Skip to main content

Endocrine Mechanisms, Androgen Receptor and Carcinogenesis, and Hormone Escape

  • Chapter
  • First Online:
Prostate Cancer: A Comprehensive Perspective

Abstract

Androgens play important roles during the development and maintenance of normal prostate as well as during the progression of prostate cancer. Testosterone, which is synthesized in the testes under the control of hormones from the pituitary and hypothalamus, is the primary androgen in men. Testosterone enters the prostate through blood stream and binds its cognate receptor (the androgen receptor or AR) in the acinar epithelial cells and the stromal cells. Like other nuclear hormone receptors, AR is a transcription factor, which is activated upon ligand binding in the cell cytoplasm. Activated AR enters the nucleus and regulates the transcription of genes involved in cell proliferation, survival, and differentiation. In this chapter, the endocrine mechanisms involve in the biosynthesis of androgen are discussed. Structural details of the androgen receptor, its changes in conformation upon ligand binding, various posttranslational modifications, and its coregulators are described. Specific roles of androgen/AR axis during the progression of prostate cancer and mechanisms by which AR activity is restored in prostate cancer cells of patients treated with androgen ablation therapy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crawford ED. Understanding the epidemiology, natural history, and key pathways involved in prostate cancer. Urology. 2009;73(5 Suppl):S4–10.

    Article  PubMed  Google Scholar 

  2. Taplin ME, Ho SM. Clinical review 134: the endocrinology of prostate cancer. J Clin Endocrinol Metab. 2001;86(8):3467–77.

    Article  PubMed  CAS  Google Scholar 

  3. Huggins C, Hodges CV. The effect of castration, of estrogen, and of androgen injection on serum phosphatises in metastatic carcinoma of the prostate. Cancer Res. 1941;1:293–7.

    CAS  Google Scholar 

  4. Davison SL, Bell R. Androgen physiology. Semin Reprod Med. 2006;24(2):71–7.

    Article  PubMed  CAS  Google Scholar 

  5. Tindall DJ, Rittmaster RS. The rationale for inhibiting 5alpha-reductase isoenzymes in the prevention and treatment of prostate cancer. J Urol. 2008;179(4):1235–42.

    Article  PubMed  CAS  Google Scholar 

  6. Brawley OW, Parnes H. Prostate cancer prevention trials in the USA. Eur J Cancer. 2000;36(10):1312–5.

    Article  PubMed  CAS  Google Scholar 

  7. Andriole GL, Bostwick DG, Brawley OW, et al. Effect of dutasteride on the risk of prostate cancer. N Engl J Med. 2010;362(13):1192–202.

    Article  PubMed  CAS  Google Scholar 

  8. Thomas LN, Douglas RC, Lazier CB, Too CK, Rittmaster RS, Tindall DJ. Type 1 and type 2 5alpha-reductase expression in the development and progression of prostate cancer. Eur Urol. 2008;53(2):244–52.

    Article  PubMed  CAS  Google Scholar 

  9. Dehm SM, Tindall DJ. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol. 2007;21(12):2855–63.

    Article  PubMed  CAS  Google Scholar 

  10. Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev. 1995;16(3):271–321.

    PubMed  CAS  Google Scholar 

  11. Balk SP, Knudsen KE. AR, the cell cycle, and prostate cancer. Nucl Recept Signal. 2008;6:e001.

    PubMed  Google Scholar 

  12. Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–86.

    Article  PubMed  CAS  Google Scholar 

  13. Dehm SM, Tindall DJ. Regulation of androgen receptor signaling in prostate cancer. Expert Rev Anticancer Ther. 2005;5(1):63–74.

    Article  PubMed  CAS  Google Scholar 

  14. Dehm SM, Tindall DJ. Molecular regulation of androgen action in prostate cancer. J Cell Biochem. 2006;99(2):333–44.

    Article  PubMed  CAS  Google Scholar 

  15. Prescott J, Coetzee GA. Molecular chaperones throughout the life cycle of the androgen receptor. Cancer Lett. 2006;231(1):12–9.

    Article  PubMed  CAS  Google Scholar 

  16. MacLean HE, Warne GL, Zajac JD. Localization of functional domains in the androgen receptor. J Steroid Biochem Mol Biol. 1997;62(4):233–42.

    Article  PubMed  CAS  Google Scholar 

  17. Schaufele F, Carbonell X, Guerbadot M, et al. The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. Proc Natl Acad Sci U S A. 2005;102(28):9802–7.

    Article  PubMed  CAS  Google Scholar 

  18. Wang Q, Carroll JS, Brown M. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell. 2005;19(5):631–42.

    Article  PubMed  CAS  Google Scholar 

  19. Lavery DN, McEwan IJ. The human androgen receptor AF1 transactivation domain: interactions with transcription factor IIF and molten-globule-like structural characteristics. Biochem Soc Trans. 2006;34(Pt 6):1054–7.

    PubMed  CAS  Google Scholar 

  20. Shen HC, Coetzee GA. The androgen receptor: unlocking the secrets of its unique transactivation domain. Vitam Horm. 2005;71:301–19.

    Article  PubMed  CAS  Google Scholar 

  21. Dehm SM, Regan KM, Schmidt LJ, Tindall DJ. Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells. Cancer Res. 2007;67(20):10067–77.

    Article  PubMed  CAS  Google Scholar 

  22. Liu CH, Huang JD, Huang SW, et al. Androgen receptor gene polymorphism may affect the risk of urothelial carcinoma. J Biomed Sci. 2008;15(2):261–9.

    Article  PubMed  CAS  Google Scholar 

  23. Guo Z, Dai B, Jiang T, et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell. 2006;10(4):309–19.

    Article  PubMed  CAS  Google Scholar 

  24. Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep. 2008;9(6):536–42.

    Article  PubMed  CAS  Google Scholar 

  25. Poukka H, Karvonen U, Janne OA, Palvimo JJ. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A. 2000;97(26):14145–50.

    Article  PubMed  CAS  Google Scholar 

  26. Leader JE, Wang C, Fu M, Pestell RG. Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol. 2006;72(11):1589–96.

    Article  PubMed  CAS  Google Scholar 

  27. Shibata H, Spencer TE, Onate SA, et al. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res. 1997;52:141–64; discussion 164–5.

    PubMed  CAS  Google Scholar 

  28. Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev. 2007;28(7):778–808.

    Article  PubMed  CAS  Google Scholar 

  29. Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview. Endocr Rev. 2002;23(2):175–200.

    Article  PubMed  CAS  Google Scholar 

  30. Papaioannou M, Reeb C, Asim M, Dotzlaw H, Baniahmad A. Co-activator and co-repressor interplay on the human androgen receptor. Andrologia. 2005;37(6):211–2.

    Article  PubMed  CAS  Google Scholar 

  31. Rahman M, Miyamoto H, Chang C. Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin Cancer Res. 2004;10(7):2208–19.

    Article  PubMed  CAS  Google Scholar 

  32. Baniahmad A. Nuclear hormone receptor co-repressors. J Steroid Biochem Mol Biol. 2005;93(2–5):89–97.

    Article  PubMed  CAS  Google Scholar 

  33. Lange CA, Gioeli D, Hammes SR, Marker PC. Integration of rapid signaling events with steroid hormone receptor action in breast and prostate cancer. Annu Rev Physiol. 2007;69:171–99.

    Article  PubMed  CAS  Google Scholar 

  34. Freeman MR, Cinar B, Lu ML. Membrane rafts as potential sites of nongenomic hormonal signaling in prostate cancer. Trends Endocrinol Metab. 2005;16(6):273–9.

    Article  PubMed  CAS  Google Scholar 

  35. Chen Y, Sawyers CL, Scher HI. Targeting the androgen receptor pathway in prostate cancer. Curr Opin Pharmacol. 2008;8(4):440–8.

    Article  PubMed  CAS  Google Scholar 

  36. Sadar MD, Hussain M, Bruchovsky N. Prostate cancer: molecular biology of early progression to androgen independence. Endocr Relat Cancer. 1999;6(4):487–502.

    Article  PubMed  CAS  Google Scholar 

  37. Gregory CW, Johnson Jr RT, Presnell SC, Mohler JL, French FS. Androgen receptor regulation of G1 cyclin and cyclin-dependent kinase function in the CWR22 human prostate cancer xenograft. J Androl. 2001;22(4):537–48.

    PubMed  CAS  Google Scholar 

  38. Ghosh PM, Malik SN, Bedolla RG, et al. Signal transduction pathways in androgen-dependent and -independent prostate cancer cell proliferation. Endocr Relat Cancer. 2005;12(1):119–34.

    Article  PubMed  CAS  Google Scholar 

  39. Litvinov IV, Vander Griend DJ, Antony L, et al. Androgen receptor as a licensing factor for DNA replication in androgen-sensitive prostate cancer cells. Proc Natl Acad Sci U S A. 2006;103(41):15085–90.

    Article  PubMed  CAS  Google Scholar 

  40. Vander Griend DJ, Litvinov IV, Isaacs JT. Stabilizing androgen receptor in mitosis inhibits prostate cancer proliferation. Cell Cycle. 2007;6(6):647–51.

    Article  PubMed  CAS  Google Scholar 

  41. Raclaw KA, Heemers HV, Kidd EM, Dehm SM, Tindall DJ. Induction of FLIP expression by androgens protects prostate cancer cells from TRAIL-mediated apoptosis. Prostate. 2008;68(15):1696–706.

    Article  PubMed  CAS  Google Scholar 

  42. Cornforth AN, Davis JS, Khanifar E, Nastiuk KL, Krolewski JJ. FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells. Oncogene. 2008;27(32):4422–33.

    Article  PubMed  CAS  Google Scholar 

  43. Hsieh AC, Small EJ, Ryan CJ. Androgen-response elements in hormone-refractory prostate cancer: implications for treatment development. Lancet Oncol. 2007;8(10):933–9.

    Article  PubMed  CAS  Google Scholar 

  44. Stewart RJ, Panigrahy D, Flynn E, Folkman J. Vascular endothelial growth factor expression and tumor angiogenesis are regulated by androgens in hormone responsive human prostate carcinoma: evidence for androgen dependent destabilization of vascular endothelial growth factor transcripts. J Urol. 2001;165(2):688–93.

    Article  PubMed  CAS  Google Scholar 

  45. Jain RK, Safabakhsh N, Sckell A, et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci U S A. 1998;95(18):10820–5.

    Article  PubMed  CAS  Google Scholar 

  46. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8.

    Article  PubMed  CAS  Google Scholar 

  47. King JC, Xu J, Wongvipat J, et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet. 2009;41(5):524–6.

    Article  PubMed  CAS  Google Scholar 

  48. Carver BS, Tran J, Gopalan A, et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet. 2009;41(5):619–24.

    Article  PubMed  CAS  Google Scholar 

  49. Debes JD, Tindall DJ. Mechanisms of androgen-refractory prostate cancer. N Engl J Med. 2004;351(15):1488–90.

    Article  PubMed  CAS  Google Scholar 

  50. Culig Z, Steiner H, Bartsch G, Hobisch A. Mechanisms of endocrine therapy-responsive and -unresponsive prostate tumours. Endocr Relat Cancer. 2005;12(2):229–44.

    Article  PubMed  CAS  Google Scholar 

  51. Knudsen KE, Scher HI. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin Cancer Res. 2009;15(15):4792–8.

    Article  PubMed  CAS  Google Scholar 

  52. Attar RM, Takimoto CH, Gottardis MM. Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res. 2009;15(10):3251–5.

    Article  PubMed  CAS  Google Scholar 

  53. Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol. 2005;23(32):8253–61.

    Article  PubMed  CAS  Google Scholar 

  54. Sonpavde G, Hutson TE, Berry WR. Hormone refractory prostate cancer: management and advances. Cancer Treat Rev. 2006;32(2):90–100.

    Article  PubMed  CAS  Google Scholar 

  55. Zegarra-Moro OL, Schmidt LJ, Huang H, Tindall DJ. Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res. 2002;62(4):1008–13.

    PubMed  CAS  Google Scholar 

  56. Cheng H, Snoek R, Ghaidi F, Cox ME, Rennie PS. Short hairpin RNA knockdown of the androgen receptor attenuates ligand-independent activation and delays tumor progression. Cancer Res. 2006;66(21):10613–20.

    Article  PubMed  CAS  Google Scholar 

  57. Hamy F, Brondani V, Spoerri R, Rigo S, Stamm C, Klimkait T. Specific block of androgen receptor activity by antisense oligonucleotides. Prostate Cancer Prostatic Dis. 2003;6(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  58. Visakorpi T, Hyytinen E, Koivisto P, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet. 1995;9(4):401–6.

    Article  PubMed  CAS  Google Scholar 

  59. Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004;10(1):33–9.

    Article  PubMed  Google Scholar 

  60. Taplin ME, Bubley GJ, Shuster TD, et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 1995;332(21):1393–8.

    Article  PubMed  CAS  Google Scholar 

  61. Heemers HV, Regan KM, Schmidt LJ, Anderson SK, Ballman KV, Tindall DJ. Androgen modulation of coregulator expression in prostate cancer cells. Mol Endocrinol. 2009;23(4):572–83.

    Article  PubMed  CAS  Google Scholar 

  62. Heemers HV, Debes JD, Tindall DJ. The role of the transcriptional coactivator p300 in prostate cancer progression. Adv Exp Med Biol. 2008;617:535–40.

    Article  PubMed  Google Scholar 

  63. Heemers HV, Sebo TJ, Debes JD, et al. Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Res. 2007;67(7):3422–30.

    Article  PubMed  CAS  Google Scholar 

  64. Debes JD, Comuzzi B, Schmidt LJ, Dehm SM, Culig Z, Tindall DJ. p300 regulates androgen receptor-independent expression of prostate-specific antigen in prostate cancer cells treated chronically with interleukin-6. Cancer Res. 2005;65(13):5965–73.

    Article  PubMed  CAS  Google Scholar 

  65. Gennigens C, Menetrier-Caux C, Droz JP. Insulin-like growth factor (IGF) family and prostate cancer. Crit Rev Oncol Hematol. 2006;58(2):124–45.

    Article  PubMed  CAS  Google Scholar 

  66. Arnold JT, Le H, McFann KK, Blackman MR. Comparative effects of DHEA vs. testosterone, dihydrotestosterone, and estradiol on proliferation and gene expression in human LNCaP prostate cancer cells. Am J Physiol Endocrinol Metab. 2005;288(3):E573–84.

    Article  PubMed  CAS  Google Scholar 

  67. Wu JD, Haugk K, Woodke L, Nelson P, Coleman I, Plymate SR. Interaction of IGF signaling and the androgen receptor in prostate cancer progression. J Cell Biochem. 2006;99(2):392–401.

    Article  PubMed  CAS  Google Scholar 

  68. Kaarbo M, Klokk TI, Saatcioglu F. Androgen signaling and its interactions with other signaling pathways in prostate cancer. Bioessays. 2007;29(12):1227–38.

    Article  PubMed  Google Scholar 

  69. Lee LF, Louie MC, Desai SJ, et al. Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene. 2004;23(12):2197–205.

    Article  PubMed  CAS  Google Scholar 

  70. Godoy-Tundidor S, Cavarretta IT, Fuchs D, et al. Interleukin-6 and oncostatin M stimulation of proliferation of prostate cancer 22Rv1 cells through the signaling pathways of p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Prostate. 2005;64(2):209–16.

    Article  PubMed  CAS  Google Scholar 

  71. McCall P, Gemmell LK, Mukherjee R, Bartlett JM, Edwards J. Phosphorylation of the androgen receptor is associated with reduced survival in hormone-refractory prostate cancer patients. Br J Cancer. 2008;98(6):1094–101.

    Article  PubMed  CAS  Google Scholar 

  72. Gao H, Ouyang X, Banach-Petrosky WA, Gerald WL, Shen MM, Abate-Shen C. Combinatorial activities of Akt and B-Raf/Erk signaling in a mouse model of androgen-independent prostate cancer. Proc Natl Acad Sci U S A. 2006;103(39):14477–82.

    Article  PubMed  CAS  Google Scholar 

  73. Sadar MD. Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways. J Biol Chem. 1999;274(12):7777–83.

    Article  PubMed  CAS  Google Scholar 

  74. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004;25(2):276–308.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang L, Altuwaijri S, Deng F, et al. NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol. 2009;175(2):489–99.

    Article  PubMed  CAS  Google Scholar 

  76. Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res. 2005;11(13):4653–7.

    Article  PubMed  CAS  Google Scholar 

  77. Mostaghel EA, Montgomery B, Nelson PS. Castration-resistant prostate cancer: targeting androgen metabolic pathways in recurrent disease. Urol Oncol. 2009;27(3):251–7.

    Article  PubMed  CAS  Google Scholar 

  78. Dehm SM, Tindall DJ. Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J Biol Chem. 2006;281(38):27882–93.

    Article  PubMed  CAS  Google Scholar 

  79. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 2008;68(13):5469–77.

    Article  PubMed  CAS  Google Scholar 

  80. Guo Z, Yang X, Sun F, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 2009;69(6):2305–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubh Datta Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Datta, K., Tindall, D.J. (2013). Endocrine Mechanisms, Androgen Receptor and Carcinogenesis, and Hormone Escape. In: Tewari, A. (eds) Prostate Cancer: A Comprehensive Perspective. Springer, London. https://doi.org/10.1007/978-1-4471-2864-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2864-9_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2863-2

  • Online ISBN: 978-1-4471-2864-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics