/B6TWP-45XTP9W-N/ 2/07b9a065ac866d8869a4240deb918851

  55. Lavu BC, Schoen MP, Mahajan A (2005) Adaptive intelligent control of ionic polymermetal composites. Smart Mater Struct 14(4):466. http://stacks.iop.org/0964-1726/14/i=4/a=002

    Google Scholar 

  56. Lee J, Oh Y, Kim T, Choi M, Jo W (2007) Piezoelectric and electromechanical properties of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3(65%)-PbTiO3(35%) thin films observed by scanning force microscopy. Ultramicroscopy 107(10–11):954–957. doi:10.1016/j.ultramic.2007.02.039, http://www.sciencedirect.com/science/article/B6TW1-4NN6TNC-2/ 2/a15081aabe1d05ba3faaa00f5797e41d. In: Proceedings of the 8th international conference on scanning robe microscopy, sensors and nanostructures

    Google Scholar 

  57. Lee JH, Su RK, Lee PK, Lam LC (2002) Semi-active damping device for vibration control of buildings using magnetorheological fluid. In: Anson M, Ko J, Lam E (eds) Advances in Building Technology, Elsevier, Oxford, pp 969–976, doi:10.1016/B978-008044100-9/50122-4, http://www.sciencedirect.com/science/article/B858K-4PCJRKH-47 /2/1c6a74db22e114e2cbddec5d173950f8

  58. Li H, Liu S, Wen F, Wen B (2007) Study on dynamic of giant magnetostrictive material transducer with spring of nonlinear stiffness. J Mech Sci Technol 21:961–964. doi:10.1007/BF03027077, http://dx.DOI.org/10.1007/BF03027077

    Google Scholar 

  59. Li YY, Cheng L, Li P (2003) Modeling and vibration control of a plate coupled with piezoelectric material. Compos Struct 62(2):155–162. doi:10.1016/S0263-8223(03)00110-7, http://www.sciencedirect.com/science/article/B6TWP-48R1WVK-1/2/f0788ece03ae40a5874f11852e927842

    Google Scholar 

  60. Liu YT, Fung RF, Huang TK (2004) Dynamic responses of a precision positioning table impacted by a soft-mounted piezoelectric actuator. Precis Eng 28(3):252–260, doi:10.1016/j.precisioneng.2003.10.005, http://www.sciencedirect.com/science/article/B6V4K-4BMCGD0-1/ 2/a0f54a4367d9a4fa037b99ba4762a3b9

  61. LORD Corporation (2006) Magneto-Rheological (MR) Fluid. LORD Corporation, Cary

    Google Scholar 

  62. Lu H, Meng G (2006) An experimental and analytical investigation of the dynamic characteristics of a flexible sandwich plate filled with electrorheological fluid. Int J Adv Manuf Technol 28:1049–1055. doi:10.1007/s00170-004-2433-8, http://dx.DOI.org/10.1007/s00170-004-2433-8

  63. Luo Y, Xie S, Zhang X (2008) The actuated performance of multi-layer piezoelectric actuator in active vibration control of honeycomb sandwich panel. J Sound Vib 317(3–5):496–513. doi:10.1016/j.jsv.2008.03.047, http://www.sciencedirect.com/science/article/B6WM3-4SJR2GN-1/ 2/04c4aad317afe74e20e6f5810f689674

  64. Mahmoodi SN, Craft MJ, Southward SC, Ahmadian M (2011) Active vibration control using optimized modified acceleration feedback with adaptive line enhancer for frequency tracking. J Sound Vib 330(7):1300–1311. doi:10.1016/j.jsv.2010.10.013, http://www.sciencedirect.com/science/article/B6WM3-51D894K-1/ 2/25e8ef1bcadb5fd2aa078de4d678c7f4

  65. Maleki M, Naei MH, Hosseinian E, Babahaji A (2011) Exact three-dimensional analysis for static torsion of piezoelectric rods. Int J Solids Struct 48(2):217–226. doi:10.1016/j.ijsolstr.2010.09.017, http://www.sciencedirect.com/science/article/B6VJS-513F90C-5/ 2/96a4ce72adde5d18a1c509ab880cb797

    Google Scholar 

  66. Malinauskas A (2001) Chemical deposition of conducting polymers. Polymer 42(9):3957–3972. doi:10.1016/S0032-3861(00)00800-4, http://www.sciencedirect.com/science/article/B6TXW-42C0RR9-1/2/e8084cbb0f228b86a5cc9d061a340e22

    Google Scholar 

  67. McManus SJ, St. Clair KA, Boileau P, Boutin J, Rakheja S (2002) Evaluation of vibration and shock attenuation performance of a suspension seat with a semi-active magnetorheological fluid damper. J Sound Vib 253(1):313–327. doi:10.1006/jsvi.2001.4262, http://www.sciencedirect.com/science/article/B6WM3-45Y1C16-N/ 2/33a165ac8f2fe7d8fad7bd83d9484957

  68. Memory-Metalle GmbH (2010) Infosheet no. 5: The memory effects—an introduction. White paper, Memory-Metalle GmbH, Weil am Rhein. http://www.memory-metalle.de/html/03_knowhow/PDF/MM_05_introduction_e.pdf, available online (1 page)

  69. MIDÉ (2007) Shape memory alloy starter kit—reference manual. MIDÉ Technology, Medford

    Google Scholar 

  70. Moheimani S, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping. Springer, London

    Google Scholar 

  71. Monkman GJ (1995) The electrorheological effect under compressive stress. J Phys D: Appl Phys 28(3):588. http://stacks.iop.org/0022-3727/28/i=3/a=022

    Google Scholar 

  72. Monkman GJ (1997) Exploitation of compressive stress in electrorheological coupling. Mechatronics 7(1):27–36. doi:10.1016/S0957-4158(96)00037-2, http://www.sciencedirect.com/science/article/B6V43-3WDCFB7-3/2/00d7c7757dd73812cfe88867f704ba25

    Google Scholar 

  73. Moon SJ, Lim CW, Kim BH, Park Y (2007) Structural vibration control using linear magnetostrictive actuators. J Sound Vib 302(4–5):875–891. doi: 10.1016/j.jsv.2006.12.023, http://www.sciencedirect.com/science/article/B6WM3-4N2M6HH-5/2/417522adfca8640acfa76e890ae0533c

    Google Scholar 

  74. Moshrefi-Torbati M, Keane A, Elliott S, Brennan M, Anthony D, Rogers E (2006) Active vibration control (AVC) of a satellite boom structure using optimally positioned stacked piezoelectric actuators. J Sound Vib 292(1–2):203–220. doi:10.1016/j.jsv.2005.07.040, http://www.sciencedirect.com/science/article/pii/S0022460X050 05171

  75. NASA Dryden Flight Research Center (NASA-DFRC) (2001) The Aerostructures Test Wing (ATW)— after intentional failure. Image ID: EC01-0124-1

    Google Scholar 

  76. NASA Dryden Flight Research Center (NASA-DFRC) (2001) The Aerostructures Test Wing (ATW)— before failure. Image ID: EC01-0086-4

    Google Scholar 

  77. NASA Dryden Flight Research Center (NASA-DFRC) (2001) The Aerostructures Test Wing (ATW) experiment (description). Online, http://nix.larc.nasa.gov/info;jsessionid=6f0l4hj7bt39u?id=EC01-0086-4&orgid=7

  78. NASA Glenn Research Center (NASA-GRC) (2008) Shape Memory Alloy (SMA) Demonstration Hardware. Image ID: C-2008-02698

    Google Scholar 

  79. NASA Glenn Research Center (NASA-GRC) (2008) Shape Memory Alloy (SMA) Demonstration Hardware. Image ID: C-2008-02707

    Google Scholar 

  80. NASA Langley Research Center (NASA-LaRC) (1996) High Displacement Actuator (HDA). Image ID: EL-1996-00133

    Google Scholar 

  81. NASA Langley Research Center (NASA-LaRC) (2000) F-15 model in the 16 foot transonic tunnel. Image ID: EL-2000-00147

    Google Scholar 

  82. NASA Marshall Space Flight Center (NASA-MSFC) (2002) Comparison of magnetorheological fluids on earth and in space. Image ID: MSFC-0700441

    Google Scholar 

  83. Ngatu GT, Wereley NM, Karli JO, Bell RC (2008) Dimorphic magnetorheological fluids: exploiting partial substitution of microspheres by nanowires. Smart Mater Struct 17(4):045,022, http://stacks.iop.org/0964-1726/17/i=4/a=045022

  84. Palakodeti R, Kessler M (2006) Influence of frequency and prestrain on the mechanical efficiency of dielectric electroactive polymer actuators. Mater Lett 60(29–30):3437–3440. doi:10.1016/j.matlet.2006.03.053, http://www.sciencedirect.com/science/article/B6TX9-4JN2J11-2/ 2/bb86365e0ad88fd27e7dad13bd4d5ac0

  85. Park JS, Kim JH, Moon SH (2004) Vibration of thermally post-buckled composite plates embedded with shape memory alloy fibers. Compos Struct 63(2):179–188, doi:10.1016/S0263-8223(03)00146-6, http://www.sciencedirect.com/science/article/B6TWP-48Y6PS8-6/ 2/d70ea3b2717f54027d999c7fe92da11f

    Google Scholar 

  86. Phillips DJ, Hyland DC, Collins CG (2002) Real-time seismic damping and frequency control of steel structures using nitinol wire. In: Proceedings of SPIE 2002, vol 4696, pp 176–185

    Google Scholar 

  87. Piefort V (2001) Finite element modelling of piezoelectric structures. PhD thesis, Université Libre de Bruxelles

    Google Scholar 

  88. Piezosystem-Jena (2007) Piezoline theory. Available: http://www.piezojena.com/files.php4?dl_mg_id=229&file=dl_mg_1195142143. pdf&SID=125nfb5prkpt35d2k9cops3021

  89. Pilgrim SM (2001) Electrostrictive ceramics for sonar projectors. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssicre P (eds) Encyclopedia of materials: science and technology, Elsevier, Oxford, pp 2738–2743. doi:10.1016/B0-08-043152-6/00488-5, http://www.sciencedirect.com/science/article/B7NKS-4KF1VT9-MR /2/9a3a6454bb6c54bb64719b3036d2789b

  90. Pradhan S (2005) Vibration suppression of FGM shells using embedded magnetostrictive layers. Int J Solids Struct 42(9–10):2465–2488, doi:10.1016/j.ijsolstr.2004.09.049, http://www.sciencedirect.com/science/article/B6VJS-4F6SSGN-1/2/b6f9e2e6ffc65bfc0c4af5083e37df0b

    Google Scholar 

  91. Preumont A (2002) Vibration control of active structures, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  92. Preumont A, Seto K (2008) Active control of structures, 3rd edn. Wiley, Chichester

    Book  Google Scholar 

  93. Rajoria H, Jalili N (2005) Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Compos Sci Technol 65(14):2079–2093. doi:10.1016/j.compscitech.2005.05.015, http://www.sciencedirect.com/science/article/B6TWT-4GHBPN0-5/ 2/a67d954050aac7829a56e3e4302c8ef6

  94. Ren TL, Zhao HJ, Liu LT, Li ZJ (2003) Piezoelectric and ferroelectric films for microelectronic applications. Mater Sci Eng B 99(1–3):159–163. doi:10.1016/S0921-5107(02)00466-X, http://www.sciencedirect.com/science/article/B6TXF-47P92FB-4/ 2/4f139e078631af2acf841b7db5d37316, Advanced electronic-ceramic materials. Proceedings of the 8th IUMRS international conference on electronic materials (IUMRS-ICEM2002), Symposium N

    Google Scholar 

  95. Richter H, Misawa EA, Lucca DA, Lu H (2001) Modeling nonlinear behavior in a piezoelectric actuator. Precis Eng 25(2):128–137. doi:10.1016/S0141-6359(00)00067-2, http://www.sciencedirect.com/science/article/pii/S0141635900000672

    Google Scholar 

  96. Rossing TD, Moore RF, Wheeler PA (2001) The science of sound. 3rd edn. Addison Wesley, San Francisco

    Google Scholar 

  97. Schlacher K, Kugi A, Irschik H (1998) \({\fancyscript{H}}_\infty\)-control of random structural vibrations with piezoelectric actuators. Comput Struct 67(1–3):137–145. doi: 10.1016/S0045-7949(97)00165-X, http://www.sciencedirect.com/science/article/B6V28-3VKTNM7-J/ 2/faecf09ede8e0d56452351d4d30bc45b

  98. Shin HC, Choi SB (2001) Position control of a two-link flexible manipulator featuring piezoelectric actuators and sensors. Mechatronics 11(6):707–729. doi:10.1016/S0957-4158(00)00045-3, http://www.sciencedirect.com/science/article/B6V43-43MMSYG-8/ 2/868a8129a5636d164e6aa1a89358b8fb

  99. Sitnikova E, Pavlovskaia E, Wiercigroch M, Savi MA (2010) Vibration reduction of the impact system by an SMA restraint: numerical studies. Int J Non Linear Mech 45(9):837–849. doi:10.1016/j.ijnonlinmec.2009.11.013, http://www.sciencedirect.com/science/article/B6TJ2-4Y4PVRH-1/ 2/6c55c60479b498920a5272d281d5fd5d, dynamics, control and design of nonlinear systems with smart structures

    Google Scholar 

  100. Sodano HA, Inman DJ (2007) Non-contact vibration control system employing an active eddy current damper. J Sound Vib 305(4–5):596–613. doi:10.1016/j.jsv.2007.04.050 http://www.sciencedirect.com/science/article/B6WM3-4P2J38T-3/ 2/a75ecce7ed7841e00499a50d077bd23c

    Google Scholar 

  101. Song G, Ma N, Li HN (2006) Applications of shape memory alloys in civil structures. Eng Struct 28(9):1266–1274. doi:10.1016/j.engstruct.2005.12.010, http://www.sciencedirect.com/science/article/B6V2Y-4JRM0BH-1/ 2/ccac39dd197a641451117034df623bd1

    Google Scholar 

  102. Song G, Sethi V, Li HN (2006) Vibration control of civil structures using piezoceramic smart materials: a review. Eng Struct 28(11):1513–1524, doi:10.1016/j.engstruct.2006.02.002, http://www.sciencedirect.com/science/article/B6V2Y-4JKRTRW-3/ 2/73299aa5fc196cb9802cbc961b896402

    Google Scholar 

  103. Spelta C, Previdi F, Savaresi SM, Fraternale G, Gaudiano N (2009) Control of magnetorheological dampers for vibration reduction in a washing machine. Mechatronics 19(3):410–421. doi:10.1016/j.mechatronics.2008.09.006, http://www.sciencedirect.com/science/article/B6V43-4TT1G22-1/ 2/3d8e5bd1cc63e7181272ef848f15508c

    Google Scholar 

  104. Stangroom JE (1983) Electrorheological fluids. Phys Technol 14(6):290. http://stacks.iop.org/0305-4624/14/i=6/a=305

    Google Scholar 

  105. Stanway R (2004) Smart fluids: current and future developments. Mater Sci Technol 20(8):931–939

    Article  Google Scholar 

  106. Stöppler G, Douglas S (2008) Adaptronic gantry machine tool with piezoelectric actuator for active error compensation of structural oscillations at the tool centre point. Mechatronics 18(8):426–433, doi:10.1016/j.mechatronics.2008.03.002, http://www.sciencedirect.com/science/article/B6V43-4SC5PJV-2/2/ca3951fdc7496b096233f1bd02e0898a

  107. Su YX, Duan BY, Wei Q, Nan RD, Peng B (2002) The wind-induced vibration control of feed supporting system for large spherical radio telescope using electrorheological damper. Mechatronics 13(2):95–110. doi:10.1016/S0957-4158(01)00042-3, http://www.sciencedirect.com/science/article/B6V43-46WPHMS-2/2/eca7cd44909e99a1f8c6ad76a4fd4f19

  108. Suleman A, Costa AP (2004) Adaptive control of an aeroelastic flight vehicle using piezoelectric actuators. Comput Struct 82(17–19):1303–1314. doi: 10.1016/j.compstruc.2004.03.027, http://www.sciencedirect.com/science/article/B6V28-4CPD4P5-1/ 2/5a9c6f2a79e0f4e978f43d2b6ed45b93, computational mechanics in Portugal

    Google Scholar 

  109. Suleman A, Burns S, Waechter D (2004) Design and modeling of an electrostrictive inchworm actuator. Mechatronics 14(5):567–586. doi:10.1016/j.mechatronics.2003.10.007, http://www.sciencedirect.com/science/article/B6V43-49YD001-1/2/9b6a81729c9e0f3c7f59ce4bafbe5c2a

    Google Scholar 

  110. Sung KG, Han YM, Cho JW, Choi SB (2008) Vibration control of vehicle ER suspension system using fuzzy moving sliding mode controller. J Sound Vib 311(3–5):1004–1019. doi:10.1016/j.jsv.2007.09.049, http://www.sciencedirect.com/science/article/B6WM3-4R2H1TN-4/ 2/b3a297765c3ac7767b2d64fda7a6a3d7

    Google Scholar 

  111. Tabak F, Disseldorp E, Wortel G, Katan A, Hesselberth M, Oosterkamp T, Frenken J, van Spengen W (2010) MEMS-based fast scanning probe microscopes. Ultramicroscopy 110(6):599–604. doi:10.1016/j.ultramic.2010.02.018, http://www.sciencedirect.com/science/article/B6TW1-4YJCKXY-1/ 2/4f5b9ba5875b8066d7cb20174f05ad61, 11th International scanning probe microscopy conference

    Google Scholar 

  112. Takács G, Rohal’-Ilkiv B (2009) Implementation of the Newton-Raphson MPC algorithm in active vibration control applications. In: Mace BR, Ferguson NS, Rustighi E (eds) Proceedings of the 3rd international conference on noise and vibration: emerging methods, Oxford

    Google Scholar 

  113. Takács G, Rohal’-Ilkiv B (2009) MPC with guaranteed stability and constraint feasibility on flexible vibrating active structures: a comparative study. In: Hu H (ed) Proceedings of the 11th IASTED international conference on control and applications, Cambridge

    Google Scholar 

  114. Takács G, Rohal’-Ilkiv B (2009) Newton-Raphson based efficient model predictive control applied on active vibrating structures. In: Proceedings of the European control control conference, Budapest

    Google Scholar 

  115. Takács G, Rohal’-Ilkiv B (2009) Newton-Raphson MPC controlled active vibration attenuation. In: Hangos KM (ed) Proceedings of the 28th IASTED international conference on modeling, identification and control, Innsbruck

    Google Scholar 

  116. TRS Technologies (2010) Electrostrictive materials. State College. Online, http://www.trstechnologies.com/Materials/electrostrictive_materials.php

  117. Tzou H, Chai W (2007) Design and testing of a hybrid polymeric electrostrictive/piezoelectric beam with bang-bang control. Mech Syst Sig Process 21(1):417–429. doi:10.1016/j.ymssp.2005.10.008, http://www.sciencedirect.com/science/article/B6WN1-4HR75KY-1/ 2/73701e5908a2ea598fa7bec1ce093563

  118. Van den Broeck L, Diehl M, Swevers J (2009) Time optimal MPC for mechatronic applications. In: Proceedings of the 48th IEEE conference on decision and control, Shanghai, pp 8040–8045

    Google Scholar 

  119. Van den Broeck L, Swevers J, Diehl M (2009) Performant design of an input shaping prefilter via embedded optimization. In: Proceedings of the 2009 American control conference, St-Louis, pp 166–171

    Google Scholar 

  120. Vereda F, de Vicente J, Hidalgo-Álvarez R (2009) Physical properties of elongated magnetic particles: Magnetization and friction coefficient anisotropies. ChemPhysChem 10:1165–1179

    Article  Google Scholar 

  121. Wahed AKE, Sproston JL, Schleyer GK (2002) Electrorheological and magnetorheological fluids in blast resistant design applications. Mater Des 23(4):391–404. doi: 10.1016/S0261-3069(02)00003-1, http://www.sciencedirect.com/science/article/B6TX5-450HD50-1/ 2/0da443f054d99983150525d47bf17aeb

    Google Scholar 

  122. Wang H, Zheng H, Li Y, Lu S (2008) Mechanical properties of magnetorheological fluids under squeeze-shear mode. In: Society of photo-optical instrumentation engineers (SPIE) conference series, presented at the Society of Photo-optical Instrumentation Engineers (SPIE) conference, vol 7130. doi:10.1117/12.819634

  123. Wang M, Fei R (1999) Chatter suppression based on nonlinear vibration characteristic of electrorheological fluids. Int J Mach Tools Manuf 39(12):1925–1934. doi:10.1016/S0890-6955(99)00039-5, http://www.sciencedirect.com/science/article/B6V4B-3X7N8GJ-7/ 2/6cc38d51af69b4fbb0aa1135681b5356

  124. Wei JJ, Qiu ZC, Han JD, Wang YC (2010) Experimental comparison research on active vibration control for flexible piezoelectric manipulator using fuzzy controller. J Intell Rob Syst 59:31–56, doi:10.1007/s10846-009-9390-2, http://dx.DOI.org/10.1007/s10846-009-9390-2

    Google Scholar 

  125. Williams E, Rigby S, Sproston J, Stanway R (1993) Electrorheological fluids applied to an automotive engine mount. J Non-Newtonian Fluid Mech 47:221–238. doi:10.1016/0377-0257(93)80052-D, http://www.sciencedirect.com/science/article/B6TGV-44V49DV-75 /2/a6f4db8ffcb810f6167c845a984dd93f

    Google Scholar 

  126. Williams K, Chiu G, Bernhard R (2002) Adaptive-passive absorbers using shape-memory alloys. J Sound Vib 249(5):835–848. doi:10.1006/jsvi.2000.3496, http://www.sciencedirect.com/science/article/B6WM3-4576DS3-2N /2/63e7f46640d919db867f8b1e391f4c4c

    Google Scholar 

  127. Wills AG, Bates D, Fleming AJ, Ninness B, Moheimani SOR (2008) Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans Control Syst Technol 16(1):3–12

    Article  Google Scholar 

  128. Yan G, Sun B, Lü Y (2007) Semi-active model predictive control for 3rd generation benchmark problem using smart dampers. Earthq Eng Eng Vib 6:307–315. doi:10.1007/s11803-007-0645-2, http://dx.DOI.org/10.1007/s11803-007-0645-2

  129. Yeh TJ, Ruo-Feng H, Shin-Wen L (2008) An integrated physical model that characterizes creep and hysteresis in piezoelectric actuators. Simul Modell Pract Theory 16(1):93–110. doi:10.1016/j.simpat.2007.11.005, http://www.sciencedirect.com/science/article/pii/S1569190X070

  130. Yongsheng R, Shuangshuang S (2007) Large amplitude flexural vibration of the orthotropic composite plate embedded with shape memory alloy fibers. Chin J Aeronaut 20(5):415–424. doi:10.1016/S1000-9361(07)60063-6, http://www.sciencedirect.com/science/article/B8H0X-4R5R8KJ-5/ 2/dfb4a7094008193f73ce3269cb319dbe

  131. Yuse K, Guyomar D, Kanda M, Seveyrat L, Guiffard B (2010) Development of large-strain and low-powered electro-active polymers (EAPs) using conductive fillers. Sens Actuators A. In Press, Accepted Manuscript. doi:10.1016/j.sna.2010.08.008, http://www.sciencedirect.com/science/article/B6THG-50RVNJK-5/ 2/4002a5f80bb3323c2a1a5af618b089ca

  132. Zhang X, Lu J, Shen Y (2003) Active noise control of flexible linkage mechanism with piezoelectric actuators. Comput Struct 81(20):2045–2051. doi:10.1016/S0045-7949(03)00230-X, http://www.sciencedirect.com/science/article/B6V28-49036KY-2/ 2/418991ffedba1e4e78d0f90c263b465e

    Google Scholar 

  133. Zhou C, Liu X, Li W, Yuan C, Chen G (2010) Structure and electrical properties of Bi\(_0.5\)(Na, K)\(_0.5\)TiO\(_3\)-BiGao\(_3\) lead-free piezoelectric ceramics. Curr Appl Phys 10(1):93–98. doi:10.1016/j.cap.2009.05.004, http://www.sciencedirect.com/science/article/B6W7T-4WBC1T8-1/ 2/8caea987dd9c442dea9061d54474df0e

  134. Zhu C (2005) A disk-type magneto-rheological fluid damper for rotor system vibration control. J Sound Vib 283(3-5):1051–1069. doi:10.1016/j.jsv.2004.06.031, http://www.sciencedirect.com/science/article/B6WM3-4F4H9R2-1/ 2/48abebbf8d1230fcd80eee7d19fe52fa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Takács, G., Rohal’-Ilkiv, B. (2012). Smart Materials in Active Vibration Control . In: Model Predictive Vibration Control. Springer, London. https://doi.org/10.1007/978-1-4471-2333-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2333-0_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2332-3

  • Online ISBN: 978-1-4471-2333-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics