Skip to main content

Myocardial Perfusion Imaging Utilizing Single Photon Emission Computed Tomography Techniques

  • Chapter
  • First Online:
Coronary Artery Disease

Part of the book series: Cardiovascular Medicine ((CVM))

  • 5805 Accesses

Abstract

The major clinical applications of single photon computed tomography (SPECT) myocardial perfusion imaging (MPI) include detection of CAD among patients presenting with symptoms such as chest pain or dyspnea, assessing prognosis in patients with suspected or known CAD, identifying which CAD patients may benefit most from coronary revascularization rather than medical therapy and determining extent of myocardial viability in patients with ischemic cardiomyopathy. Patients with normal SPECT MPI studies have an excellent prognosis with <1 % annual rate of cardiac death or nonfatal myocardial infarction (MI). The annual event rate increases to 6 % in those patients with abnormal scans. Compared to nondiabetic patients, patients with diabetes with abnormal SPECT scans have a higher event rate with female diabetic patients with abnormal scans having a >10 % annual cardiac death or MI rate. Gated SPECT imaging permits the assessment of regional wall motion and measurement of the LV ejection fraction, which adds further prognostic information to the perfusion findings. Stress-only SPECT imaging in low risk patients eliminates the need for rest imaging when the stress scans are normal. This reduces radiation exposure to the patient as well as reduces cost. Vasodilator SPECT imaging is currently most frequently performed in patients unable to exercise adequately using regadenoson, a specific adenosine A2a receptor agonist. SPECT MPI can be combined with CT coronary angiography (CTA) for hybrid multimodality imaging of anatomy and physiology. CTA is most often performed when the SPECT images are non-diagnostic or equivocal. Conversely, if the CTA is done first, SPECT imaging may be useful as the second test in the instance of finding intermediate coronary stenosis (50–70 % narrowing) on CTA. Resting SPECT imaging with either thallium-201 or one of the Tc-99m-labeled perfusion agents (sestambi or tetrofosmin) can be used to determine the extent of viability in dysfunction myocardial segments. The greater the extent of viability in dyssynergic segments, the greater the chance of improved regional and global function after revascularization. Finally, new solid state gamma cameras employing cadmium-zinc-telluride (CZT) crystals with new software algorithms have emerged in recent years. This new technology permits more rapid acquisition of SPECT images at a lower radiation dose to the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klocke FJ, Baird MG Lorell BH, et al.; American College of Cardiology, American Heart Association, American Society for Nuclear Cardiology. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging – executive summary:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Radionuclide Imaging). J Am Coll Cardiol. 2003;42:1318–33.

    Google Scholar 

  2. Jaarsma C, Leiner T, Bekkers SC, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59:1719–28.

    Article  PubMed  Google Scholar 

  3. Smanio PEP, Watson DD, Segella DL, et al. Value of gating technetium-99m-sestamibi single-photon emission computed tomographic imaging. J Am Coll Cardiol. 1997;30:1687–92.

    Article  CAS  PubMed  Google Scholar 

  4. Heller FV, Bateman TM, Johnson LL, et al. Clinical value of attenuation correction in stress-only Tc-99m sestamibi SPECT imaging. J Nucl Cardiol. 2004;11:273–81.

    Article  PubMed  Google Scholar 

  5. Berman DS, Kang Z, Nishina H, et al. Diagnostic accuracy of gated Tc-99m sestamibi stress myocardial perfusion imaging with combined supine and prone acquisitions to detect coronary artery disease in obese and nonobese patients. J Nucl Cardiol. 2006;13:191–201.

    Article  PubMed  Google Scholar 

  6. Depuey EG, Mahmarian JL, Miller TD, et al. Patient-centered imaging. J Nucl Cardiol. 2012;19:185–215.

    Article  PubMed  Google Scholar 

  7. McLaughlin MG, Danias PG. Transient ischemic dilation: a powerful diagnostic and prognostic finding of stress myocardial perfusion imaging. J Nucl Cardiol. 2002;9:663–7.

    Article  PubMed  Google Scholar 

  8. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging. J Am Coll Cardiol. 2010;55:221–30.

    Article  PubMed  Google Scholar 

  9. Duvall WL, Wijetunga MN, Klein TM, et al. The prognosis of a normal stress-only Tc-99m myocardial perfusion imaging. J Nucl Cardiol. 2010;17:370–7.

    Article  PubMed  Google Scholar 

  10. Cerqueira MD, Nguyen P, Staehr P, Underwood SR, Iskandrian AE. Effects of age, gender, obesity and diabetes on the efficacy and safety of the selective A2A agonist regadenoson versus adenosine in myocardial perfusion imaging integrated ADVANCE-MPI trial results. JACC Cardiovasc Imaging. 2008;1:307–16.

    Article  PubMed  Google Scholar 

  11. Mahmarian JJ, Cerqueira MD, Iskandrian AE, et al. Regadenoson induces comparable left ventricular perfusion defects as adenosine: a quantitative analysis from the ADVANCE MPR 2 trial. JACC Cardiovasc Imaging. 2009;2:959–68.

    Article  PubMed  Google Scholar 

  12. Cabrera R, Hussain S, Gurunanthan P, et al. Comparison of hemodynamic and stress testing variables in patients undergoing regadenoson stress myocardial perfusion imaging to regadenoson with adjunctive low-level exercise myocardial perfusion imaging. J Nucl Cardiol. 2013;20:336–43.

    Article  PubMed  Google Scholar 

  13. Gianrossi R, Detrano R, Mulvihill D, et al. Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. Circulation. 1989;80:87–98.

    Article  CAS  PubMed  Google Scholar 

  14. Oddstig J, Hedeer F, Jogi J, et al. Reduced administered activity, reduced acquisition time, and preserved image quality for the new CZT camera. J Nucl Cardiol. 2013;20:38–44.

    Article  PubMed  Google Scholar 

  15. Case JA, Bateman TM. Taking the perfect nuclear image: quality control, acquisition, and processing techniques for cardiac SPECT, PET, and hybrid imaging. J Nucl Cardiol. 2013;20:891–907.

    Article  PubMed  Google Scholar 

  16. Bourque JM, Beller GA. Stress myocardial perfusion imaging for assessing prognosis: an update. J Am Coll Cardiol Img. 2011;4:1305–19.

    Article  Google Scholar 

  17. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11:171–85.

    Article  PubMed  Google Scholar 

  18. Mandour Ali MA, Bourque JM, Allam AH, Beller GA, Watson DD. The prevalence and predictive accuracy of quantitatively defined transient ischemic dilation of the left ventricle on otherwise normal SPECT myocardial perfusion imaging studies. J Nucl Cardiol. 2011;18:1036–43.

    Article  PubMed  Google Scholar 

  19. Navare SM, Mather JF, Shaw LJ, Fowler MS, Heller GV. Comparison of risk stratification with pharmacologic and exercise stress myocardial perfusion imaging: a meta-analysis. J Nucl Cardiol. 2004;11:551–61.

    Article  PubMed  Google Scholar 

  20. Hachamovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation. 1996;93:905–14.

    Article  CAS  PubMed  Google Scholar 

  21. Lima RS, Watson DD, Goode AR, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol. 2003;42:64–70.

    Article  PubMed  Google Scholar 

  22. Sharir T, Germano G, Lewin H, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med. 2001;42:831–7.

    CAS  PubMed  Google Scholar 

  23. Hachamovitch R, Hayes SW, Friedman JD, Cohen J, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  24. Shaw LJ, Wilson PWF, Hachamovitch R, Hendel RC, Borges-Neto S, Berman DS. Improved near-term coronary artery disease risk classification with gated stress myocardial perfusion SPECT. J Am Coll Cardiol Img. 2010;3:1139–48.

    Article  Google Scholar 

  25. Hachamovitch R, Rozanski A, Shaw LJ, et al. Impact of ischemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32:1012–24.

    Article  PubMed  Google Scholar 

  26. Bourque JM, Holland BH, Watson DE, Beller GA. Achieving an exercise workload of ≥10 metabolic equivalents predicts a very low risk of inducible ischemia: does myocardial perfusion imaging have a role? J Am Coll Cardiol. 2009;54:538–45.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bourque JM, Charlton FT, Holland BH, Belyea CM, Watson DD, Beller GA. Prognosis in patients achieving ≥10 METs on exercise stress testing: was SPECT imaging useful? J Nucl Cardiol. 2011;18:230–7.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lee DS, Verocai F, Husain M, et al. Cardiovascular outcomes are predicted by exercise-stress myocardial perfusion imaging: impact on death, myocardial infarction and coronary revascularization procedures. Am Heart J. 2011;161:900–7.

    Article  PubMed  Google Scholar 

  29. Shaw LJ, Mieres JH, Hendel RH, et al. Comparative effectiveness of exercise electrocardiography with or without myocardial perfusion imaging single photon emission tomography in women with suspected coronary artery disease: results from the What is the Optimal Method for Ischemia Evaluation in Women (WOMEN) Trial. Circulation. 2011;124:1239–49.

    Article  PubMed  Google Scholar 

  30. Cercu MSJ, Cerci JJ, Cerci RJ, et al. Myocardial perfusion imaging is a strong predictor of death in women. J Am Coll Cardiol Img. 2011;4:880–8.

    Article  Google Scholar 

  31. Berman DS, Kang X, Slomka PJ, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol. 2007;14:521–8.

    Article  PubMed  Google Scholar 

  32. Bateman TM, Heller GV, McGhie AI, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13:24–33.

    Article  PubMed  Google Scholar 

  33. Greenland P, Alpert JS, Beller GA, et al. ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56:2182–99.

    Article  Google Scholar 

  34. Zellweger MJ, Hachamovitch R, Kang X, et al. Prognostic relevance of symptoms versus objective evidence of coronary artery disease in diabetic patients. Eur Heart J. 2004;25:543–50.

    Article  PubMed  Google Scholar 

  35. Giri S, Shaw LJ, Murthy DR, et al. Impact of diabetes on the risk stratification using stress single-photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation. 2002;105:32–40.

    Article  PubMed  Google Scholar 

  36. Young LH, Wackers FJ, Chyun DA, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD Study: a randomized control trial. JAMA. 2009;301:1547–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Anand DV, Lim E, Hopkins D, et al. Risk stratification in uncomplicated type 2 diabetes: prospective evaluation of the combined use of coronary artery calcium imaging and selective myocardial perfusion scintigraphy. Eur Heart J. 2006;26:713–21.

    Article  Google Scholar 

  38. Frye RL, August P, Brooks MM, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360:2503–15.

    Article  CAS  PubMed  Google Scholar 

  39. Shaw LJ, Cerqueira MD, Brooks MM, et al. Impact of left ventricular function and the extent of ischemia and scar by stress myocardial perfusion imaging on prognosis and therapeutic risk reduction in diabetic patients with coronary artery disease: results from the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. J Nucl Cardiol. 2012;19:658–69.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Hakeem A, Bhatti S, Dillie KS, et al. Predictive value of myocardial perfusion single-photon emission computed tomography and the impact of renal function on cardiac death. Circulation. 2008;118:2540–9.

    Article  PubMed  Google Scholar 

  41. Hakeem A, Bhatti S, Karmali KN, et al. Renal function and risk stratification of diabetic and nondiabetic patients undergoing evaluation for coronary artery disease. J Am Coll Cardiol Img. 2010;3:734–45.

    Article  Google Scholar 

  42. Venkataraman R, Hage F, Dorfman T, et al. Role of myocardial perfusion imaging in patients with end-stage renal disease undergoing coronary angiography. Am J Cardiol. 2008;102:1451–6.

    Article  PubMed  Google Scholar 

  43. Nair SU, Ahlberg AW, Mathur S, Katten DM, Polk DM, Heller GV. The clinical value of single photon emission computed tomography myocardial perfusion imaging in cardiac risk stratification of very elderly patients (≥80 years) with suspected coronary artery disease. J Nucl Cardiol. 2012;19:244–55.

    Article  PubMed  Google Scholar 

  44. Hachamovitch R, Kang X, Amanullah AM, Abidov A, et al. Prognostic implications of myocardial perfusion single-photon emission computed tomography in the elderly. Circulation. 2009;120:2197–206.

    Article  PubMed  Google Scholar 

  45. Chen J, Garcia EV, Bax JJ, et al. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony. J Nucl Cardiol. 2011;18:685–94.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Lauer MS, Lytle B, Pashkow F, Snader CE, Marwick TH. Prediction of death and myocardial infarction by screening with exercise-thallium testing after coronary-artery bypass grafting. Lancet. 1998;351:615–22.

    Article  CAS  PubMed  Google Scholar 

  47. Nye JA, Faber TL. Current state of hybrid imaging: attenuation correction and fusion. J Nucl Cardiol. 2011;18:729–40.

    Article  PubMed  Google Scholar 

  48. Schinkel AFL, Poldermans D, Elhendy A, Bax JJ. Assessment of myocardial viability in patients with heart failure. J Nucl Med. 2007;48:1135–46.

    Article  PubMed  Google Scholar 

  49. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction. A meta-analysis. J Am Coll Cardiol. 2002;39:1151–8.

    Article  PubMed  Google Scholar 

  50. Bonow RO, Maurer G, Lee KL, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. DePuey EG. Advances in SPECT camera software and hardware: currently available and new on the horizon. J Nucl Cardiol. 2012;19:551–81.

    Article  PubMed  Google Scholar 

  52. Daniele S, Nappi C, Acampa W, et al. Incremental prognostic value of coronary flow reserve assessed with single-photon emission computed tomography. J Nucl Cardiol. 2011;18:612–9.

    Article  PubMed  Google Scholar 

  53. Jogiya R, Kozerke S, Morton M, et al. Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. J Am Coll Cardiol. 2012;60:756–65.

    Article  PubMed  Google Scholar 

  54. Sharma A, Arbab-Zadeh A. Assessment of coronary heart disease by CT angiography: current and evolving applications. J Nucl Cardiol. 2012;19:796–806.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Beller MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Beller, G.A. (2015). Myocardial Perfusion Imaging Utilizing Single Photon Emission Computed Tomography Techniques. In: Willerson, J., Holmes, Jr., D. (eds) Coronary Artery Disease. Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-2828-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2828-1_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2827-4

  • Online ISBN: 978-1-4471-2828-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics