Skip to main content

Diabetes and Heart Disease

  • Chapter
  • First Online:
Coronary Artery Disease

Part of the book series: Cardiovascular Medicine ((CVM))

  • 5972 Accesses

Abstract

Diabetes, insulin resistance, and heart disease are extraordinarily common. Furthermore, they are inextricably linked. The nature, cause-consequence connections, pathogenetic features, and diagnostic and therapeutic implications are the focus of this chapter. The seminal forms of heart disease, hypertensive heart disease, heart failure, and coronary artery disease, are those most ineluctably conflated with diabetes and insulin resistance. Numerous pathogenetic links are responsible. Though prevention and therapy of each are concordant with principles of management applicable to the same disorders in the general population, specific therapeutic considerations apply in patients with insulin resistance. Thus, knowledge of insulin resistance and diabetes is essential in informing treatment of heart disease. The panoply of therapeutics now available for treatment of diabetes provides powerful opportunities for amelioration of cardiovascular sequelae. Accordingly, the truly effective physician must function as both a diabetologist and a cardiologist to maximize the capacity to confer benefit to patients served. This chapter is designed to provide the information needed to facilitate achieving the necessary duality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A1C:

Hemoglobin A1c

ACE:

Angiotensin-converting enzyme

ACS:

Acute coronary syndrome

AGE:

Advanced glycation end product

ARB:

Angiotensin II receptor blocker

CABG:

Coronary artery bypass grafting

CAD:

Coronary artery disease

CAN:

Cardiovascular autonomic neuropathy

CDE:

Certified diabetes educator

CPT-1:

Carnitine palmitoyltransferase-1

CRP:

C-reactive protein

CVD:

Cerebral vascular disease

DAG:

Diacylglycerol

FA:

Fatty acid(s)

FFA:

Free fatty acid(s)

GLUT4:

Glucose transporter 4

HDL:

High density lipoprotein

HGO:

Hepatic glucose output

IDL:

Intermediate density lipoprotein

IP:

Insulin-providing

IS:

Insulin-sensitizing

LADA:

Latent autoimmune diabetes in adults

LCAC:

Long-chain acylcarnitine

LDL:

Low density lipoprotein

LPL:

Lipoprotein lipase

MI:

Myocardial infarction

MODY:

Maturity onset diabetes of the young

PAD:

Peripheral arterial disease

PAI-1:

Plasminogen activator inhibitor-1

PCI:

Percutaneous coronary intervention

PKC:

Protein kinase C

RAAS:

Renin-angiotensin-aldosterone system

RAGE:

Receptor for advanced glycation end products

TZD:

Thiazolidinedione

UPA:

Urokinase-type plasminogen activator

VLDL:

Very low density lipoprotein

References

  1. Dungan KM, Buse JB, Largay J, Kelly MM, Button EA, Kato S, et al. 1,5-anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care. 2006;29(6):1214–9.

    CAS  PubMed  Google Scholar 

  2. NDIC. National Diabetes Information Clearinghouse. Diagnosis of diabetes. 2012. Available from: http://diabetes.niddk.nih.gov/dm/pubs/diagnosis/. Cited 22 Apr 2012.

  3. American Diabetes Association. Standards of medical care in diabetes – 2012. Diabetes Care. 2012;35 Suppl 1:S11–63.

    Google Scholar 

  4. National Diabetes Fact Sheet: National estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2011. Available from: http://www.cdc.gov/diabetes/pubs/factsheet11.htm. Cited 23 Apr 2012.

  5. Himsworth HP. Management of diabetes mellitus. Br Med J. 1936;2(3941):137–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. American Diabetes Association. Standards of medical care in diabetes – 2010. Diabetes Care. 2010;33 Suppl 1:S11–61.

    Google Scholar 

  7. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.

    CAS  PubMed  Google Scholar 

  8. Reaven GM. Insulin resistance: from bit player to centre stage. CMAJ. 2011;183(5):536–7.

    PubMed Central  PubMed  Google Scholar 

  9. DeFronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Rorsman P, Eliasson L, Renstrom E, Gromada J, Barg S, Gopel S. The cell physiology of biphasic insulin secretion. News Physiol Sci. 2000;15:72–7.

    CAS  PubMed  Google Scholar 

  11. Cefalu WT. Insulin resistance: cellular and clinical concepts. Exp Biol Med. 2001;226(1):13–26.

    CAS  Google Scholar 

  12. Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med. 2001;345(13):971–80.

    CAS  PubMed  Google Scholar 

  13. Djekic K, Mouzeyan A, Ipp E. Latent autoimmune diabetes of adults is phenotypically similar to type 1 diabetes in a minority population. J Clin Endocrinol Metab. 2012;97(3):E409–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;55(6):1577–96.

    CAS  Google Scholar 

  15. Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med. 2008;14(11–12):741–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes. 2012;19(2):81–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106(4):473–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6.

    CAS  PubMed  Google Scholar 

  19. Vague J, Vague P, Tramoni M, Vialettes B, Mercier P. Obesity and diabetes. Acta Diabetol Lat. 1980;17(2):87–99.

    CAS  PubMed  Google Scholar 

  20. Abbasi F, Chu JW, Lamendola C, McLaughlin T, Hayden J, Reaven GM, et al. Discrimination between obesity and insulin resistance in the relationship with adiponectin. Diabetes. 2004;53(3):585–90.

    CAS  PubMed  Google Scholar 

  21. Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51(7):2005–11.

    CAS  PubMed  Google Scholar 

  22. Boden G, Cheung P, Stein TP, Kresge K, Mozzoli M. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab. 2002;283(1):E12–9.

    CAS  PubMed  Google Scholar 

  23. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423(6939):550–5.

    CAS  PubMed  Google Scholar 

  24. Hunter SJ, Garvey WT. Insulin action and insulin resistance: diseases involving defects in insulin receptors, signal transduction, and the glucose transport effector system. Am J Med. 1998;105(4):331–45.

    CAS  PubMed  Google Scholar 

  25. Bouzakri K, Austin R, Rune A, Lassman ME, Garcia-Roves PM, Berger JP, et al. Malonyl CoenzymeA decarboxylase regulates lipid and glucose metabolism in human skeletal muscle. Diabetes. 2008;57(6):1508–16.

    CAS  PubMed  Google Scholar 

  26. Lewis GF, Steiner G. Acute effects of insulin in the control of VLDL production in humans. Implications for the insulin-resistant state. Diabetes Care. 1996;19(4):390–3.

    CAS  PubMed  Google Scholar 

  27. King MW. Oxidation of fatty acids. TheMedicalBiochemistryPage.org, LLC; 2012; Available from: http://www.themedicalbiochemistrypage.org/fatty-acid-oxidation.php. Cited 23 Apr 12.

  28. Kendall DM, Sobel BE, Coulston AM, Peters Harmel AL, McLean BK, Peragallo-Dittko V, et al. The insulin resistance syndrome and coronary artery disease. Coron Artery Dis. 2003;14(4):335–48.

    PubMed  Google Scholar 

  29. Petersen KF, Shulman GI. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardiol. 2002;90(5A):11G–8.

    CAS  PubMed  Google Scholar 

  30. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med. 1990;113(12):909–15.

    CAS  PubMed  Google Scholar 

  32. Boden G. Fatty acids and insulin resistance. Diabetes Care. 1996;19(4):394–5.

    CAS  PubMed  Google Scholar 

  33. Garg A. Insulin resistance in the pathogenesis of dyslipidemia. Diabetes Care. 1996;19(4):387–9.

    CAS  PubMed  Google Scholar 

  34. Scow RO, Blanchette-Mackie EJ. Endothelium, the dynamic interface in cardiac lipid transport. Mol Cell Biochem. 1992;116(1–2):181–91.

    CAS  PubMed  Google Scholar 

  35. Ehrmann DA, Schneider DJ, Sobel BE, Cavaghan MK, Imperial J, Rosenfield RL, et al. Troglitazone improves defects in insulin action, insulin secretion, ovarian steroidogenesis, and fibrinolysis in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1997;82(7):2108–16.

    CAS  PubMed  Google Scholar 

  36. Li M, Youngren JF, Dunaif A, Goldfine ID, Maddux BA, Zhang BB, et al. Decreased insulin receptor (IR) autophosphorylation in fibroblasts from patients with PCOS: effects of serine kinase inhibitors and IR activators. J Clin Endocrinol Metab. 2002;87(9):4088–93.

    CAS  PubMed  Google Scholar 

  37. Trost S, Pratley R, Sobel B. Impaired fibrinolysis and risk for cardiovascular disease in the metabolic syndrome and type 2 diabetes. Curr Diab Rep. 2006;6(1):47–54.

    CAS  PubMed  Google Scholar 

  38. Despres JP, Lamarche B, Mauriege P, Cantin B, Dagenais GR, Moorjani S, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med. 1996;334(15):952–7.

    CAS  PubMed  Google Scholar 

  39. Ninomiya JK, L’Italien G, Criqui MH, Whyte JL, Gamst A, Chen RS. Association of the metabolic syndrome with history of myocardial infarction and stroke in the Third National Health and Nutrition Examination Survey. Circulation. 2004;109(1):42–6.

    PubMed  Google Scholar 

  40. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–32.

    Google Scholar 

  41. Rachas A, Raffaitin C, Barberger-Gateau P, Helmer C, Ritchie K, Tzourio C, et al. Clinical usefulness of the metabolic syndrome for the risk of coronary heart disease does not exceed the sum of its individual components in older men and women. The Three-City (3C) Study. Heart. 2012;98(8):650–5.

    PubMed Central  PubMed  Google Scholar 

  42. Haffner SM. Relationship of metabolic risk factors and development of cardiovascular disease and diabetes. Obesity. 2006;14 Suppl 3:121S–7.

    PubMed  Google Scholar 

  43. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24(4):683–9.

    CAS  PubMed  Google Scholar 

  44. Wassink AM, Van Der Graaf Y, Soedamah-Muthu SS, Spiering W, Visseren F. Metabolic syndrome and incidence of type 2 diabetes in patients with manifest vascular disease. Diab Vasc Dis Res. 2008;5(2):114–22.

    PubMed  Google Scholar 

  45. Hanley AJ, Festa A, D’Agostino Jr RB, Wagenknecht LE, Savage PJ, Tracy RP, et al. Metabolic and inflammation variable clusters and prediction of type 2 diabetes: factor analysis using directly measured insulin sensitivity. Diabetes. 2004;53(7):1773–81.

    CAS  PubMed  Google Scholar 

  46. Reaven GM. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med. 1993;44:121–31.

    CAS  PubMed  Google Scholar 

  47. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–94.

    CAS  PubMed  Google Scholar 

  48. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004;24(1):29–33.

    CAS  PubMed  Google Scholar 

  49. Sobel BE. Fibrinolysis and diabetes. Front Biosci. 2003;8:d1085–92.

    CAS  PubMed  Google Scholar 

  50. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.

    CAS  PubMed  Google Scholar 

  51. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2010;122(25):e584–636.

    PubMed  Google Scholar 

  52. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16(2):434–44.

    CAS  PubMed  Google Scholar 

  53. Malmberg K, Yusuf S, Gerstein HC, Brown J, Zhao F, Hunt D, et al. Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation. 2000;102(9):1014–9.

    CAS  PubMed  Google Scholar 

  54. Fonseca VA. Risk factors for coronary heart disease in diabetes. Ann Intern Med. 2000;133(2):154–6.

    CAS  PubMed  Google Scholar 

  55. Saito I, Folsom AR, Brancati FL, Duncan BB, Chambless LE, McGovern PG. Nontraditional risk factors for coronary heart disease incidence among persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Intern Med. 2000;133(2):81–91.

    CAS  PubMed  Google Scholar 

  56. Howard G, O’Leary DH, Zaccaro D, Haffner S, Rewers M, Hamman R, et al. Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Circulation. 1996;93(10):1809–17.

    CAS  PubMed  Google Scholar 

  57. Kuusisto J, Mykkanen L, Pyorala K, Laakso M. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes. 1994;43(8):960–7.

    CAS  PubMed  Google Scholar 

  58. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93.

    PubMed  Google Scholar 

  59. Pyorala K, Pedersen TR, Kjekshus J, Faergeman O, Olsson AG, Thorgeirsson G. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. A subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care. 1997;20(4):614–20.

    CAS  PubMed  Google Scholar 

  60. Suzuki T, Katz R, Jenny NS, Zakai NA, LeWinter MM, Barzilay JI, et al. Metabolic syndrome, inflammation, and incident heart failure in the elderly: the cardiovascular health study. Circ Heart Fail. 2008;1(4):242–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Braunwald E. Shattuck lecture – cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med. 1997;337(19):1360–9.

    CAS  PubMed  Google Scholar 

  62. Ammar Jr RF, Gutterman DD, Brooks LA, Dellsperger KC. Free radicals mediate endothelial dysfunction of coronary arterioles in diabetes. Cardiovasc Res. 2000;47(3):595–601.

    CAS  PubMed  Google Scholar 

  63. Laight DW, Carrier MJ, Anggard EE. Antioxidants, diabetes and endothelial dysfunction. Cardiovasc Res. 2000;47(3):457–64.

    CAS  PubMed  Google Scholar 

  64. Juan CC, Shen YW, Chien Y, Lin YJ, Chang SF, Ho LT. Insulin infusion induces endothelin-1-dependent hypertension in rats. Am J Physiol Endocrinol Metab. 2004;287(5):E948–54.

    CAS  PubMed  Google Scholar 

  65. Reaven GM. Relationships among insulin resistance, type 2 diabetes, essential hypertension, and cardiovascular disease: similarities and differences. J Clin Hypertens. 2011;13(4):238–43.

    CAS  Google Scholar 

  66. Garg R, Adler GK. Role of mineralocorticoid receptor in insulin resistance. Curr Opin Endocrinol Diabetes Obes. 2012;19(3):168–75.

    CAS  PubMed  Google Scholar 

  67. Chapman MJ, Sposito AC. Hypertension and dyslipidaemia in obesity and insulin resistance: pathophysiology, impact on atherosclerotic disease and pharmacotherapy. Pharmacol Ther. 2008;117(3):354–73.

    CAS  PubMed  Google Scholar 

  68. VanBuren P, LeWinter MM. Heart failure as a consequence of diabetic cardiomyopathy. In: Mann DL, editor. Heart failure: a companion to Braunwald’s heart disease. St. Louis: Elsevier; 2011. p. 408–18.

    Google Scholar 

  69. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557–62.

    CAS  PubMed  Google Scholar 

  70. Nichols GA, Hillier TA, Erbey JR, Brown JB. Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care. 2001;24(9):1614–9.

    CAS  PubMed  Google Scholar 

  71. Norhammar A, Malmberg K, Diderholm E, Lagerqvist B, Lindahl B, Ryden L, et al. Diabetes mellitus: the major risk factor in unstable coronary artery disease even after consideration of the extent of coronary artery disease and benefits of revascularization. J Am Coll Cardiol. 2004;43(4):585–91.

    PubMed  Google Scholar 

  72. Lewis EF, Moye LA, Rouleau JL, Sacks FM, Arnold JM, Warnica JW, et al. Predictors of late development of heart failure in stable survivors of myocardial infarction: the CARE study. J Am Coll Cardiol. 2003;42(8):1446–53.

    PubMed  Google Scholar 

  73. Swan JW, Anker SD, Walton C, Godsland IF, Clark AL, Leyva F, et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol. 1997;30(2):527–32.

    CAS  PubMed  Google Scholar 

  74. Perez JE, McGill JB, Santiago JV, Schechtman KB, Waggoner AD, Miller JG, et al. Abnormal myocardial acoustic properties in diabetic patients and their correlation with the severity of disease. J Am Coll Cardiol. 1992;19(6):1154–62.

    CAS  PubMed  Google Scholar 

  75. Di Bello V, Talarico L, Picano E, Di Muro C, Landini L, Paterni M, et al. Increased echodensity of myocardial wall in the diabetic heart: an ultrasound tissue characterization study. J Am Coll Cardiol. 1995;25(6):1408–15.

    PubMed  Google Scholar 

  76. Jaffe AS, Spadaro JJ, Schechtman K, Roberts R, Geltman EM, Sobel BE. Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. Am Heart J. 1984;108(1):31–7.

    CAS  PubMed  Google Scholar 

  77. Sobel BE, Schneider DJ, Lee YH, Pratley RE. Insulin resistance increases PAI-1 in the heart. Biochem Biophys Res Commun. 2006;346(1):102–7.

    CAS  PubMed  Google Scholar 

  78. Zaman AK, French CJ, Schneider DJ, Sobel BE. A profibrotic effect of plasminogen activator inhibitor type-1 (PAI-1) in the heart. Exp Biol Med. 2009;234(3):246–54.

    CAS  Google Scholar 

  79. Zaman AK, Fujii S, Sawa H, Goto D, Ishimori N, Watano K, et al. Angiotensin-converting enzyme inhibition attenuates hypofibrinolysis and reduces cardiac perivascular fibrosis in genetically obese diabetic mice. Circulation. 2001;103(25):3123–8.

    CAS  PubMed  Google Scholar 

  80. Zaman AK, Fujii S, Goto D, Furumoto T, Mishima T, Nakai Y, et al. Salutary effects of attenuation of angiotensin II on coronary perivascular fibrosis associated with insulin resistance and obesity. J Mol Cell Cardiol. 2004;37(2):525–35.

    CAS  PubMed  Google Scholar 

  81. Weber KT. Aldosterone in congestive heart failure. N Engl J Med. 2001;345(23):1689–97.

    CAS  PubMed  Google Scholar 

  82. Rossignol P, Menard J, Fay R, Gustafsson F, Pitt B, Zannad F. Eplerenone survival benefits in heart failure patients post-myocardial infarction are independent from its diuretic and potassium-sparing effects. Insights from an EPHESUS (Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study) substudy. J Am Coll Cardiol. 2011;58(19):1958–66.

    CAS  PubMed  Google Scholar 

  83. Pitt B, Bakris G, Ruilope LM, DiCarlo L, Mukherjee R. Serum potassium and clinical outcomes in the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS). Circulation. 2008;118(16):1643–50.

    CAS  PubMed  Google Scholar 

  84. Maser RE, Mitchell BD, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care. 2003;26(6):1895–901.

    PubMed  Google Scholar 

  85. Kahn JK, Sisson JC, Vinik AI. Prediction of sudden cardiac death in diabetic autonomic neuropathy. J Nucl Med. 1988;29(9):1605–6.

    CAS  PubMed  Google Scholar 

  86. Cryer PE. Hypoglycemia-associated autonomic failure in diabetes. Am J Physiol Endocrinol Metab. 2001;281(6):E1115–21.

    CAS  PubMed  Google Scholar 

  87. Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115(3):387–97.

    PubMed  Google Scholar 

  88. Valensi P, Sachs RN, Harfouche B, Lormeau B, Paries J, Cosson E, et al. Predictive value of cardiac autonomic neuropathy in diabetic patients with or without silent myocardial ischemia. Diabetes Care. 2001;24(2):339–43.

    CAS  PubMed  Google Scholar 

  89. Walsh AC, Moyes A. Intractable congestive heart failure successfully treated with Southey tubes. Can Med Assoc J. 1964;90:1375–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Chatterjee K, Parmley WW, Swan HJ, Berman G, Forrester J, Marcus HS. Beneficial effects of vasodilator agents in severe mitral regurgitation due to dysfunction of subvalvar apparatus. Circulation. 1973;48(4):684–90.

    CAS  PubMed  Google Scholar 

  91. Francis GS, Cohn JN. Heart failure: mechanisms of cardiac and vascular dysfunction and the rationale for pharmacologic intervention. FASEB J. 1990;4(13):3068–75.

    CAS  PubMed  Google Scholar 

  92. Cohn JN. Rationale for angiotensin II receptor blocker therapy in chronic heart failure. J Renin Angiotensin Aldosterone Syst. 2000;1(2 Suppl):S38–40.

    CAS  PubMed  Google Scholar 

  93. Trial Study Group CONSENSUS. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316(23):1429–35.

    Google Scholar 

  94. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325(5):293–302.

    Google Scholar 

  95. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown Jr EJ, Cuddy TE, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327(10):669–77.

    Google Scholar 

  96. AIRE Study Group. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) study investigators. Lancet. 1993;342(8875):821–8.

    Google Scholar 

  97. Hjalmarson A, Waagstein F. The role of beta-blockers in the treatment of cardiomyopathy and ischaemic heart failure. Drugs. 1994;47 Suppl 4:31–9.

    PubMed  Google Scholar 

  98. Swedberg K, Hjalmarson A, Waagstein F, Wallentin I. Prolongation of survival in congestive cardiomyopathy by beta-receptor blockade. Lancet. 1979;1(8131):1374–6.

    CAS  PubMed  Google Scholar 

  99. McMurray J, Pfeffer MA. New therapeutic options in congestive heart failure: Part I. Circulation. 2002;105(17):2099–106.

    PubMed  Google Scholar 

  100. Bakris GL, Fonseca V, Katholi RE, McGill JB, Messerli FH, Phillips RA, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA. 2004;292(18):2227–36.

    CAS  PubMed  Google Scholar 

  101. Ramasamy R, Schmidt AM. Receptor for advanced glycation end products (RAGE) and implications for the pathophysiology of heart failure. Curr Heart Fail Rep. 2012;9(2):107–16.

    CAS  PubMed  Google Scholar 

  102. Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LM. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol. 2011;50(6):1035–43.

    CAS  PubMed  Google Scholar 

  103. Morrow DA, Givertz MM. Modulation of myocardial energetics: emerging evidence for a therapeutic target in cardiovascular disease. Circulation. 2005;112(21):3218–21.

    PubMed  Google Scholar 

  104. Hermann HP, Arp J, Pieske B, Kogler H, Baron S, Janssen PM, et al. Improved systolic and diastolic myocardial function with intracoronary pyruvate in patients with congestive heart failure. Eur J Heart Fail. 2004;6(2):213–8.

    CAS  PubMed  Google Scholar 

  105. Lebovitz HE. Glycemic control and chronic diabetes complications. In: Lebovitz HE, editor. Therapy for diabetes mellitus and related disorders. 4th ed. Alexandria: American Diabetes Association; 2004. p. 241–6.

    Google Scholar 

  106. Shepherd J, Barter P, Carmena R, Deedwania P, Fruchart JC, Haffner S, et al. Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and diabetes: the Treating to New Targets (TNT) study. Diabetes Care. 2006;29(6):1220–6.

    CAS  PubMed  Google Scholar 

  107. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Davies MJ. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation. 1996;94(8):2013–20.

    CAS  PubMed  Google Scholar 

  109. James TN. Small arteries of the heart. Circulation. 1977;56(1):2–14.

    CAS  PubMed  Google Scholar 

  110. Wu TG, Wang L. Angiographic characteristics of the coronary artery in patients with type 2 diabetes. Exp Clin Cardiol. 2002;7(4):199–200.

    PubMed Central  PubMed  Google Scholar 

  111. Geer JC, Bishop SP, James TN. Pathology of small intramural coronary arteries. Pathol Annu. 1979;14(Pt 2):125–54.

    PubMed  Google Scholar 

  112. Sobel BE. The potential influence of insulin and plasminogen activator inhibitor type 1 on the formation of vulnerable atherosclerotic plaques associated with type 2 diabetes. Proc Assoc Am Physicians. 1999;111(4):313–8.

    CAS  PubMed  Google Scholar 

  113. Sobel BE, Taatjes DJ, Schneider DJ. Intramural plasminogen activator inhibitor type-1 and coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2003;23(11):1979–89.

    CAS  PubMed  Google Scholar 

  114. Sobel BE. Coronary revascularization in patients with type 2 diabetes and results of the BARI 2D trial. Coron Artery Dis. 2010;21(3):189–98.

    PubMed  Google Scholar 

  115. Madsen MM, Busk M, Sondergaard HM, Bottcher M, Mortensen LS, Andersen HR, et al. Does diabetes mellitus abolish the beneficial effect of primary coronary angioplasty on long-term risk of reinfarction after acute ST-segment elevation myocardial infarction compared with fibrinolysis? (A DANAMI-2 substudy). Am J Cardiol. 2005;96(11):1469–75.

    PubMed  Google Scholar 

  116. Jensen LO, Maeng M, Thayssen P, Tilsted HH, Terkelsen CJ, Kaltoft A, et al. Influence of diabetes mellitus on clinical outcomes following primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. Am J Cardiol. 2012;109(5):629–35.

    PubMed  Google Scholar 

  117. Shahian DM, O’Brien SM, Sheng S, Grover FL, Mayer JE, Jacobs JP, et al. Predictors of long-term survival after coronary artery bypass grafting surgery: Results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database (The ASCERT Study). Circulation. 2012;125(12):1491–500.

    PubMed Central  PubMed  Google Scholar 

  118. Weintraub WS, Grau-Sepulveda MV, Weiss JM, Delong ER, Peterson ED, O’Brien SM, et al. Prediction of long-term mortality after percutaneous coronary intervention in older adults: results from the national cardiovascular data registry. Circulation. 2012;125(12):1501–10.

    PubMed Central  PubMed  Google Scholar 

  119. Zhao XQ, Kosinski AS, Barnhart HX, Superko HR, King 3rd SB. Prediction of native coronary artery disease progression following PTCA or CABG in the Emory Angioplasty Versus Surgery Trial. Med Sci Monit. 2003;9(2):CR48–54.

    PubMed  Google Scholar 

  120. Mak KH, Moliterno DJ, Granger CB, Miller DP, White HD, Wilcox RG, et al. Influence of diabetes mellitus on clinical outcome in the thrombolytic era of acute myocardial infarction. GUSTO-I Investigators Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries. J Am Coll Cardiol. 1997;30(1):171–9.

    CAS  PubMed  Google Scholar 

  121. Mazeika P, Prasad N, Bui S, Seidelin PH. Predictors of angiographic restenosis after coronary intervention in patients with diabetes mellitus. Am Heart J. 2003;145(6):1013–21.

    PubMed  Google Scholar 

  122. Sobel BE. Acceleration of restenosis by diabetes: pathogenetic implications. Circulation. 2001;103(9):1185–7.

    CAS  PubMed  Google Scholar 

  123. Van Belle E, Ketelers R, Bauters C, Perie M, Abolmaali K, Richard F, et al. Patency of percutaneous transluminal coronary angioplasty sites at 6-month angiographic follow-up: a key determinant of survival in diabetics after coronary balloon angioplasty. Circulation. 2001;103(9):1218–24.

    PubMed  Google Scholar 

  124. Kugelmass AD, Cohen DJ, Houser F, Mack M, Simon AW, Battaglia SL, et al. The influence of diabetes mellitus on the practice and outcomes of percutaneous coronary intervention in the community: a report from the HCA database. J Invasive Cardiol. 2003;15(10):568–74.

    PubMed  Google Scholar 

  125. Weintraub WS, Stein B, Kosinski A, Douglas Jr JS, Ghazzal ZM, Jones EL, et al. Outcome of coronary bypass surgery versus coronary angioplasty in diabetic patients with multivessel coronary artery disease. J Am Coll Cardiol. 1998;31(1):10–9.

    CAS  PubMed  Google Scholar 

  126. Kasai T, Miyauchi K, Kurata T, Okazaki S, Kajimoto K, Kubota N, et al. Impact of metabolic syndrome among patients with and without diabetes mellitus on long-term outcomes after percutaneous coronary intervention. Hypertens Res. 2008;31(2):235–41.

    PubMed  Google Scholar 

  127. Yasar AS, Bilen E, Bilge M, Arslantas U, Karakas F. Impact of metabolic syndrome on coronary patency after thrombolytic therapy for acute myocardial infarction. Coron Artery Dis. 2009;20(6):387–91.

    PubMed  Google Scholar 

  128. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288(21):2709–16.

    PubMed  Google Scholar 

  129. Haffner SM, Mykkanen L, Festa A, Burke JP, Stern MP. Insulin-resistant prediabetic subjects have more atherogenic risk factors than insulin-sensitive prediabetic subjects: implications for preventing coronary heart disease during the prediabetic state. Circulation. 2000;101(9):975–80.

    CAS  PubMed  Google Scholar 

  130. DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988;37(6):667–87.

    CAS  PubMed  Google Scholar 

  131. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53.

    Google Scholar 

  132. National Diabetes Fact Sheet: National estimates and general information on diabetes and prediabetes in the United States, 2005. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2005: Available from: http://www.cdc.gov/diabetes/pubs/factsheet05.htm. Cited 23 Apr 2012.

  133. Schneider DJ, Sobel BE. Diabetes and thrombosis. In: Johnstone MT, Veves A, editors. Contemporary cardiology: diabetes and cardiovascular disease. 2nd ed. Totowa: Humana Press, Inc; 2005. p. p. 107–28.

    Google Scholar 

  134. Schneider DJ, Sobel BE. Augmentation of synthesis of plasminogen activator inhibitor type 1 by insulin and insulin-like growth factor type I: implications for vascular disease in hyperinsulinemic states. Proc Natl Acad Sci U S A. 1991;88(22):9959–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Fujii S, Sobel BE. Determinants of induction of increased synthesis of plasminogen activator inhibitor type-1 in human endothelial cells by t-PA. Thromb Haemost. 1992;67(2):233–8.

    CAS  PubMed  Google Scholar 

  136. Schneider DJ, Nordt TK, Sobel BE. Stimulation by proinsulin of expression of plasminogen activator inhibitor type-I in endothelial cells. Diabetes. 1992;41(7):890–5.

    CAS  PubMed  Google Scholar 

  137. Nordt TK, Schneider DJ, Sobel BE. Augmentation of the synthesis of plasminogen activator inhibitor type-1 by precursors of insulin. A potential risk factor for vascular disease. Circulation. 1994;89(1):321–30.

    CAS  PubMed  Google Scholar 

  138. Nordt TK, Klassen KJ, Schneider DJ, Sobel BE. Augmentation of synthesis of plasminogen activator inhibitor type-1 in arterial endothelial cells by glucose and its implications for local fibrinolysis. Arterioscler Thromb. 1993;13(12):1822–8.

    CAS  PubMed  Google Scholar 

  139. McGill JB, Schneider DJ, Arfken CL, Lucore CL, Sobel BE. Factors responsible for impaired fibrinolysis in obese subjects and NIDDM patients. Diabetes. 1994;43(1):104–9.

    CAS  PubMed  Google Scholar 

  140. Nordt TK, Sawa H, Fujii S, Sobel BE. Induction of plasminogen activator inhibitor type-1 (PAI-1) by proinsulin and insulin in vivo. Circulation. 1995;91(3):764–70.

    CAS  PubMed  Google Scholar 

  141. Nordt TK, Sawa H, Fujii S, Sobel BE. Hyperinsulinemia increases plasma activity of PAI-1 in vivo independently of an acute phase reaction. Fibrinolysis Proteolysis. 1997;11 Suppl 1:51–4.

    CAS  Google Scholar 

  142. Nordt TK, Sawa H, Fujii S, Bode C, Sobel BE. Augmentation of arterial endothelial cell expression of the plasminogen activator inhibitor type-1 (PAI-1) gene by proinsulin and insulin in vivo. J Mol Cell Cardiol. 1998;30(8):1535–43.

    CAS  PubMed  Google Scholar 

  143. Schneider DJ, Sobel BE. Synergistic augmentation of expression of plasminogen activator inhibitor type-1 induced by insulin, very-low-density lipoproteins, and fatty acids. Coron Artery Dis. 1996;7(11):813–7.

    CAS  PubMed  Google Scholar 

  144. Sobel BE, Woodcock-Mitchell J, Schneider DJ, Holt RE, Marutsuka K, Gold H. Increased plasminogen activator inhibitor type 1 in coronary artery atherectomy specimens from type 2 diabetic compared with nondiabetic patients: a potential factor predisposing to thrombosis and its persistence. Circulation. 1998;97(22):2213–21.

    CAS  PubMed  Google Scholar 

  145. Nordt TK, Bode C, Sobel BE. Stimulation in vivo of expression of intra-abdominal adipose tissue plasminogen activator inhibitor Type I by proinsulin. Diabetologia. 2001;44(9):1121–4.

    CAS  PubMed  Google Scholar 

  146. Sobel BE, Schneider DJ. Platelet function, coagulopathy, and impaired fibrinolysis in diabetes. Cardiol Clin. 2004;22(4):511–26.

    PubMed  Google Scholar 

  147. Fattal PG, Schneider DJ, Sobel BE, Billadello JJ. Post-transcriptional regulation of expression of plasminogen activator inhibitor type 1 mRNA by insulin and insulin-like growth factor 1. J Biol Chem. 1992;267(18):12412–5.

    CAS  PubMed  Google Scholar 

  148. Vague P, Juhan-Vague I, Aillaud MF, Badier C, Viard R, Alessi MC, et al. Correlation between blood fibrinolytic activity, plasminogen activator inhibitor level, plasma insulin level, and relative body weight in normal and obese subjects. Metabolism. 1986;35(3):250–3.

    CAS  PubMed  Google Scholar 

  149. Alessi MC, Juhan-Vague I, Kooistra T, Declerck PJ, Collen D. Insulin stimulates the synthesis of plasminogen activator inhibitor 1 by the human hepatocellular cell line Hep G2. Thromb Haemost. 1988;60(3):491–4.

    CAS  PubMed  Google Scholar 

  150. Juhan-Vague I, Vague P, Alessi MC, Badier C, Valadier J, Aillaud MF, et al. Relationships between plasma insulin triglyceride, body mass index, and plasminogen activator inhibitor 1. Diabete Metab. 1987;13(3 Pt 2):331–6.

    CAS  PubMed  Google Scholar 

  151. Calles-Escandon J, Mirza SA, Sobel BE, Schneider DJ. Induction of hyperinsulinemia combined with hyperglycemia and hypertriglyceridemia increases plasminogen activator inhibitor 1 in blood in normal human subjects. Diabetes. 1998;47(2):290–3.

    CAS  PubMed  Google Scholar 

  152. Sobel BE, Hardison RM, Genuth S, Brooks MM, McBane 3rd RD, Schneider DJ, et al. Profibrinolytic, antithrombotic, and antiinflammatory effects of an insulin-sensitizing strategy in patients in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. Circulation. 2011;124(6):695–703.

    PubMed Central  CAS  PubMed  Google Scholar 

  153. BARI Investigators. Seven-year outcome in the Bypass Angioplasty Revascularization Investigation (BARI) by treatment and diabetic status. J Am Coll Cardiol. 2000;35(5):1122–9.

    Google Scholar 

  154. Sobel BE. Potentiation of vasculopathy by insulin: implications from an NHLBI clinical alert. Circulation. 1996;93(9):1613–5.

    CAS  PubMed  Google Scholar 

  155. Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, MacGregor JM, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360(24):2503–15.

    CAS  PubMed  Google Scholar 

  156. Adler AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, Cull CA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ. 2000;321(7258):412–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  157. King 3rd SB. The Emory Angioplasty vs Surgery Trial (EAST). Semin Interv Cardiol. 1999;4(4):185–90.

    PubMed  Google Scholar 

  158. BARI Investigators. Influence of diabetes on 5-year mortality and morbidity in a randomized trial comparing CABG and PTCA in patients with multivessel disease: the Bypass Angioplasty Revascularization Investigation (BARI). Circulation. 1997;96(6):1761–9.

    Google Scholar 

  159. Detre KM, Guo P, Holubkov R, Califf RM, Sopko G, Bach R, et al. Coronary revascularization in diabetic patients: a comparison of the randomized and observational components of the Bypass Angioplasty Revascularization Investigation (BARI). Circulation. 1999;99(5):633–40.

    CAS  PubMed  Google Scholar 

  160. Hlatky MA, Boothroyd DB, Bravata DM, Boersma E, Booth J, Brooks MM, et al. Coronary artery bypass surgery compared with percutaneous coronary interventions for multivessel disease: a collaborative analysis of individual patient data from ten randomised trials. Lancet. 2009;373(9670):1190–7.

    PubMed  Google Scholar 

  161. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. The Bypass Angioplasty Revascularization Investigation (BARI) investigators. N Engl J Med. 1996;335(4):217–25.

    Google Scholar 

  162. Magro M, Nauta ST, Simsek C, Boersma E, van der Heide E, Regar E, et al. Usefulness of the SYNTAX score to predict “no reflow” in patients treated with primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Am J Cardiol. 2012;109(5):601–6.

    PubMed  Google Scholar 

  163. Sobel BE. A perspective on the development of coronary revascularization. Coron Artery Dis. 2010;21(3):199–203.

    PubMed  Google Scholar 

  164. Hamm CW, Reimers J, Ischinger T, Rupprecht HJ, Berger J, Bleifeld W. A randomized study of coronary angioplasty compared with bypass surgery in patients with symptomatic multivessel coronary disease. German Angioplasty Bypass Surgery Investigation (GABI). N Engl J Med. 1994;331(16):1037–43.

    CAS  PubMed  Google Scholar 

  165. King 3rd SB, Kosinski AS, Guyton RA, Lembo NJ, Weintraub WS. Eight-year mortality in the Emory Angioplasty versus Surgery Trial (EAST). J Am Coll Cardiol. 2000;35(5):1116–21.

    PubMed  Google Scholar 

  166. Niles NW, McGrath PD, Malenka D, Quinton H, Wennberg D, Shubrooks SJ, et al. Survival of patients with diabetes and multivessel coronary artery disease after surgical or percutaneous coronary revascularization: results of a large regional prospective study. Northern New England Cardiovascular Disease Study Group. J Am Coll Cardiol. 2001;37(4):1008–15.

    CAS  PubMed  Google Scholar 

  167. Gwon HC, Choi SH, Choi BI, Cho SY, Ro YM, Lee WR. Percutaneous coronary intervention versus coronary artery bypass grafting for diabetics with multivessel coronary artery disease: the Korean Multicenter Revascularization Registry (KORR). J Korean Med Sci. 2005;20(2):196–203.

    PubMed Central  PubMed  Google Scholar 

  168. Ben-Gal Y, Moshkovitz Y, Nesher N, Uretzky G, Braunstein R, Hendler A, et al. Drug-eluting stents versus coronary artery bypass grafting in patients with diabetes mellitus. Ann Thorac Surg. 2006;82(5):1692–7.

    PubMed  Google Scholar 

  169. Bair TL, Muhlestein JB, May HT, Meredith KG, Horne BD, Pearson RR, et al. Surgical revascularization is associated with improved long-term outcomes compared with percutaneous stenting in most subgroups of patients with multivessel coronary artery disease: results from the Intermountain Heart Registry. Circulation. 2007;116(11 Suppl):I226–31.

    PubMed  Google Scholar 

  170. Javaid A, Steinberg DH, Buch AN, Corso PJ, Boyce SW, Pinto Slottow TL, et al. Outcomes of coronary artery bypass grafting versus percutaneous coronary intervention with drug-eluting stents for patients with multivessel coronary artery disease. Circulation. 2007;116(11 Suppl):I200–6.

    CAS  PubMed  Google Scholar 

  171. Brener SJ, Galla JM, Bryant 3rd R, Sabik 3rd JF, Ellis SG. Comparison of percutaneous versus surgical revascularization of severe unprotected left main coronary stenosis in matched patients. Am J Cardiol. 2008;101(2):169–72.

    PubMed  Google Scholar 

  172. Daemen J, Kuck KH, Macaya C, LeGrand V, Vrolix M, Carrie D, et al. Multivessel coronary revascularization in patients with and without diabetes mellitus: 3-year follow-up of the ARTS-II (Arterial Revascularization Therapies Study-Part II) trial. J Am Coll Cardiol. 2008;52(24):1957–67.

    PubMed  Google Scholar 

  173. Banning AP, Westaby S, Morice MC, Kappetein AP, Mohr FW, Berti S, et al. Diabetic and nondiabetic patients with left main and/or 3-vessel coronary artery disease: comparison of outcomes with cardiac surgery and paclitaxel-eluting stents. J Am Coll Cardiol. 2010;55(11):1067–75.

    CAS  PubMed  Google Scholar 

  174. King 3rd SB. Is surgery preferred for the diabetic with multivessel disease? Surgery is preferred for the diabetic with multivessel disease. Circulation. 2005;112(10):1500–7. discussion 14–5.

    PubMed  Google Scholar 

  175. Farkouh ME, Dangas G, Leon MB, Smith C, Nesto R, Buse JB, et al. Design of the Future REvascularization Evaluation in patients with Diabetes mellitus: Optimal management of Multivessel disease (FREEDOM) Trial. Am Heart J. 2008;155(2):215–23.

    PubMed  Google Scholar 

  176. Chen Y, Kelm Jr RJ, Budd RC, Sobel BE, Schneider DJ. Inhibition of apoptosis and caspase-3 in vascular smooth muscle cells by plasminogen activator inhibitor type-1. J Cell Biochem. 2004;92(1):178–88.

    CAS  PubMed  Google Scholar 

  177. Malmberg K, Norhammar A, Wedel H, Ryden L. Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation. 1999;99(20):2626–32.

    CAS  PubMed  Google Scholar 

  178. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    PubMed  Google Scholar 

  179. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–61.

    PubMed  Google Scholar 

  180. Malmberg K, Ryden L, Wedel H, Birkeland K, Bootsma A, Dickstein K, et al. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J. 2005;26(7):650–61.

    CAS  PubMed  Google Scholar 

  181. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.

    PubMed  Google Scholar 

  182. Inzucchi SE, Siegel MD. Glucose control in the ICU–how tight is too tight? N Engl J Med. 2009;360(13):1346–9.

    CAS  PubMed  Google Scholar 

  183. Stapleton RD, Heyland DK. Glycemic control and intensive insulin therapy in critical illness. 2011: Available from: http://www.uptodate.com/contents/glycemic-control-and-intensive-insulin-therapy-in-critical-illness. Cited 23 Apr 2012.

  184. Kjekshus J, Gilpin E, Cali G, Blackey AR, Henning H, Ross Jr J. Diabetic patients and beta-blockers after acute myocardial infarction. Eur Heart J. 1990;11(1):43–50.

    CAS  PubMed  Google Scholar 

  185. McGill JB. Reexamining misconceptions about beta-blockers in patients with diabetes. Clin Diabetes. 2009;27(1):36–46.

    Google Scholar 

  186. Barzilay JI, Davis BR, Pressel SL, Cutler JA, Einhorn PT, Black HR, et al. Long-term effects of incident diabetes mellitus on cardiovascular outcomes in people treated for hypertension: The ALLHAT Diabetes Extension Study. Circ Cardiovasc Qual Outcomes. 2012;5(2):153–62.

    PubMed Central  PubMed  Google Scholar 

  187. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.

    CAS  PubMed  Google Scholar 

  188. Bach RG, Lombardero M, Brooks MM, Donner T, Garber A, Genuth S, et al. Rosiglitazone and outcomes for patients with diabetes and coronary artery disease in the BARI 2D trial. Webcast presented at the 2010 American Diabetes Association’s Annual Scientific Sessions. Summarized by DiabetesPro/MD Conference Express, p. 14–5. 2010. Available from: http://www.nxtbook.com/nxtbooks/md_conference_express/ADA2010/#/0. Cited 23 Apr 2012.

  189. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA. 2007;298(10):1189–95.

    CAS  PubMed  Google Scholar 

  190. Nissen SE, Wolski K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med. 2010;170(14):1191–201.

    CAS  PubMed  Google Scholar 

  191. Chana RS, Lewington AJ, Brunskill NJ. Differential effects of peroxisome proliferator activated receptor-gamma (PPAR gamma) ligands in proximal tubular cells: thiazolidinediones are partial PPAR gamma agonists. Kidney Int. 2004;65(6):2081–90.

    CAS  PubMed  Google Scholar 

  192. Dargie HJ, Hildebrandt PR, Riegger GA, McMurray JJ, McMorn SO, Roberts JN, et al. A randomized, placebo-controlled trial assessing the effects of rosiglitazone on echocardiographic function and cardiac status in type 2 diabetic patients with New York Heart Association Functional Class I or II Heart Failure. J Am Coll Cardiol. 2007;49(16):1696–704.

    CAS  PubMed  Google Scholar 

  193. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.

    CAS  PubMed  Google Scholar 

  194. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.

    CAS  PubMed  Google Scholar 

  195. Terry T, Raravikar K, Chokrungvaranon N, Reaven PD. Does aggressive glycemic control benefit macrovascular and microvascular disease in type 2 diabetes? Insights from ACCORD, ADVANCE, and VADT. Curr Cardiol Rep. 2012;14(1):79–88.

    PubMed  Google Scholar 

  196. King 3rd SB, Mahmud E. Will blocking the platelet save the diabetic? Circulation. 1999;100(25):2466–8.

    PubMed  Google Scholar 

  197. Wiviott SD, Braunwald E, Angiolillo DJ, Meisel S, Dalby AJ, Verheugt FW, et al. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel-Thrombolysis in Myocardial Infarction 38. Circulation. 2008;118(16):1626–36.

    CAS  PubMed  Google Scholar 

  198. James S, Angiolillo DJ, Cornel JH, Erlinge D, Husted S, Kontny F, et al. Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial. Eur Heart J. 2010;31(24):3006–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  199. Mohammad RA, Goldberg T, Dorsch MP, Cheng JW. Antiplatelet therapy after placement of a drug-eluting stent: a review of efficacy and safety studies. Clin Ther. 2010;32(14):2265–81.

    CAS  PubMed  Google Scholar 

  200. Pi-Sunyer X, Blackburn G, Brancati FL, Bray GA, Bright R, Clark JM, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30(6):1374–83.

    PubMed  Google Scholar 

  201. Skyler JS. Diabetic complications. The importance of glucose control. Endocrinol Metab Clin North Am. 1996;25(2):243–54.

    CAS  PubMed  Google Scholar 

  202. Ismail-Beigi F, Moghissi E, Tiktin M, Hirsch IB, Inzucchi SE, Genuth S. Individualizing glycemic targets in type 2 diabetes mellitus: implications of recent clinical trials. Ann Intern Med. 2011;154(8):554–9.

    PubMed  Google Scholar 

  203. Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R, et al. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011;154(9):602–13.

    PubMed Central  PubMed  Google Scholar 

  204. Qaseem A, Humphrey LL, Sweet DE, Starkey M, Shekelle P. Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2012;156(3):218–31.

    PubMed  Google Scholar 

  205. Gross JL, Kramer CK, Leitao CB, Hawkins N, Viana LV, Schaan BD, et al. Effect of antihyperglycemic agents added to metformin and a sulfonylurea on glycemic control and weight gain in type 2 diabetes: a network meta-analysis. Ann Intern Med. 2011;154(10):672–9.

    PubMed  Google Scholar 

  206. Lebowitz HE. Management of hyperglycemia with oral antihyperglycemic agents in type 2 diabetes. In: Kahn CR, editor. Joslin’s diabetes mellitus. 14th ed. Philadelphia: Lippincott Williams and Wilkins; 2005. p. 687–710.

    Google Scholar 

  207. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427–43.

    CAS  PubMed  Google Scholar 

  208. Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab. 2002;87(6):2784–91.

    CAS  PubMed  Google Scholar 

  209. Moberly SP, Berwick ZC, Kohr M, Svendsen M, Mather KJ, Tune JD. Intracoronary glucagon-like peptide 1 preferentially augments glucose uptake in ischemic myocardium independent of changes in coronary flow. Exp Biol Med. 2012;237(3):334–42.

    CAS  Google Scholar 

  210. Cefalu WT. Evolving treatment strategies for the management of type 2 diabetes. Am J Med Sci. 2012;343(1):21–6.

    PubMed  Google Scholar 

  211. Ryan GJ, Foster KT, Jobe LJ. Review of the therapeutic uses of liraglutide. Clin Ther. 2011;33(7):793–811.

    CAS  PubMed  Google Scholar 

  212. Younk LM, Mikeladze M, Davis SN. Pramlintide and the treatment of diabetes: a review of the data since its introduction. Expert Opin Pharmacother. 2011;12(9):1439–51.

    CAS  PubMed  Google Scholar 

  213. Timmers L, Henriques JP, de Kleijn DP, Devries JH, Kemperman H, Steendijk P, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53(6):501–10.

    CAS  PubMed  Google Scholar 

  214. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54(1):146–51.

    CAS  PubMed  Google Scholar 

  215. Barnett AH. New treatments in type 2 diabetes: a focus on the incretin-based therapies. Clin Endocrinol. 2009;70(3):343–53.

    CAS  Google Scholar 

  216. Ban K, Hui S, Drucker DJ, Husain M. Cardiovascular consequences of drugs used for the treatment of diabetes: potential promise of incretin-based therapies. J Am Soc Hypertens. 2009;3(4):245–59.

    PubMed  Google Scholar 

  217. Walsh J. The incretins: GLP-1 agonists and DPP-4 inhibitors. DiabetesNet.com; 2010. Available from: http://diabetesnet.com/diabetes_treatments/incretins.php. Cited 23 Apr 2012.

  218. Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder K, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: A randomized trial. Ann Intern Med. 2012;156(6):405–15.

    PubMed  Google Scholar 

  219. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9733):2223–33.

    CAS  PubMed  Google Scholar 

  220. Sonnett TE, Levien TL, Neumiller JJ, Gates BJ, Setter SM. Colesevelam hydrochloride for the treatment of type 2 diabetes mellitus. Clin Ther. 2009;31(2):245–59.

    CAS  PubMed  Google Scholar 

  221. Defronzo RA. Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care. 2011;34(4):789–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  222. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  223. Zimmet P, Alberti KG. Surgery or medical therapy for obese patients with type 2 diabetes? N Engl J Med. 2012;366(17):1635–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The preparation of the typescript and illustrations by Becky Aksdal is most appreciated.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Sobel, B.E. (2015). Diabetes and Heart Disease. In: Willerson, J., Holmes, Jr., D. (eds) Coronary Artery Disease. Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-2828-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2828-1_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2827-4

  • Online ISBN: 978-1-4471-2828-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics