Skip to main content

Role of the Central Nervous System in Cardiovascular Regulation

  • Chapter
The Heart and Stroke

Part of the book series: Clinical Medicine and the Nervous System ((CLIN.MED.NERV.))

Abstract

Although the participation of the central nervous system (CNS) in the regulation of cardiovascular function has been known for more than a century, the pervasive significance of neural mechanisms has only been recognized quite recently. In addition to the well-established role of the CNS in regulating the balance of sympathetic and parasympathetic outflow and controlling cardiovascular reflexes, it is now becoming clear that endocrine mechanisms are integrated with neural factors into a complex system of neuroendocrine control of cardiovascular regulation. These findings are being combined with pharmaco logical, molecular biological, and clinical areas of investigation into an emergent discipline of “cardiovascular neurobiology.” This chapter focuses selectively upon evidence for the importance of medullary pathways in CNS cardiovascular regulation, particularly the afferent functions of the area postrema and nucleus tractus solitarii, the efferent mechanisms of the ventrolateral medulla, and the significance of these regions for neuroendocrine integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud FM (1982) The sympathetic system in hypertension. Hypertension 4 [Suppl II]: II-208–II-225

    Google Scholar 

  • Alexander RS (1945) The effects of blood flow and anoxia on spinal cardiovascular centers. Am J Physiol 143: 698–708

    Google Scholar 

  • Amendt J, Czachurski J, Dembowski K, Seller H (1979) Bulbospinal projections to the intermediolateral cell column: a neuroanatomical study. J Auton Nerv Syst 1: 103–117

    Article  PubMed  CAS  Google Scholar 

  • Backman SB, Henry JL (1984) Effects of substance P and thyrotropin-releasing hormone on sympathetic preganglionic neurones in the upper thoracic intermediolateral nucleus of the cat. Can J Physiol Pharmâcol 62: 248–251

    Article  PubMed  CAS  Google Scholar 

  • Bard P (1960) Anatomical organization of the central nervous system in relation to control of the heart and blood vessels. Physiol Rev 40 [Suppl 4]: 3–26

    Google Scholar 

  • Barnes KL, Averill DB, Ferrario DM (1984) Contribution of vasopressin to hypertension after solitary tract lesioning in the dog. J Hypertension 2 [Suppl 3]: 33–36

    CAS  Google Scholar 

  • Barnes KL, Ferrario CM (1981) Anatomical and physiological characterization of the sympathofaei-litative area postrema pathways in the dog. In: Buckley JP, Ferrario CM (eds) Central nervous system mechanisms in hypertension. Raven, New York, pp 25–36

    Google Scholar 

  • Barnes KL, Ferrario CM (1984) Localization within the dog’s brain stem of the area postrema pressor pathway. Hypertension 6: 482–488

    PubMed  CAS  Google Scholar 

  • Barnes KL, Ferrario CM, Chernicky CL, Brosnihan KB (1984) Participation of the area postrema in cardiovascular control in the dog. Fed Proc 43: 2959–2962

    PubMed  CAS  Google Scholar 

  • Barnes KL, Ferrario CM, Conomy JP (1979) Comparison of the hemodynamic changes produced by electrical stimulation of the area postrema and NTS in the dog. Circ Res 45: 136–143

    PubMed  CAS  Google Scholar 

  • Berger AJ (1979) Distribution of carotid sinus nerve afferent fibers to solitary tract nuclei of the cat using transganglionic transport of horseradish peroxidase. Neurosci Lett 14: 153–158

    Article  PubMed  CAS  Google Scholar 

  • Biegon A, Terlou M, Voorhuis TD, deKloet ER (1984) Arginine-vasopressin binding sites in rat brain: a quantitative autoradiographic study. Neurosci Lett 44: 229–234

    Article  PubMed  CAS  Google Scholar 

  • Blessing WW, West MJ, Chalmers J (1981) Hypertension, bradycardia and pulmonary edema in the conscious rabbit after brain stem lesions coinciding with the A1 group of catecholamine neurons. Circ Res 49: 949–958

    PubMed  CAS  Google Scholar 

  • Borison HL, Brizzee KR (1951) Morphology of emetic chemoreceptor trigger zone in cat medulla oblongata. Proc Soc Exp Biol Med 77: 38–42

    PubMed  CAS  Google Scholar 

  • Brody MJ, Johnson AK (1980) Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation and hypertension. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology. Raven, New York, pp 249–292

    Google Scholar 

  • Brooks C Me, Koizumi K, Sato A (eds) (1979) Integrative functions of the autonomic nervous system. Elsevier, New York

    Google Scholar 

  • Brosnihan KB, Ferrario CM (1982) Central mediation of adrenal catecholamine release by angiotensin II in normal and sodium depleted dog. Proc 64th annual meeting of the Endocrine Society, p 11

    Google Scholar 

  • Brosnihan KB, Ferrario CM (1984) Central regulation of renin release. In: Guthrie GP Jr, Kotchen TA (eds) Hypertension and the brain. Futura, Mt. Kisco, NY, pp 83–112

    Google Scholar 

  • Brown DL, Guyenet PG (1984) Cardiovascular neurons of brain stem with projections to spinal cord. Am J Physiol 247: R1009–R1016

    PubMed  CAS  Google Scholar 

  • Bumpus FM, Ferrario CM (1984) Extrarenal renin angiotensin system: comments on its occurrence and cardiovascular role. In: Villarreal H, Sambhi M (eds) Topics in pathophysiology of hypertension. Martinus Nijhoff, Boston, pp 407–416

    Chapter  Google Scholar 

  • Campbell DJ, Beuhnik J, Menard J, Corvol P (1984) Identity of angiotensinogen precursors of rat brain and liver. Nature 308: 206–208

    Article  PubMed  CAS  Google Scholar 

  • Caverson MM, Ciriello J, Calaresu FR (1984) Chemoreceptor and baroreceptor inputs to ventrolateral medullary neurons. Am J Physiol 247: R872–R879

    PubMed  CAS  Google Scholar 

  • Charlton CG, Heike CJ (1985) Autoradiographic localization and characterization of spinal cord substance P binding sites: high densities in sensory, autonomic, phrenic, and Onuf s motor nuclei. J Neurosci 5: 1653–1661

    PubMed  CAS  Google Scholar 

  • Chemicky CL, Barnes KL, Conomy JP, Ferrario CM (1980) A morphological characterization of the canine area postrema. Neurosci Lett 20: 37–43

    Article  Google Scholar 

  • Chemicky CL, Barnes KL, Ferrario CM (1983) Brain stem distribution of the carotid sinus nerve in the dog. Neurosci Abstr 9: 1158

    Google Scholar 

  • Chemicky CL, Bames KL, Ferrario CM, Conomy JP (1984) Afferent projections of the cervical vagus and nodose ganglion in the dog. Brain Res Bull 13: 401–411

    Article  Google Scholar 

  • Ciriello J, Hrycyshyn AW, Calaresu FR (1981) Horseradish peroxidase study of brain stem projections of carotid sinus and aortic depressor nerves in the cat. J Auton Nerv Syst 4: 43–61

    Article  PubMed  CAS  Google Scholar 

  • Coote JH, Macleod VN, Fleetwood-Walker S, Gilbey MP (1981) The response of individual sympathetic preganglionic neurones to microelectrophoretically applied endogenous monoamine. Brain Res 215: 135–145

    Article  PubMed  CAS  Google Scholar 

  • Cowley AW Jr, Monos E, Guyton AC (1974) Interaction of vasopressin and the baroreceptor reflex system in the regulation of arterial blood pressure in the dog. Circ Res 34: 505–514

    PubMed  CAS  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62 [Suppl 232]: 1–55

    Google Scholar 

  • Dahlstrom A, Fuxe K (1965) Evidence for the existence of monoamine-containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron system. Acta Physiol Scand 64 [Suppl 247]: 5–36

    Google Scholar 

  • Davies R, Kalia M (1981) Carotid sinus nerve projections to the brain stem in the cat. Brain Res Bull 6: 531–544

    Article  PubMed  CAS  Google Scholar 

  • DeJong W, Nijkamp FP (1976) Centrally induced hypotension and bradycardia after administration of α-methylnoradrenaline into the area of the nucleus tractus solitarii of the rat. Br J Pharmacol 58: 593–598

    CAS  Google Scholar 

  • Dittmar C (1870) Ein neuer Beweis fur die Reizbarkeit der centripetalen Fasern des Ruckenmarks. Ber Sachs Ges (Akad) Wiss 22: 18–48

    Google Scholar 

  • Diz DI, Bames KL, Ferrario CM (1984) Hypotensive actions of angiotensin II microinjected into the dorsal motor nucleus of the vagus. J Hypertension 2 [Suppl 3]: 53–56

    CAS  Google Scholar 

  • Doba N, Reis DJ (1973) Acute fulminating neurogenic hypertension produced by brainstem lesions in the rat. Circ Res 32: 584–593

    PubMed  CAS  Google Scholar 

  • Doris PA (1984) Central cardiovascular regulation and the role of vasopressin: a review. Clin Exp Hypertens—Theory and Practice A6: 2197–2217

    Article  CAS  Google Scholar 

  • Edwards CRW, Al-Dujaili EAS, Boscaro M, Gow I, Williams BC (1982) Peptidergic and monoaminergic regulation of aldosterone secretion. In: Mantero F, Biglieri EG, Edwards CRW (eds) Endocrinology of hypertension. Academic, London, pp 11–18

    Google Scholar 

  • Ferrario CM (1983) Central nervous system mechanisms of blood pressure control in normotensive and hypertensive states. Chest 83S: 331S–335S

    Google Scholar 

  • Ferrario CM, Bames KL, Szilagyi JE, Brosnihan KB (1979) Physiological and pharmacological characterization of the area psotrema pressor pathways in the normal dog. Hypertension 1: 235– 245

    PubMed  CAS  Google Scholar 

  • Ferrario CM, Bames KL, Bohonek S (1981) Neurogenic hypertension produced by lesions of the nucleus tractus solitarii alone or with sinoaortic denervation in the dog. Hypertension 3 [Suppl II]: II-112–II-118

    Google Scholar 

  • Ferrario CM, Dickinson CJ, McCubbin JW (1970) Central vasomotor stimulation by angiotensin. Clin Sei 39: 239–245

    CAS  Google Scholar 

  • Ferrario CM, Gildenberg PL, McCubbin JW (1972) Cardiovascular effects of angiotensin mediated by the central nervous system. Circ Res 30: 257–262

    PubMed  CAS  Google Scholar 

  • Ferrario CM, Schiavone MT, Bames KL, Brosnihan KB, Speth RC (1985) Role of central mechanisms in the development of endocrine hypertension. In: Edwards CRW, Carey RM (eds) Essential hypertension as an endocrine disease. Butterworths, London, pp 1–39

    Google Scholar 

  • Ferrario CM, Takishita S (1981) Baroreceptor reflexes and hypertension. In: Kuchel O, Hamet P, Cantin M (eds) Hypertension: physiopathology and treatment. McGraw-Hill, New York, pp 161– 170

    Google Scholar 

  • Finkelman S, Goldstein DJ, Fischer-Ferraro G, Diaz A, Nahmod VE (1972) In vitro production of angiotensin and renin release by isolated glomeruli. Medicina 32 [Suppl 1]: 37–39

    Google Scholar 

  • Fischer-Ferraro C, Nahmod VE, Goldstein DJ, Finkielman S (1971) Angiotensin and renin in rat and dog brain. J Exp Med 133: 353–361

    Article  PubMed  CAS  Google Scholar 

  • Fleetwood-Walker SM, Coote JH (1981) The contribution of brain stem catecholamine cell groups to the innervation of the sympathetic lateral cell column. Brain Res 205: 141–155

    Article  PubMed  CAS  Google Scholar 

  • Folkow B (1962) Physiological aspects of primary hypertension. Physiol Rev 62:347–504

    Google Scholar 

  • Ganong WF, Barbier C (1982) Neuroendocrine components in the regulation of renin secretion. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology. Raven, New York, pp 231–262

    Google Scholar 

  • Gilbey MP, McKenna K, Schramm L (1983) Effects of substance P on sympathetic preganglionic neurons. Neurosci Lett 41: 157–159

    Article  PubMed  CAS  Google Scholar 

  • Gildenberg PL, Ferrario CM, McCubbin JW (1973) Two sites of cardiovascular action of angiotensin II in the brain of the dog. Clin Sei 44: 417–420

    CAS  Google Scholar 

  • Goodehild AK, Moon EA, Dampney RAL, Howe PRC (1984) Evidence that adrenaline neurons in the rostral ventrolateral medulla have a vasopressor function. Neurosci Lett 45: 267–272

    Article  Google Scholar 

  • Gordon FJ, Brody MJ, Fink GD, Buggy J, Johnson AK (1979) Role of central catecholamines in the control of blood pressure and drinking behavior. Brain Res 178: 161–173

    Article  PubMed  CAS  Google Scholar 

  • Granata AR, Ruggiero DA, Park DH, Joh TH, Reis DJ (1983) Lesions of epinephrine neurons in the rostral ventrolateral medulla abolish the vasodepressor components of baroreflex and cardiopulmonary reflex. Hypertension 5 [Suppl V]: V80–V84

    PubMed  CAS  Google Scholar 

  • Heike CJ, Neil JJ, Massari VJ, Loewy AD (1982) Substance P neurons project from the ventral medulla to the intermediolateral cell column and ventral horn in the rat. Brain Res 243: 147–152

    Article  Google Scholar 

  • Hilton SM (1975) Ways of viewing the central nervous system control of the circulation—old and new. Brain Res 87: 213–219

    Article  PubMed  CAS  Google Scholar 

  • Hirose S, Yokosawa H, Inagami T (1978) Immunochemical identification of renin in rat brain and distinction from acid proteases. Nature 274: 392–393

    Article  PubMed  CAS  Google Scholar 

  • Howe PRC, Kuhn DM, Minson JB, Stead BH, Chalmers JP (1983) Evidence for a bulbospinal serotonergic pressor pathway in the rat brain. Brain Res 270: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Eggena P, Barrett JD, Katz D, Metter J, Sambhi MP (1980) Studies on angiotensinogen of plasma and cerebrospinal fluid in normal and hypertensive human subjects. Hypertension 2: 432– 436

    PubMed  CAS  Google Scholar 

  • Iverson IL (1983) Nonopioid neuropeptides in mammalian CNS. Ann Rev Pharmacol Toxicol 23: 1 –27

    Article  Google Scholar 

  • Jewell PA, Verney EB (1957) An experimental attempt to determine the site of the neurohypophysial osmoreceptors in the dog. Philos Trans R Soc London B240: 197–324

    Google Scholar 

  • Joy MD, Lowe RD (1970) Evidence that the area postrema mediates the central cardiovascular response to angiotensin II. Nature 228: 1303–1304

    Article  PubMed  CAS  Google Scholar 

  • Kalia M, Welles R (1980) Brain stem projections of the aortic nerve in the cat: a study using tetramethyl benzidine as the substrate for HRP. Brain Res 188: 23–32

    Article  PubMed  CAS  Google Scholar 

  • Keeler JR, Heike CJ (1985) Spinal cord substance P mediates bicueulline-induced activation of cardiovascular responses from the ventral medulla. J Auton Nerv Syst 13: 19–34

    Article  PubMed  CAS  Google Scholar 

  • Korner PI (1979) Central nervous control of autonomic cardiovascular function. In: Berne RM (ed) Handbook of physiology, section 2, vol 1, American Physiological Society, Bethesda, pp 691–739

    Google Scholar 

  • Laubie M, Schmitt H (1979) Destruction of the nucleus tractus solitarii in the dog: comparison with sinoaortic denervation., Am J Physiol 236: H736–H743

    PubMed  CAS  Google Scholar 

  • Lewis GP (1975) Physiological mechanisms controlling secretory activity of adrenal medulla. In: Blaschko H, Sayers G, Smith AD (eds) Handbook of physiology, sect 7, vol VI. American Physiological Society, Washington, DC, pp 309–320

    Google Scholar 

  • Liard JF, Dériaz O, Tschopp M, Schoun J (1981) Cardiovascular effects of vasopressin infused into the vertebral circulation of conscious dogs. Clin Sei 61: 345–347

    CAS  Google Scholar 

  • Lind RW, Swanson LW, Ganten D (1985) Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40: 2–24

    Article  PubMed  CAS  Google Scholar 

  • Loewy AD, Gregorie EM, McKellar S, Baker RP (1979) Electrophysiological evidence that the A5 catecholamine cell group is a vasomotor center. Brain Res 178: 196–200

    Article  PubMed  CAS  Google Scholar 

  • Loewy AD, McKellar S (1981) Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat. Brain Res 211: 146–152

    Article  PubMed  CAS  Google Scholar 

  • Loewy AD, Sawyer WB (1982) Substance P antagonist inhibits vasomotor responses elicited from ventral medulla in rat. Brain Res 245: 379–383

    Article  PubMed  CAS  Google Scholar 

  • Lorenz RG, Saper CB, Wong DL, Ciaranello R, Loewy AD (1985) Co-localization of substance P and PNMT-iike immunoreactivity in neurons of ventrolateral medulla that project to the spinal cord: potential role in control of vasomotor tone. Neurosci Lett 55: 255–260

    Article  PubMed  CAS  Google Scholar 

  • Marson O, Chemicky CL, Bames KL, Averill DB, Ferrario CM (1984) What is the role of the AV3V region in the production of tfie neurogenic actions of angiotensin II in the dog? Clin Exp Hypertens A6: 1927–1932

    Article  CAS  Google Scholar 

  • McEwen BS, Davis PG, Parsons B, Pfaff DW (1979) The brain as a target for steroid hormone action. Ann Rev Neurosci 2: 65–112

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn FAO, Quirion R, Saavedra JM, Aguilera G, Catt KJ (1984) Autoradiographic localization of angiotensin II receptors in rat brain. Proc Natl Acad Sei USA 81: 1575–1579

    Article  CAS  Google Scholar 

  • Michelini LC, Bames KL, Ferrario CM (1983) Argnine vasopressin modulates the central action of angiotensin II in the dog. Hypertension 5 [Suppl V]: V94–V100

    PubMed  CAS  Google Scholar 

  • Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Ann Rev Neurosci 1: 129–169

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Ann Rev Neurosci 2: 113–168

    Article  PubMed  CAS  Google Scholar 

  • Nathan MA, Reis DJ (1977) Chronic labile hypertension produced by lesions of the nucleus tractus solitarii in the cat. Circ Res 40: 72–81

    PubMed  CAS  Google Scholar 

  • Osman MY, Smeby RR, Sen S (1979) Separation of dog brain renin-like activity from acid protease activity. Hypertension 1: 53–60

    PubMed  CAS  Google Scholar 

  • Owsjannikow P (1871) Die tonischen und reflectorischen centren der gefassnerven. Ber Sachs Ges (Akad) Wiss 23: 135–147

    Google Scholar 

  • Panneton WM, Loewy AD (1980) Projections of the carotid sinus nerve to the nucleus of the solitary tract in the cat. Brain Res 191: 239–244

    Article  PubMed  CAS  Google Scholar 

  • Ranson SW, Billingsley PR (1916) Vasomotor reactions from stimulation of the floor of the fourth ventricle. Studies in vasomotor reflex arcs III. Am J Physiol 41: 85–90

    Google Scholar 

  • Reid IA (1983) Salt and water regulation. In: Krieger DT, Brownstein MJ, Martin JB (eds) Brain peptides. Wiley, New York, pp 333–348

    Google Scholar 

  • Reid JL, Zivin JA, Kopin IJ (1975) Central and peripheral adrenergic mechanisms in the development of deoxycorticosterone-saline hypertension in rats. Circ Res 37: 569–579

    PubMed  CAS  Google Scholar 

  • Reis DJ, Joh TH, Nathan MA, Renaud B, Snyder DW, Talman W (1979) Nucleus tractus solitarii: catecholaminergic innervation in normal and abnormal control of arterial pressure. In: Meyer P, Schmitt H (eds) Nervous system and hypertension. Wiley, New York, pp 147–164

    Google Scholar 

  • Reis DJ, Ross CA, Ruggiero DA, Granata AR, Joh TH (1984) Role of adrenaline neurons of ventrolateral medulla (the Cl group) in the tonic and phasic control of arterial pressure. Clin Exp Hypertens [A] 6: 221–241

    Article  CAS  Google Scholar 

  • Rocha e Silva M, Rosenberg M (1969) The release of vasopressin in response to haemorrhage and its role in the mechanism of blood pressure regulation. J Physiol (London) 202: 535–557

    CAS  Google Scholar 

  • Ross CA, Armstrong DM, Ruggiero DA, Pickel VM, Joh TH, Reis DJ (1981) Adrenaline neurons in the rostral ventrolateral medulla innervate thoracic spinal cord: a combined immunocy-tochemical and retrograde transport demonstration. Neurosci Lett 25: 257–262

    Article  PubMed  CAS  Google Scholar 

  • Ross C, Ruggiero DA, Joh TH, Park DH, Reis DJ (1983) Adrenaline synthesizing neurons in the rostral ventrolateral medulla: a possible role in tonic vasomotor control. Brain Res 273: 356–361

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1981) Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214: 685–687

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205: 260–272

    Article  PubMed  CAS  Google Scholar 

  • Scharrer B (1977) Peptides in neurobiology: historical introduction. In: Gainer H (ed) Peptides in neurobiology. Plenum, New York, pp 1–8

    Chapter  Google Scholar 

  • Scharrer E, Scharrer B (1954) Hormones produced by neurosecretary cells. Recent Prog Horm Res 10: 183–240

    CAS  Google Scholar 

  • Share L (1974) Blood pressure, blood volume, and the release of vasopressin. In: Knobil E, Sawyer WH (eds) Handbook of physiology, Sect 7, Endocrinology, vol 4, The pituitary gland and its neuroendocrine control. American Physiological Society, Washington, DC, pp 243–255

    Google Scholar 

  • Share L (1976) Role of cardiovascular receptors in the control of ADH release. Cardiology 61 [Suppl I]: 51–64

    Article  PubMed  Google Scholar 

  • Sladek CD, Johnson AK (1983) Effect of anteroventral third ventricle lesions on vasopressin release by organ-cultured hypothalamo-neurohypophyseal explants. Neuroendocrinology 37: 78–84

    Article  PubMed  CAS  Google Scholar 

  • Sladek CD, Knigge KM (1977) Osmotic control of vasopressin release by rat hypothalamo-neurohypophyseal explants in organ culture. Endocrinology 101: 1834–1838

    Article  PubMed  CAS  Google Scholar 

  • Slater EE (1981) Brain renin: progress in research. In: Buckley JP, Ferrario CM (eds) Central nervous system mechanisms in hypertension. Raven, New York, pp 293–300

    Google Scholar 

  • Sofroniew MV (1983) Morphology of vasopressin and oxytocin neurones and their central and vascular projections. In: Cross BA, Leng G (eds) The neurohypophysis: structure, function and control. Elsevier, London, pp 101–114 (Progress in brain research, vol. 60)

    Chapter  Google Scholar 

  • Speth RC, Wamsley JK, Gehlert DR, Chernicky CL, Barnes KL, Ferrario CM (1985) Angiotensin II receptor localization in the canine CNS. Brain Res 326: 137–143

    Article  PubMed  CAS  Google Scholar 

  • Takano Y, Loewy AD (1985) Reduction of [3H] substance P binding in the intermediolateral cell column after sympathectomy. Brain Res 333: 193–196

    Article  PubMed  CAS  Google Scholar 

  • Thoren P (1980) Characteristics of aortic baroreceptors with non-medullated afferents in rabbits and rats. In: Sleight P (ed) Arterial baroreceptors and hypertension. Oxford University Press, Oxford, pp 17–22

    Google Scholar 

  • Undesser KP, Hasser EM, Haywood JR, Johnson AK, Bishop VS (1985) Interactions of vasopressin with the area postrema in arterial baroreflex function in conscious rabbits. Circ Res 56: 410–417

    PubMed  CAS  Google Scholar 

  • Wallach JH, Loewy AD (1980) Projections of the aortic nerve to the nucleus tractus solitarius in the rabbit. Brain Res 188: 247–251

    Article  PubMed  CAS  Google Scholar 

  • West MJ, Elliott J, Chalmers J (1984) The sympatho-adrenal system and vasopressin in cardovascular responses to A1 lesions. Clin Exp Hypertens [A] 6: 157–170

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barnes, K.L., Ferrario, C.M. (1987). Role of the Central Nervous System in Cardiovascular Regulation. In: Furlan, A.J. (eds) The Heart and Stroke. Clinical Medicine and the Nervous System. Springer, London. https://doi.org/10.1007/978-1-4471-3129-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3129-8_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3131-1

  • Online ISBN: 978-1-4471-3129-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics